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The probability distribution of the internal shear stress generated by systems of straight, parallel edge
dislocations is studied. The stress distribution functions of randomly distributed dipoles and walls are calcu-
lated analytically. The stress distribution function of relaxed systems is also calculated analytically assuming
relaxed configurations to be made up of uncorrelated perfect dipoles and walls. The resulting relaxed stress
distribution function is compared to numerical simulations.
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I. INTRODUCTION

In the last decade it has become a key issue to establish an
appropriate scheme for the multiscale modeling of material
properties. At the submicron level, the mechanical features
of crystalline materials are mainly determined by the collec-
tive behavior of dislocations. So, to link the 10 nm-scale
description, where one can actually “see” individual disloca-
tions, to the micron-scale description, the statistical proper-
ties of dislocation ensembles need to be understood. This can
help in establishing appropriate models for problems like
dislocation pattern formation or size effects. Although quite a
number of different analytical1–5 and numerical6–14 models
have been suggested to establish the connection between the
two length scales, most of them rely on assumptions closely
related to the statistical properties of dislocation systems.
One important example is the justification of gradient terms
introduced heuristically in many nonlocal phenomenological
continuum theories of plasticity.5,15–19As it was shown by
Groma, Csikor, and Zaiser,5 a gradient term can only be
strictly justified if dislocation-dislocation correlations have a
short range character.

The probability distribution of the internal stress created
by dislocation systems is an important measure of the statis-
tical properties of these systems. As it is explained in detail
in this paper, the shape of the central part of the stress dis-
tribution function is determined by the correlation length of
the dislocation system considered. So, e.g., if one creates a
dislocation configuration by discrete dislocation dynamics
simulation and would like to determine the correlation
length, it is much more effective and precise to numerically
calculate and analyze the internal stress distribution function
than the pair correlation functions, that have a complicated
radial and angular dependence. Certainly, the stress distribu-
tion function provides less information, but the accuracy of
the obtained parameters is much higher.

Another important issue is the connection between the
probability distribution of the internal stress and the shape of
broadened x-ray Bragg peaks. The only difference between
the two is that the second one measures the distribution of
the strain instead of the stress. This means that the way the
theoretical description of line broadening created by disloca-
tions needs to be handled is precisely the same as the calcu-

lation of the probability distribution of the internal stress.20,21

It can be stated that, apart from minor differences, x-ray line
profile measurement offers a method for the experimental
investigation of the internal strain(stress) distribution.

A further practical aspect of the problem is that the pre-
cise knowledge of the analytical form of the internal stress
distribution is a key issue for theOsNd time complexity sto-
chastic dislocation dynamics simulation method proposed
earlier by Groma and Bakó.22

Since the time-scale of typical deformation experiments is
orders of magnitudes longer than the time needed to achieve
local equilibrium in dislocation systems, it is reasonable to
assume local equilibrium everywhere in the entire sample
during such experiments as well as during simulations of
such experiments. For this reason, the goal of this paper is to
properly describe the internal stress distribution of relaxed
dislocation systems. To reduce the complexity of the prob-
lem, two-dimensional(2D) configurations of straight parallel
edge dislocations lying in a single slip system were analyzed.
The slip plane was chosen to be thexz plane with disloca-
tions parallel to thez axis. It is known from numerical simu-
lations (see e.g., Zaiser, Miguel, and Groma23) that the re-
laxed state of such systems is homogeneous and contains
dipoles and walls. According to this, the aim of this paper is
to describe the stress distribution function generated by these
two short range correlation type objects. It is known, too,
that both dipoles and walls are stable structures against small
enough external stresses. The analysis of the stress distribu-
tion function in the stressed case will be published in another
paper.

For the description of relaxed dislocation configurations,
let us model the angular dependence of the pair correlation
functions of the relaxed state with Dirac delta functions. That
is, dipoles are supposed to make a 45° angle to thex axis and
walls are supposed to be perfectly vertical. It is also sup-
posed that all correlations of the order higher than two van-
ish. In the lack of external stress, the relaxed configurations
are symmetrical to mirroring the dislocation Burgers vectors.
Based on these, as a first step, the stress distribution contri-
butions of uncorrelated, homogeneous, and symmetrical con-
figurations of dislocations, dipoles, and walls are discussed.
After that, for modeling the relaxed configurations men-
tioned above, these contributions are combined.
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II. GENERAL FORM OF THE PROBABILITY
DISTRIBUTION OF THE INTERNAL STRESS

Let us consider a planar arrangement ofN pointlike ob-
jects positioned atr i, i =1, . . . ,N. The objects are similar
apart from a signsi = ±1. The elastic shear stress field theith
object generates has the form

tobj
si sr − r id = sitobjsr − r id, s1d

where the actualr dependence oftobjsrd is determined by the
type of object considered. With this, the total internal shear
stress field generated by the objects can be expressed as

tsrd = o
i=1

N

tobj
si sr − r id. s2d

The goal of this section is to determine thePobjst ,rd prob-
ability density of this stress field at an arbitrary positionr.

For the calculation ofPobjst ,rd Markoff’s method24 was
applied, that has been successfully used, among others, to
determine the first moment and the asymptotic behavior of
the internal stress distribution for straight, parallel disloca-
tions (see Groma and Bakó22). The problem can be rigor-
ously formulated mathematically as to find thePobjst0,rddt0

probability of fulfilling the relation

t0 −
dt0

2
, tsrd , t0 +

dt0

2
s3d

for arbitrary t0 values. By introducing theN particle distri-
bution function wobj

s1,. . .,sNsr1, . . . ,rNd, the stress distribution
function can be expressed as

Pobjst0,rddt0 = o
s1

¯o
sN

E dr1¯E drNwobj
s1,. . .,sNsr1, . . . ,rNd,

s4d

where the sums and integrals are taken only over that regions
of the configuration space where the inequalities(3) are sat-
isfied. By introducing the quantity

Ds1,. . .,sNsr1, . . . ,rNd = H1 whenevers3d holds,

0 otherwise,
s5d

the sums and integrals in Eq.(4) can be extended to the
entire h±1jN3R2N space

Pobjst0,rddt0 = o
s1=±1

¯ o
sN=±1

E
−`

`

dr1 ¯ E
−`

`

drN

3Ds1,. . .,sNsr1, . . . ,rNdwobj
s1,s2,. . .,sNsr1,r2, . . . ,rNd.

s6d

As it has been shown by Markoff,24 Ds1,. . .,sNsr1, . . . ,rNd can
be expressed as

Ds1,. . .,sNsr1, . . . ,rNd =
1

p
E

−`

` sinsaqd
q

expsigqddq, s7d

where a=dt0/2 and g=oi=1
N tobj

si sr −r id−t0. By combining
Eqs. (6) and (7), the Fourier transform ofPobjst0,rd with
respect tot0 has the form22

lnfPobjsq,rdg = − o
s1=±1

E
R2

robj
s1 sr1dBobj

s1 sr − r1,qddr1

+
1

2 o
s1=±1

o
s2=±1

E
R4

dobj
s1,s2sr1,r2d

3Bobj
s1 sr − r1,qdBobj

s2 sr − r2,qddr1dr2 + ¯ ,

s8d

where

Bobj
s sr,qd = 1 − expfiqtobj

s srdg, s9d

robj
s1 sr1d denotes the density of objects with signs1 at position

r1 anddobj
s1,s2sr1,r2d is the pair correlation function of objects

with signss1 ands2.
In the rest of this paper, the expression ofPobjsq,rd in Eq.

(8) is always used under the following simplifying condi-
tions:

(1) The spatial arrangement of objects is assumed to be
homogeneous and uncorrelated. This yields that only the first
term of Eq.(8) is nonzero and the spatial dependence ofrobj

s

vanishes.
(2) The configuration of objects is symmetrical with re-

spect to the inversion of signs, leading to the disappearance
of the imaginary part of Eq.(8).

Let us call object configurations fulfilling these conditions
uncorrelated, homogeneous and symmetrical(UHS) systems.
For UHS systems, Eq.(8) simplifies to

lnfPobj
UHSsqdg = − robjE

R2
h1 − cosfqtobjsrdgjdr , s10d

whererobj=robj
−1 +robj

+1 is the total object density andtobjsrd is
the stress field of an individual object without the sign factor
[cf. Eq. (1)]. It should be noted thatPobj

UHSsqd in Eq. (10) is a
real, even function ofq, meaning that the UHS stress distri-
bution functionPobj

UHSstd is real and even as well.
It needs to be mentioned at this point that, as it is ex-

plained in details by Groma and Bakó,22 for individual dis-
locations the correlation effects always need to be taken into
account in order to avoid crystal size dependence. However,
for dislocation dipoles or multipoles considered in this paper,
neglecting the correlations between these objects does not
lead to such artificial effects.

For our further considerations, it is important to analyze
the behavior of the stress distribution functionPobj

UHSstd at the
simultaneous presence of multiple mutually independent
UHS object populations obj1, . . . ,objM. For such a case, the
elastic shear stress field of the combined population is the
sum of the stress fields of individual populations. As it is
well known, the probability distribution of the sum of mutu-
ally independent probabilistic variables is the convolution of
the individual probability distributions that is equivalent to a
multiplication in the Fourier space. Thus, the stress distribu-
tion of the combined object configuration can be expressed
as

lnfPobj
UHSsqdg = o

j=1

M

lnfPobjj
UHSsqdg. s11d
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III. STRESS DISTRIBUTION OF RELAXED
CONFIGURATIONS OF STRAIGHT, PARALLEL EDGE

DISLOCATIONS

In order to get a picture about relaxed dislocation configu-
rations, numerical discrete dislocation dynamics simulations
have been performed with the geometry described in Sec. I.
The simulations were done with dimensionless variables. A
unit square geometry with periodic boundary conditions was
used to get rid of surface artifacts. Dislocation pair interac-
tions were calculated using a high enough number of image
dislocations(transposed by integer multiples of the two unit
vectors parallel to the square edges) to get a smooth pair
interaction function at the simulation square edges. Disloca-
tion velocities were taken proportional to the net interaction
stress of the other dislocations. No dislocation multiplication
or annihilation was allowed. For numerical integration an
adaptive step-size 4.5th order Runge–Kutta–Fehlberg
method was used.

Figure 1 shows a representative equilibrium dislocation
configuration obtained from an initially random distribution
of an equal number of positive and negative sign edge dis-
locations with Burgers vectors parallel to thex axis, using
the simulation method outlined above. As it can be seen, the
relaxed state can be described as an array of dipoles and
walls. The dipole angles are very close to the unstressed 45°
value and the walls are nearly straight and vertical, i.e., it is
a good approximation to assume that these structures are
independent of each other. The relaxation process can be
viewed as a relatively fast formation of dipoles and walls
followed by an extremely slow rearrangement of these ob-
jects.

According to the above, in the following the stress distri-
bution functions created by individual dislocations and UHS

configurations of dipoles and walls are analyzed. At the end
of this section, all these are combined into a model of the
stress distribution function of relaxed dislocation configura-
tions.

A. Individual dislocations

The stress field of a straight, infinite edge dislocation par-
allel to thez axis sliding in thexz plane has the form30

tdis
s srd = stdissrd = sbG

xsx2 − y2d
sx2 + y2d2 =

sKswd
r

, s12d

whereb is the absolute value of the Burgers vector andG is
a combination of the elastic moduli.25 It is worth mentioning
that the last form of the stress field is applicable to any dis-
location type by using an appropriateKswd, thus the follow-
ing results written in this form are valid for any type of
straight dislocations.

The stress distribution function of straight, parallel dislo-
cation systems was analyzed in detail by Groma and Bakó.22

In that work, only those properties of the stress distribution
function were considered that depend only on the properties
of individual dislocations. Using Markoff’s method de-
scribed in the previous section, it was found that forany
dislocation configuration the stress distribution function as-
ymptotically decays as

Pdisst,rd → Crdissrd
1

utu3
, wheneverutu → `, s13d

whererdissrd is the dislocation density(the number of dislo-
cations intersecting a surface unit) at positionr and

C = 1
2E

0

2p

K2swddw s14d

is the “contrast factor” of the dislocation type considered.
For edge dislocations,C=sp /4dsGbd2. It is important to note
that the asymptotic behavior given by Eq.(13) depends only
on the local properties of the dislocation system, irrespective
of the actual arrangement. In other words this means that the
high stresses come entirely from the diverging stress field
near the dislocation positions.

For dislocation systems homogeneous on the length scale
of the average dislocation spacing, Eq.(13) can be written as

Pdis
H std → Crdis

1

utu3
, wheneverutu → `. s15d

In the Fourier space, this leads to the formula22

lnfPdis
H sqdg → Crdisq

2 lnS uqu
qeff

D , s16d

wheneveruqu→0, whereqeff is an unknown parameter de-
pending on the characteristic length scale of the dislocation
assembly(e.g., crystal size, correlation length, or dipole
size).

B. Monodisperse ideal dipoles

In the following, a dipole characterized by an infinitesi-
mally small size but finite dipole moment is referred to as an

FIG. 1. Relaxed configuration of an initially random arrange-
ment of 512 positive sign(upward triangles) and 512 negative sign
(downward triangles) edge dislocations(the Burgers vectors are
parallel to thex axis). Dislocations with an opposite-sign nearest
neighbor are denoted by filled symbols(representing dipoles and
standalone dislocations), the remaining dislocations are denoted by
open symbols(walls and further standalone dislocations). Note the
dominant presence of dipoles and walls.
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ideal dipole. Such a dipole can be treated as a pointlike ob-
ject. A real dipole can be approximated by an ideal one if its
size is less than the length scale of interest. In a similar way
as in electrostatics, the stress field of an ideal dislocation
dipole can be expressed as

tidip
s srd = stidipsrd = sp

dtdissrd
dr

, s17d

where the dipole vectorp (the relative position vector con-
necting the negative constituent dislocation to the positive
one) is chosen to point rightwards, argspdP f−p /2 ,p /2d. To-
gether with the signs= ±1, this choice unambiguously de-
scribes all possible dipole orientations. Performing the dif-
ferentiation in Eq.(17) leads to

tidipsrd =
Lswd

r2 , s18d

where

Lswd = − upuFKswdcosswreld +
dKswd

dw
sinswreldG s19d

is a trigonometric polynomial andwrel=w−argspd.
By substituting Eq.(18) into Eq.(10), one obtains that for

UHS ideal dipole systems the stress distribution function is

lnfPidip
UHSsqdg = − ridipE

0

2p

dwE
0

`

rdrF1 − cosSqLswd
r2 DG ,

s20d

whereridip is the density of ideal dipoles. With the variable
substitutionx= uqLswd u / r2, the integral with respect tox can
be performed analytically, leading to

lnfPidip
UHSsqdg = − Dridipuqu, s21d

where

D =
p

4
E

0

2p

uLswdudw. s22d

Since the order of the trigonometric polynomialLswd is usu-
ally higher than four, the value ofD can only be calculated
numerically. For 45° edge dislocation dipoles,D
<3.55bGupu.

Equation(21) means that the stress distribution function
created by ideal dipoles isLorentzianwith a half width of
Dridip. (For x-ray line profiles, the Lorentzian character has
been already obtained by Krivoglaz26 but without the explicit
expression of the half width.)

C. Monodisperse “real” dipoles

In contrast to ideal dipoles considered in the previous sec-
tion, in real systems dipoles always have a finite size. Con-
sequently, the stress field of a real dipole,

trdip
s srd = strdipsrd, s23d

is characterized by the asymptotes

trdipsrd → 5tdis
+1sr − 1

2pd , wheneverur − 1
2pu → 0,

tdis
−1sr + 1

2pd , wheneverur + 1
2pu → 0,

tidipsrd, wheneverur u → `,

s24d

wheretdis denotes the stress field of an individual dislocation
[Eq. (12)] andtidip is the stress field of ideal dipoles given by
Eq. (18). trdipsrd smoothly interpolates between these re-
gimes.

The complicated behavior oftrdipsrd in the interpolation
regime makes it difficult to evaluate Markoff’s formula[Eq.
(10)]. However, we can utilize the substantially different
stress magnitudes of the asymptotic regimes. The stress field
reaches its highest magnitudes in the two asymptotic regimes
near the constituent dislocations that implies a dislocation-
like behavior of the tails of the stress distribution function
Prdip

UHSstd. In contrast to this, the central part ofPrdip
UHSstd

should be ideal dipolelike.
In order to validate the existence of these two regimes, the

internal stress distribution of monodisperse dipole configura-
tions was determined numerically. One of the obtained dis-
tribution functions is plotted in Fig. 2 together with the theo-
retically calculated Lorentzian distribution and the
asymptotic 1/t3 formula. It is clear that the distribution func-
tion follows the expected behaviors in the corresponding re-
gimes quite well. It is worth noting that the Lorentzian and
the asymptotic functions do not contain any fitting param-
eters, the parameters were calculated analytically.

For describing the entire stress distribution function, one
can introduce a suitable interpolating function between the
two analytically known asymptotes. However, because of the
simpler form of the combination rule given by Eq.(11), it is
more useful to perform the interpolation in the Fourier space
rather than in thet space. The rapidly changing central part
of Prdip

UHSstd corresponds to the high frequency regimes of
Prdip

UHSsqd, while the decaying tails ofPrdip
UHSstd affect the cen-

tral part of Prdip
UHSsqd. Consequently, according to Eqs.(16)

and (21), we should suppose the asymptotes

FIG. 2. Numerically obtained stress distribution function of a
random dipole system and the analytically known Lorentzian and
1/t3 asymptotes. For the numerics, dipoles of eight different sizes
were used, each of which is represented by a small peak on the
numerical curve. In the case of smooth dipole size distributions the
peaks get blurred and eventually disappear(see Fig. 5), that is why
they are omitted from the present analysis.
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lnfPrdip
UHSsqdg

→ 5Crdisq
2 lnS uqu

qeff
D wheneveruqu → 0,

− Drrdipuqu = − 1
2Drdisuqu wheneveruqu → `,

s25d

where rrdip denotes the planar dipole density. A relatively
simple choice can be the following form:

lnfPrdip
UHSsqdg = Wq2FlnS1 +

X

uquD +
Y

q2 + Z
G , s26d

where W, X, Y, and Z are constants. Substituting Eq.(26)
into Eq. (25) unambiguously determines the values ofW, X,
Y, andZ leading to

lnfPrdip
UHSsqdg = − Crdisq

23lnS1 + E
qeff

uqu D +
E2lnsEd

2 lnsEd
q2

qeff
2 − E24 ,

s27d

where

E = D/s2Cqeffd s28d

is a dimensionless constant.[The actualq dependence of the
denominator of the second term in expression(27) ensures
the homogeneous linearity at largeq values.]

According to earlier investigations of Groma and Bakó,22

for an arbitrary dislocation configuration the value ofqeff can
be determined from the equation

E ddis
+1,−1sr1 − r2dtdissr1dtdissr2ddr1dr2 = rdislnSqeff

Rc
D ,

s29d

whereddis
+1,−1 is the pair correlation function between disloca-

tions with sign +1 and −1 andRc denotes the crystal size.
However, the analytical expression forddis

+1,−1 is unknown and
available numerical data are not precise enough to reliably
evaluateqeff. Instead of these, the value ofqeff has been
obtained numerically by fitting the asymptotes in Eq.(25) to
numerical simulations of the stress distribution function in
UHS real dipole systems(see Fig. 3 for an example). For 45°
edge dislocation dipoles

qeff =
Q

G
upu, Q = 5 ± 2. s30d

The proportionality betweenqeff and upu is not surprising
since for relatively narrow dipolesupu is the dominating
length scale in the given dislocation configuration. Substitut-
ing Eq. (30) into Eq. (28) givesE=0.53±0.2. According to
Fig. 3, the interpolation function given in Eq.(27) describes
the numerical data with high accuracy.

D. Disperse real dipoles

Real relaxed dislocation configurations contain dipoles
with different sizes. Let us denote the probability distribution

of dipole sizes byPspd where the notationp= upu is used. The
system can be decomposed into UHS arrangements of mono-
disperse dipoles. Applying the combination rule(11), the
stress distribution function of the entire system can be ex-
pressed as

lnfPrdip,distr
UHS sqdg =E

0

`

PspdlnfPrdip
UHSsq,pdgdp, s31d

where lnfPrdip
UHSsq,pdg denotes the stress distribution of real

dipoles given by Eq.(27) with the dipole size dependence
explicitly written out.

Equation(31) can be used to calculate the contribution of
the dipoles to the stress distribution function of 2D relaxed
dislocation systems. To establish the dipole size distribution
of relaxed systems, relaxed dislocation configurations like
the one in Fig. 1 were analyzed. For each dislocation, the
distance of the nearest dislocation of opposite sign was com-
puted.Pspd was approximated by the distribution of these
distances that is reasonable for distances less than the aver-
age dislocation distance 1/Îrdis. During relaxation,Pspd was
found to converge to an exponential distribution

Prelaxspd =
1

p0
e−sp/p0d with p0 <

0.5
Îrdis

s32d

(see Fig. 4). This is consistent with the analysis of Zaiser,

FIG. 3. The numerically obtained stress distribution function
shown in Fig. 2 and the interpolating function between the analyti-
cally known asymptotes atutu→0 andutu→` [Eq. (27)].

FIG. 4. Dipole size histogram of the relaxed dislocation con-
figuration depicted in Fig. 1. Dotted line: exponential decay fit.
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Miguel, and Groma23 showing that only a faster than alge-
braic decay of the pair correlation functions is self-consistent
in equilibrium dislocation systems.

Substituting the relaxed dipole size distribution in Eq.
(32) into Eq. (31) gives

lnfPrdip,distr
UHS sqdg = − Crdisq

2H− euqu/q1EiS−
uqu
q1
D

− lnsEdF1 +
uqu
q2

cosS uqu
q2
DsiS uqu

q2
D

− sinS uqu
q2
DCiS uqu

q2
DGJ , s33d

where q1=EQp0, q2=EQp0/Î−2 lnsEd=q1/Î−2 lnsEd and
Ei, si, and Ci denote the exponential, sine, and cosine inte-
gral functions,27 respectively. In fact, Eq.(33) is effectively
an interpolation between the two regimes given by Eq.(25).
For certain applications, Eq.(27) can also be applied with
appropriately averaged values forD andqeff.

E. Dislocation walls

Besides dipoles, relaxed 2D dislocation configurations
contain walls. As a prototype for walls, let us consider a
straight, infinitely long wall parallel to they axis made up of
edge dislocations at a distanceh having Burgers vectorssb
parallel to thex axis. Near the wall, i.e., ifuxu!h, the stress
field of the infinite wall is dominated by the stress field of a
few nearby dislocations. On the other hand, ifuxu@h, the
asymptotic behavior of the stress field can be given as

tiwall
s srd = stiwallsrd = s4p2Gb

h2 uxue−2p
uxu
h cosS− 2p

y

h
D

s34d

(see Landau and Lifshitz25). These two asymptotic regimes
can be treated similarly to the case of real dipoles described
above. As a first step, we calculate the stress distribution
function of an idealized wall that generates a stress field
described by Eq.(34). The effect of the near stress field is
incorporated in a similar way as for real dipoles.

By substituting Eq.(34) into Eq. (10) one obtains for the
stress distribution of UHS ideal wall configurations

lnfPiwall
UHSsqdg = −

hiwall

h
E

0

h

dyE
−`

`

dx

3H1 − cosFq4p2Gb

h2 uxue−2puxu/h

3cosS− 2p
y

h
DGJ , s35d

wherehiwall is the line density of ideal walls. With this, the
density of dislocations in the walls can be given ashiwall /h.
After introducing the new integration variablesa=2px/h
and b=q2pbGae−a coss−2py/hd /h, the integral with re-
spect tob can be performed, leading to

lnfPiwall
UHSsqdg = −

hiwallh
2

ph
E

0

` F1 − J0Sq
2pGb

h
ae−aDGda,

s36d

whereJ0 is the Bessel function of the first order.27 For typical
values ofG, b, andh, the integrands1−J0d is well approxi-
mated by the first nonvanishing term of its Taylor series
around 0, yielding

lnfPiwall
UHSsqdg = − p

hiwall

h
SGb

2
D2

q2. s37d

Thus, the stress distribution of an ideal wall isGaussianwith
a standard deviation ofsp /2dhiwallsGbd2/2.

F. Relaxed dislocation configurations

As it was mentioned above, relaxed 2D configurations are
made up of two structures, dipoles and walls. We measured
the frequency of signs of the nearest neighbors of disloca-
tions. In relaxed configurations, 76±1% was obtained for the
frequency of opposite sign neighbors, independent of the dis-
location density.

According to the results explained above, one can com-
pose the Fourier transform of the stress distribution function
of relaxed configurations in the following way. At smallq, it
starts with a dislocationlike part[see Eq.(16)] coming from
both dipoles and walls, containing the total dislocation den-
sity rdis. At higherq values, it has a dipole part[see Eq.(33)]
with an apparentD value 0.76 times smaller than theD value
given by Eq.(22). The appearance of a relatively small num-
ber of walls can be well approximated by introducing an
apparentqeff leading to a Gaussian contribution. The stan-
dard deviation corresponding to this Gaussian correction
needs to be determined numerically.

One can compare the theoretical stress distribution func-
tion constructed above to a numerically obtained stress dis-
tribution curve in Fig. 5. It can be seen that the theoretical
function satisfactorily describes the numerical curve. One
can conclude from this that the entire stress distribution func-
tion of relaxed dislocation configurations can be described
taking only dislocation pair correlations into account and

FIG. 5. Numerically obtained stress distribution function of the
relaxed dislocation configuration depicted in Fig. 1 and the theoret-
ical stress distribution function described in Sec. III F. Note that the
two curves almost fully overlap.
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omitting all higher order correlations. Numerical calculations
have also shown that the stress distribution function of re-
laxed dislocation configurations depends only on one param-
eter, the dislocation density.

IV. CONCLUSIONS

The probability distribution of the internal shear stress
generated by systems of straight parallel edge dislocations of
a common slip system was investigated. The following re-
sults have been obtained:

(1) The stress distribution function of uncorrelated, ho-
mogeneous, and symmetrical to the sign exchange configu-
rations of dipoles was described as an interpolation between
the analytically known Lorentzian asymptote at small and
inverse cubic decay at large stresses. The correlation length
parameter, that is relatively complicated to calculate analyti-
cally, was determined from numerical simulations.

(2) The central part of the stress distribution of straight
infinite walls was shown to be of Gaussian-type.

(3) The dipole size distribution of relaxed configurations
was numerically shown to be exponential.

(4) The stress distribution function of relaxed configura-
tions was described in terms of uncorrelated sets of perfect
dipoles and walls. By numerically fitting the unknown stan-
dard deviation of the Gaussian contribution of walls, a dis-
tribution function accurate enough for stochastic dislocation
dynamics simulations was obtained.

It is worth mentioning that the above considerations are
also applicable to other types of pointlike objects generating
a 1/r type field like e.g., vortices in fluids(see Chavanis and
Sire28) or dislocations appearing in vortex lattices in type II
superconductors studied by Miguel and Zapperi.29
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