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Probability distribution of internal stress in relaxed dislocation systems
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The probability distribution of the internal shear stress generated by systems of straight, parallel edge
dislocations is studied. The stress distribution functions of randomly distributed dipoles and walls are calcu-
lated analytically. The stress distribution function of relaxed systems is also calculated analytically assuming
relaxed configurations to be made up of uncorrelated perfect dipoles and walls. The resulting relaxed stress
distribution function is compared to numerical simulations.
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. INTRODUCTION lation of the probability distribution of the internal stre’8!

It can be stated that, apart from minor differences, x-ray line

In the last decade it has become a key issue to eStab"ShaTﬂofile measurement offers a method for the experimental
appropriate scheme for the multiscale modeling of materiaj,yestigation of the internal straistress distribution.

properties. At the submicron level, the mechanical features A further practical aspect of the problem is that the pre-
of crystalline materials are mainly determined by the collecjse knowledge of the analytical form of the internal stress
tive behavior of dislocations. So, to link the 10 nm-scaledistribution is a key issue for th@(N) time complexity sto-

description, where one can actually “see” individual disloca-chastic dislocation dynamics simulation method proposed
tions, to the micron-scale description, the statistical properearlier by Groma and Baké.

ties of dislocation ensembles need to be understood. This can Since the time-scale of typical deformation experiments is
help in establishing appropriate models for problems likeorders of magnitudes longer than the time needed to achieve
dislocation pattern formation or size effects. Although quite aocal equilibrium in dislocation systems, it is reasonable to
number of different analyticht® and numeric&* models assume local equilibrium everywhere in the entire sample
have been suggested to establish the connection between tiiering such experiments as well as during simulations of
two length scales, most of them rely on assumptions closelguch experiments. For this reason, the goal of this paper is to
related to the statistical properties of dislocation systemsproperly describe the internal stress distribution of relaxed
One important example is the justification of gradient termsdislocation systems. To reduce the complexity of the prob-
introduced heuristically in many nonlocal phenomenologicallem, two-dimensional2D) configurations of straight parallel
continuum theories of plasticif§*>'°As it was shown by edge dislocations lying in a single slip system were analyzed.
Groma, Csikor, and Zaiséra gradient term can only be The slip plane was chosen to be tkeplane with disloca-
strictly justified if dislocation-dislocation correlations have ations parallel to the axis. It is known from numerical simu-
short range character. lations (see e.g., Zaiser, Miguel, and Groffjathat the re-
The probability distribution of the internal stress createdlaxed state of such systems is homogeneous and contains
by dislocation systems is an important measure of the statigtipoles and walls. According to this, the aim of this paper is
tical properties of these systems. As it is explained in detaito describe the stress distribution function generated by these
in this paper, the shape of the central part of the stress diswo short range correlation type objects. It is known, too,
tribution function is determined by the correlation length of that both dipoles and walls are stable structures against small
the dislocation system considered. So, e.g., if one createsemough external stresses. The analysis of the stress distribu-
dislocation configuration by discrete dislocation dynamicstion function in the stressed case will be published in another
simulation and would like to determine the correlation paper.
length, it is much more effective and precise to numerically For the description of relaxed dislocation configurations,
calculate and analyze the internal stress distribution functiotet us model the angular dependence of the pair correlation
than the pair correlation functions, that have a complicatedunctions of the relaxed state with Dirac delta functions. That
radial and angular dependence. Certainly, the stress distribis, dipoles are supposed to make a 45° angle to s and
tion function provides less information, but the accuracy ofwalls are supposed to be perfectly vertical. It is also sup-
the obtained parameters is much higher. posed that all correlations of the order higher than two van-
Another important issue is the connection between theash. In the lack of external stress, the relaxed configurations
probability distribution of the internal stress and the shape ofire symmetrical to mirroring the dislocation Burgers vectors.
broadened x-ray Bragg peaks. The only difference betweeBased on these, as a first step, the stress distribution contri-
the two is that the second one measures the distribution dfutions of uncorrelated, homogeneous, and symmetrical con-
the strain instead of the stress. This means that the way tHegurations of dislocations, dipoles, and walls are discussed.
theoretical description of line broadening created by dislocaAfter that, for modeling the relaxed configurations men-
tions needs to be handled is precisely the same as the caldibned above, these contributions are combined.
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Il. GENERAL FORM OF THE PROBABILITY

DISTRIBUTION OF THE INTERNAL STRESS In[Poy(a,1)]=~ > Pob](rl)BobJ(r —ry,q)dry
s=£1
Let us consider a planar arrangement\Nbpointlike ob- '
jects positioned at;, i=1,... N. The objects are similar iz 2 s S(r
a S : ; obr,r2)
part from a sigrs, = +1. The elastic shear stress field itte 251_,,152 1
object generates has the form

i Beh(r —r1,0)B b(r —15,q)drydr, +
Tébj(r — 1) =S 7o = 11), (1) ob) obj

where the actual dependence of,,(r) is determined by the where
type of object considered. With this, the total internal shear

8

stress field generated by the objects can be expressed as ObJ(r q) =1-exgiqr, bI(r)] 9
pob](l‘l) denotes the density of objects with sigjnat position
r) = E bj(r ) r, and dobj (r1,ry) is the pair correlation function of objects
with signss; ands,.
The goal of this section is to determine tRg,(7,r) prob- In the rest of this paper, the expressiorRgf;(q,r) in Eq.

ability density of this stress field at an arbitrary position  (8) is always used under the following simplifying condi-
For the calculation oPg,(7,r) Markoff’s method* was  tions:

applied, that has been successfully used, among others, to (1) The spatial arrangement of objects is assumed to be

determine the first moment and the asymptotic behavior ohomogeneous and uncorrelated. This yields that only the first

the internal stress distribution for straight, parallel disloca-term of Eq.(8) is nonzero and the spatial dependenceggf

tions (see Groma and Bak§. The problem can be rigor- vanishes.

ously formulated mathematically as to find tRgy(7,r)dy (2) The configuration of objects is symmetrical with re-
probability of fulfilling the relation spect to the inversion of signs, leading to the disappearance
of the imaginary part of Eq8).
To— dro <Hr) < mp+ dr (3) Let us call object configurations fulfilling these conditions
2 2 uncorrelated, homogeneous and symmetKicdlS) systems.

for arbitrary 7y values. By introducing th&l particle distri- For UHS systems, EqB) simplifies to

bution function wgti™N(ry, ... ry), the stress distribution UHS
function can be expressed as IN[Pop;"(a)] =~ popj | {1~ cogarey(r)lidr, (10
R

Pop(To,1)dT0= 2 -+ f drl"'f drwgh My, .. ), WherePobj:pggﬁpgéj is the total object density angy(r) is
s the stress field of an individual object without the sign factor
()  [cf. Eq.(1)]. It should be noted tha®/%(q) in Eq.(10) is a

real, even function of}, meaning that the UHS stress distri-

where the sums and integrals are taken only over that regions,tion func“onpggs(ﬂ is real and even as well.

of the configuration space where the inequalit@sare sat- It needs to be mentioned at this point that, as it is ex-
isfied. By introducing the quantity plained in details by Groma and Bak®éfor individual dis-

1 whenever(3) holds, locations the correlation effects always need to be taken into

A% AN(ry, LLLry) = 0 otherwise ) account in order to avoid crystal size dependence. However,

for dislocation dipoles or multipoles considered in this paper,
the sums and integrals in E¢4) can be extended to the neglecting the correlations between these objects does not

entire {+1}N x ®?N space lead to such artificial effects.
o o For our further considerations, it is important to analyze
Popi( 70,77 = >y drl"'f dry, the behavior of the stress distribution functin;E'S(fr) at the
=1 sy=ld - simultaneous presence of multiple mutually independent

UHS object populations oj...,obj,. For such a case, the
elastic shear stress field of the combined population is the
(6)  sum of the stress fields of individual populations. As it is
. o well known, the probability distribution of the sum of mutu-
Qg gngzszignazhown by Markaf,A%-+#(r,, ... ry) can ally independent probabilistic variables is the convolution of
the individual probability distributions that is equivalent to a
sin(aq) . multiplication in the Fourier space. Thus, the stress distribu-
A% AN(ry, LTy = ;Jw q expliya)dd,  (7)  tion of the combined object configuration can be expressed
as

XASl""'SN(rl, .. rN) O]bJSZ ”'SN(rl,rz, ,I’N).

where e=d7,/2 and y:Eﬁlf@'bj(r—ri)—fro. By combining M
Egs. (6) and (7), the Fourier transform oP,(7,r) with IN[PYHS(g)]= > In[PLHS(g)]. (11)
respect tory has the forr? ! - i
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Y S S = T ;‘v.' e ;A RS *‘ configurations of dipoles and walls are analyzed. At the end
A ¥ TR M 4 ALV R AR h . . .
A v, 4‘:‘ TaTa G F %V of this section, all these are combined into a model of the
va . v R 4 . . . . . . -
5 7 M A PR A AN stress distribution function of relaxed dislocation configura-
~"A y ‘V‘ 3 'v' v" :V%‘ -‘A A‘z.&' '-_% t|ons
IR v ¥ vé N 4 - ‘A" )
RN PP AR AL TR
SR PUT R o Ee Tt 2 e A. Individual dislocations
0 aae Yox' ¥ %, G s 8 ¥ ) ) ) .
g FAU SO S SN 20 AU I The stress field of a straight, infinite edge dislocation par-
M VIR I TR SN o allel to thez axis sliding in thexz plane has the forff
E] v A vav"AAi B ‘A" a YW, ¥
~ . Vg 4 A v L A A S I 2 _\,2
X OSSR\ IR X(X"—y9) _ sK(e)
S R A I WA N D) =57 DG 5= (12)
g a a 7 M S dis dis 2 2\2
\FN 7 F E (x=+y°) r
a v, A4 $ '3 + *vy, M ~ 7‘
y © vt 4 m xy 4 L. s £ . .
i~ PRI M S R whereb is the absolute value of the Burgers vector &
A x v A v 1 1 1 H H i
o ee AV ‘.‘ AT Ta 1B Ta a combination of the elastic moddf.It is worth mentioning
v Ya ‘aa y a v hed 1 H H H
A SR SRR “j,z € 2 & I that the last form of the stress field is applicable to any dis-
00' - £ 0"' S 7 location type by using an appropriatée), thus the follow-
« (arb. units) ing results written in this form are valid for any type of

straight dislocations.
FIG. 1. Relaxed configuration of an initially random arrange-  The stress distribution function of straight, parallel dislo-
ment of 512 positive sigiupward trianglepand 512 negative sign  cation systems was analyzed in detail by Groma and Baké.
(downward triangleg edge dislocationsthe Burgers vectors are |n that work, only those properties of the stress distribution

parallel to thex axis). Dislocations with an opposite-sign nearest fnction were considered that depend only on the properties
neighbor are denoted by filled symbaiepresenting dipoles and ¢ individual dislocations. Using Markoff's method de-
standalone dislocationsthe remaining dislocations are denoted by scribed in the previous section, it was found that &ty

gg?nqn?nr?b?gvgsgz i?iifuc:fzfrai?w;:gne dislocatipn¥lote the  yiq1ncation configuration the stress distribution function as-
P P : ymptotically decays as

Ill. STRESS DISTRIBUTION OF RELAXED 1
CONFIGURATIONS OF STRAIGHT, PARALLEL EDGE Pais(7,1) — deis(r)W: whenevelr — o, (13
DISLOCATIONS

In order to get a picture about relaxed dislocation configuyvherepdis(r) is the dislocation densitjthe number of dislo-

rations, numerical discrete dislocation dynamics simulation$2tions intersecting a surface yratt positionr and
have been performed with the geometry described in Sec. I. L 2m

The simulations were done with dimensionless variables. A C= ‘f K*(@)de (14)
unit square geometry with periodic boundary conditions was

used to get rid of surface artifacts. Dislocation pair interacis the “contrast factor” of the dislocation type considered.
tions were calculated using a high enough number of imageor edge dislocationss=(7/4)(Gb)2 It is important to note
dislocations(transposed by integer multiples of the two unit that the asymptotic behavior given by E@3) depends only
vectors parallel to the square edgés get a smooth pair on the local properties of the dislocation system, irrespective
interaction function at the simulation square edges. Dislocay the actual arrangement. In other words this means that the
tion velocities were taken proportional to the net interactionyjgh stresses come entirely from the diverging stress field
stress of the other dislocations. No dislocation multiplicationneay the dislocation positions.

or annihilation was allowed. For numerical integration an o gislocation systems homogeneous on the length scale

adaptive step-size 4.5th order Runge-Kutta—Fehlbergs the average dislocation spacing, Et@) can be written as
method was used.

Figure 1 shows a representative equilibrium dislocation H 1
configuration obtained from an initially random distribution Pas(7) — de‘5|q-|3’ whenever — . (19
of an equal number of positive and negative sign edge dis- . .
locations with Burgers vectors parallel to theaxis, using " the Fourier space, this leads to the forntéla
the simulation method outlined above. As it can be seen, the H o ( ldl
relaxed state can be described as an array of dipoles and In[Pgig(@)] — Cpaig” In| — |, (16)
walls. The dipole angles are very close to the unstressed 45° Geft
value and the walls are nearly straight and vertical, i.e., it isvhenever|g|— 0, whereqe is an unknown parameter de-
a good approximation to assume that these structures apending on the characteristic length scale of the dislocation
independent of each other. The relaxation process can lmssembly(e.g., crystal size, correlation length, or dipole
viewed as a relatively fast formation of dipoles and wallssize).
followed by an extremely slow rearrangement of these ob-
jects.

According to the above, in the following the stress distri- In the following, a dipole characterized by an infinitesi-
bution functions created by individual dislocations and UHSmally small size but finite dipole moment is referred to as an

0

B. Monodisperse ideal dipoles
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ideal dipole. Such a dipole can be treated as a pointlike ob- 107t
ject. A real dipole can be approximated by an ideal one if its N
size is less than the length scale of interest. In a similar way
as in electrostatics, the stress field of an ideal dislocation
dipole can be expressed as

l ]
numerics ——
Lorentzian ====*=
1 /7.3 taﬂ essesssss

1073

N

probability density

drgie(r) 107 N .
Tip(r) = STigip() = sp%, (17) i e
where the dipole vectop (the relative position vector con- 107 —1 ' '
necting the negative constituent dislocation to the positive 0 500 1000 1500
ong is chosen to point rightwards, dm € [-7/2,7/2). To- 7 (arb. units)

gether with the sigrs=+1, this choice unambiguously de-

Scnbes a” poss|b|e d|p0|e Or|entat|ons Perform|ng the d|f_ FIG. 2. NUmenca”y obtained stress distribution function of a
ferentiation in Eq(17) leads to random dipole system and the analytically known Lorentzian and

1/73 asymptotes. For the numerics, dipoles of eight different sizes

" L(¢p) (18) were used, each of which is represented by a small peak on the
Tigip\l) = (2 numerical curve. In the case of smooth dipole size distributions the
peaks get blurred and eventually disappesae Fig. 3, that is why
where they are omitted from the present analysis.
dK 1 1 1
L(go):—|p|{r<<qo>cos<qore.>+—“°)sin<qo,e.>} (19 7as(r = 2p), wheneverfr - 3p| 0,
de -1 1 1
Traip(r) — | 73(r + 3p), wheneverr + 2p| — 0,
is a tngono.mejmc polyn0m|al and,e,:qo—aer).. Taip(1), wheneverr| — o,
By substituting Eq(18) into Eq.(10), one obtains that for
UHS ideal dipole systems the stress distribution function is (24)
2 w L(e) wherergys denotes the stress field of an individual dislocation
|n[pi‘é'i;5(q)] = _PidipJ dqof rdr{l - Co< q ch )] , [Ed.(12)] and 7, is the stress field of ideal dipoles given by
0 0 r Eqg. (18). 7qip(r) smoothly interpolates between these re-

(20)  gimes.
The complicated behavior of(r) in the interpolation

where pigy, iS the density of ideal dipoles. With the variable regime makes it difficult to evaluate Markoff's formulEg.
substitutionx=|qL(¢)|/r? the integral with respect tocan  (10)]. However, we can utilize the substantially different

be performed analytically, leading to stress magnitudes of the asymptotic regimes. The stress field
UHS/ 7 reaches its highest magnitudes in the two asymptotic regimes
In[pidip (@]= Dpidip|q|’ (21) near the constituent dislocations that implies a dislocation-
where like behavior of the tails of the stress distribution function
Piip (7). In contrast to this, the central part @¥i(7)
a (27 should be ideal dipolelike.
D= Zfo Le)lde. (22) In order to validate the existence of these two regimes, the

internal stress distribution of monodisperse dipole configura-
Since the order of the trigonometric polynomidkp) is usu-  tions was determined numerically. One of the obtained dis-
ally higher than four, the value d can only be calculated tribution functions is plotted in Fig. 2 together with the theo-
numerically. For 45° edge dislocation dipolesh retically calculated Lorentzian distribution and the
~3.55G|p|. asymptotic 1#° formula. It is clear that the distribution func-
Equation(21) means that the stress distribution function tion follows the expected behaviors in the corresponding re-
created by ideal dipoles isorentzianwith a half width of  gimes quite well. It is worth noting that the Lorentzian and
Dpigip- (For x-ray line profiles, the Lorentzian character hasthe asymptotic functions do not contain any fitting param-
been already obtained by Krivogf&but without the explicit  eters, the parameters were calculated analytically.
expression of the half width. For describing the entire stress distribution function, one
can introduce a suitable interpolating function between the
two analytically known asymptotes. However, because of the
} ) . ] . simpler form of the combination rule given by EdJl), it is
~ Incontrast to ideal dipoles considered in the previous secmore useful to perform the interpolation in the Fourier space
tion, in real systems dipoles always have a finite size. Conrather than in ther space. The rapidly changing central part

C. Monodisperse “real” dipoles

sequently, the stress field of a real dipole, of Pin(7) corresponds to the high frequency regimes of
PUYHS(@), while the decaying tails oPYS(7) affect the cen-
S (r)=sran(r , 23 rdip ) rdip ‘
Traip(") = Sraip(T) 23 tral part of Pji(q). Consequently, according to Eq4.6)
is characterized by the asymptotes and(21), we should suppose the asymptotes
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I[P (a)]
Cpgisd? In(ﬂ) wheneverg| — 0,
et
- Dprdip|q| =- %Dpdis|q| wheneverg| — o,

(25)

where p,4, denotes the planar dipole density. A relatively

simple choice can be the following form:
X Y
In[PYHS(q)]= WA | (1+—>+— 2
n[ rdip (Q)] q2|: n |q| q2+z ’ ( 6)

whereW, X, Y, andZ are constants. Substituting E{6)
into Eq. (25) unambiguously determines the valuesvéf X,
Y, andZ leading to

E?In(E)
In[P%TpS(q)] =~ Cpgisd® In(l + Eq_;r) + T ,
2 In(E)— - E?
qeff
(27)
where
E = D/(2C0g) (28)

is a dimensionless constaffithe actualy dependence of the

denominator of the second term in expressigm) ensures
the homogeneous linearity at largevalues]

According to earlier investigations of Groma and B&ko,

for an arbitrary dislocation configuration the valueggg can
be determined from the equation

J s (r1 = 1) 7o) 7(ro)lr yr, = pdisln(qrjcff) ,
(29)

+1,-1:

wheredg; "~ is the pair correlation function between disloca-
tions with sign +1 and -1 an&; denotes the crystal size.

However, the analytical expression . is unknown and

available numerical data are not precise enough to reliably

evaluateqey. Instead of these, the value ofs has been
obtained numerically by fitting the asymptotes in E2p) to

PHYSICAL REVIEW B 70, 064106(2004)

107! T T T
numerics i
theOl'y —marmee

1073

10~%

probability density

1077

7 (arb. units)

FIG. 3. The numerically obtained stress distribution function
shown in Fig. 2 and the interpolating function between the analyti-
cally known asymptotes at| —0 and|d — < [Eq. (27)].

of dipole sizes byP(p) where the notatiop=|p| is used. The
system can be decomposed into UHS arrangements of mono-
disperse dipoles. Applying the combination rulEl), the
stress distribution function of the entire system can be ex-
pressed as

IN[Prip s @] = f P(PIN[PYSq,pldp, (3D
0

where I1P3(q,p)] denotes the stress distribution of real
dipoles given by Eq(27) with the dipole size dependence
explicitly written out.

Equation(31) can be used to calculate the contribution of
the dipoles to the stress distribution function of 2D relaxed
dislocation systems. To establish the dipole size distribution
of relaxed systems, relaxed dislocation configurations like
the one in Fig. 1 were analyzed. For each dislocation, the
distance of the nearest dislocation of opposite sign was com-
puted.P(p) was approximated by the distribution of these
distances that is reasonable for distances less than the aver-
age dislocation distance 144 During relaxationP(p) was

found to converge to an exponential distribution

1 0.5
PreiadP) = p_e—(P/po) with pg = (32
0

VPdis

numerical simulations of the stress distribution function i”(see Fig. 4 This is consistent with the analysis of Zaiser

UHS real dipole systemsee Fig. 3 for an exampleFor 45°
edge dislocation dipoles

Gor= 2l Q=5%2. (30)

The proportionality betweem.; and |p| is not surprising
since for relatively narrow dipolegp| is the dominating

length scale in the given dislocation configuration. Substitut-

ing EqQ.(30) into Eqg.(28) givesE=0.53+£0.2. According to
Fig. 3, the interpolation function given in E(R7) describes
the numerical data with high accuracy.

D. Disperse real dipoles

1000 T T I
Bq
0,
? 100 ELQ\~
= T bugg
10 EL5~s\
\\‘
ocoo
1 ] ] 1
0.02 0.04 0.06

dipole size (arb. units)

Real relaxed dislocation configurations contain dipoles FIG. 4. Dipole size histogram of the relaxed dislocation con-
with different sizes. Let us denote the probability distributionfiguration depicted in Fig. 1. Dotted line: exponential decay fit.
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Miguel, and Grom# showing that only a faster than alge- I o1
braic decay of the pair correlation functions is self-consistent » 10-3 ““:‘,‘;,ﬁ‘z S
in equilibrium dislocation systems. g
Substituting the relaxed dipole size distribution in Eg. < - -
(32) into Eq.(31) gives £
e 10°% 1
Bl 5
|n[PrLgi_|p§distr(q)] =~ Cpgist?) = elqllqlEi(_ q_) a I ]
1
10—7 | | | |
- In(E){l +Mcos(M>s'(M> 500 0 500 1000 1500 2000
SP) a2 a2 7 (arb. units)
1A A 19
- Sm(u)Q(u)]}, (33 FIG. 5. Numerically obtained stress distribution function of the
%2 2 relaxed dislocation configuration depicted in Fig. 1 and the theoret-

where ¢;=EQp, 0,=EOQm/\/~-2 IN(E)=q,/+/-2 IN(E) and ical stress distribution function described in Sec. Il F. Note that the
0 =EQR, =EQR/\ (B)=au/ ® two curves almost fully overlap.

Ei, si, and Ci denote the exponential, sine, and cosine inte-
gral functions’” respectively. In fact, Eq33) is effectively X
an interpolation between the two regimes given by @§). ohs, 1 Twath® [ 2nGb
For certain applications, Eq27) can also be applied with  N[Pwai(@]=~ — | |17 %l ae | |da,
appropriately averaged values orand Qg

0
(36)

E. Dislocation walls whereJ, is the Bessel function of the first ord@rFor typical

Besides dipoles, relaxed 2D dislocation com‘igurationsValues ofG, b, andh, the integrand1-Jo) is well approxi-

contain walls. As a prototype for walls, let us consider amated by the first nonvanishing term of its Taylor series
straight, infinitely long wall parallel to thg axis made up of around 0, yielding

edge dislocations at a distanbehaving Burgers vectorsb UHS Twan [ G2

parallel to thex axis. Near the wall, i.e., ifx|<h, the stress In[Piyar(@] =~ WT(?) i (37
field of the infinite wall is dominated by the stress field of a

few nearby dislocations. On the other hand)xif>h, the  Thus, the stress distribution of an ideal wal@saussiarwith
asymptotic behavior of the stress field can be given as a standard deviation dfr/2) 7;,q(Gb)?/2.

Gb Ix
Towal(F) = STiwan(r) = S47TZF|X|€_2”FCO<— 277%) F. Relaxed dislocation configurations

(34) As it was mentioned above, relaxed 2D configurations are
made up of two structures, dipoles and walls. We measured

(see Landau and Lifshit9. These two asymptotic regimes the frequency of signs of _the nearest neighbors. of disloca-
can be treated similarly to the case of real dipoles describetions. In relaxed configurations, 76+1% was obtained for the
above. As a first step, we calculate the stress distributioff€duency of opposite sign neighbors, independent of the dis-
function of an idealized wall that generates a stress fieldocation density. _

described by Eq(34). The effect of the near stress field is  According to the results explained above, one can com-
incorporated in a similar way as for real dipoles. pose the Fourier transform of the stress distribution function

By substituting Eq(34) into Eq. (10) one obtains for the ©f relaxed configurations in the following way. At smallit
stress distribution of UHS ideal wall configurations starts with a dislocationlike pafsee Eq(16)] coming from
both dipoles and walls, containing the total dislocation den-

UHS T [ °° Sity pgis At higherq values, it has a dipole pdisee Eq(33)]
In[Piyar(a)] =~ h f dyf dx with an apparenb value 0.76 times smaller than tBevalue
0 —0 . .
given by Eq.(22). The appearance of a relatively small num-

Gb 2afxlih ber of walls can be well approximated by introducing an
X11-co q4ﬂ2F|X|e apparentge; leading to a Gaussian contribution. The stan-
dard deviation corresponding to this Gaussian correction

Ly needs to be determined numerically.
XCOS( 27Th>”’ (35) One can compare the theoretical stress distribution func-

tion constructed above to a numerically obtained stress dis-
where 7,4 is the line density of ideal walls. With this, the tribution curve in Fig. 5. It can be seen that the theoretical
density of dislocations in the walls can be givenzgs,/h. function satisfactorily describes the numerical curve. One
After introducing the new integration variables=2mx/h  can conclude from this that the entire stress distribution func-
and B=q2mbGae™ cog-2my/h)/h, the integral with re- tion of relaxed dislocation configurations can be described
spect tog can be performed, leading to taking only dislocation pair correlations into account and
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omitting all higher order correlations. Numerical calculations (3) The dipole size distribution of relaxed configurations
have also shown that the stress distribution function of rewas numerically shown to be exponential.
laxed dislocation configurations depends only on one param- (4) The stress distribution function of relaxed configura-
eter, the dislocation density. tions was described in terms of uncorrelated sets of perfect
dipoles and walls. By numerically fitting the unknown stan-
dard deviation of the Gaussian contribution of walls, a dis-
IV. CONCLUSIONS tribution function accurate enough for stochastic dislocation

The probability distribution of the internal shear stressdyTtam'Cs s:rr]nulatli)_ns.wasiholit?r:nedb derat
generated by systems of straight parallel edge dislocations of '* 'S WOrth mentioning that the above considerations are

a common slip system was investigated. The following re_also applicable to other types of pointlike objects generating

sults have been obtained: a 1/r type field like e.qg., vortices in fluidssee Chavanis and
(1) The stress distribution function of uncorrelated, ho_SireZS) or dislocations _appearing in vortex Iattice_s in type Ii

mogeneous, and symmetrical to the sign exchange config-Perconductors studied by Miguel and Zapgeri.

rations of dipoles was described as an interpolation between

the analytically known Lorentzian asymptote at small and

inverse cubic decay at large stresses. The correlation length Financial support of the Hungarian Scientific Research
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