

SEM – Extended facilities

Zoltán Dankházi Department of Materials Physics

Electron Microscopy (EDS / EDX)

Detection of X-ray photons

- An X-ray detector is used to detect X-ray photons emitted by an electron beam induced excitation of inner shells of the atoms.
- The energy of an X-ray photon is specific to the excited atom.
- The resulting spectrum therefore reflects the atomic composition of the sample.
- This energy is the basis for dispersive X-ray microanalysis

(energy dispersive X-ray microanalysis = EDX).

backscattered electron image X-ray colored map elemental mapping (root fossilisation)

X-ray spectroscopy - a basic phenomenon

Excitation of inner shells (core electrons).

It requires energy on the order of hundreds of *eV - keV*. (The energy for e.g. *Cu K* shell is ~ *9 keV*.)

Notation:

n = 1, 2, 3, ... principal quantum number is replaced by *K*, *L*, *M*, ...

l = 1, 2,...*n*-1 azimuthal quantum number (orbital momentum) *s*, *p*, *d*, *f*, ...

The energy of the electron also depends to a small extent on the spin momentum (*s*). The value characterizing the total pulse moment:

 $j = 1/2, 3/2, \dots$

HIR STINO - VINUNO

Energy dispersive X-ray elemental analysis

X-ray spectroscopy - a basic phenomenon

Excitation of inner shells (core electrons).

Selection rule for *l* and *j*:

 $\Delta l = \pm 1; \quad \Delta j = 0, \pm 1$

 $K_{\alpha 1}$ line: $L_3 \to K$ $K_{\alpha 2}$ line: $L_2 \to K$ K_b line: $M_{2,3} \to K$ $L_{\alpha 1}$ line: $M_3 \to L_1$...

Excitation:

- min. ~1.6 x E₀
- an electron is ejected
- rearrangement energy
- difference -> photon

X-ray spectroscopy - a basic phenomenon

If the electron created on the **K** shell is a vacancy from the **L** shell is loaded: K_{α} line. (Cu $K_{\alpha} E \sim 8 \text{ keV}$).

If the electron created on the **K** shell is a vacancy from the **M** shell is loaded: K_{β} line. (*Cu* $K_{\beta} E \sim 8.9 \text{ keV}$).

Then a vacancy occurs on the L shell, which is filled from a higher shell, etc.

This is how the spectrum characteristic of an atom is created, which is suitable for its identification.

(If the energy generated during the filling of the electron vacancy does not leave the atom in the form of a photon, but is transferred to an electron in the outer shell, then this electron is ejected, this is the Auger electron.

KL₁L₂₃ and MNN transitions are common.)

X-ray spectroscopy - detection

Silicon Drift Detector (SDD - Szilícium drift detektor)

Base material: *n*-type doped semiconductor from high-purity *Si* single crystal. There is **NO any** *Li* doping!

- A continuous **p**-type layer on one surface and
- rings on the other sideshaped potential field
- Absorbed photons create electron-hole pairs
- Electrons migrating inwards enter the FET formed in the middle.
- Small anode
 - -> fast (800,000 cps)
 - -> low dead time
 - -> quick analysis

X-ray spectroscopy - detection

Silicon Drift Detector (SDD - Szilícium drift detektor) II.

- can be stored at room temperature
- can be operated near room temperature
- Peltier cooling for noise reduction
- large surface area, large solid angle
- at moderate beam intensity: it can already be analyzed with the imaging beam
- the wearing and damaging effect of the e-beam is small
- intense electron beam: fast, accurate analysis,
- element map
- ΔΕ/Ε = 130 eV / 5899 eV (Mn Kα)

∆E/E = **2.2 %**

Ametek EDAX "Apollo X"

EDX elemental analysis – Data processing

- measurement of the energy of the generated X-ray photons: SDD (spectral line location)
- count (spectral line height)
- spectrum analyzer program data storage and data processing
- the number of photons is directly proportional to the concentration of excited atoms (good approximation)
- the result can be displayed on a computer screen

EDX elemental analysis – Example

G	EDAX Spectrum Image	e Maps/Line										_ ×
File Eak Yew Broc Auto Setup Window 29												
■ NSpc_ir98shareddataWovacsZsWi EDAX ZAF Quantification (Standardless)												
A:		Elemen	t Normal	lized	,		-					
Counts	AlKa	SEC Ta	ble : Us	ser c:	\edax32\	eds\genu	ser.sec					
-1.8k	nts	Elem	Wt %	At %	K-Ratio	Z	А	F	Net Inte.	Backgrd	Inte. Error	P/B
	nc	СК	5.48	14.80	0.0074	1.1390	0.1186	1.0001	2.39	1.11	9.36	2.16
-164	ы С	ОК	2.92	5.93	0.0087	1.1195	0.2666	1.0008	4.60	2.20	6.80	2.09
1.06	-	AIK	56.26	67.67	0.2848	1.0413	0.4859	1.0005	404.16	5.67	0.53	71.23
		SiK	0.42	0.48	0.0015	1.0713	0.3362	1.0006	2.03	5.18	18.06	0.39
		CeL	25.47	5.90	0.2156	0.8118	1.0357	1.0068	49.41	4.24	1.61	11.66
1.4k		СоК	2.63	1.45	0.0234	0.9394	0.9465	1.0000	7.30	2.76	5.11	2.65
		NiK	6.82	3.77	0.0637	0.9746	0.9594	1.0000	16.73	2.45	2.90	6.84
		Total	100.00 1	100.00								
1.2k		\\Spc	ir98\sha	areddat	a\Kovacs	Zs\Al-fe	muveg HP	T-KZs\20	101103-AlCe	NiCo-femu	veg-A4 004.s	ос
		Label										
		Acquis	ition Ti	ime :	11:36:36	Date	: 3-Nov	-2010				
-1.0k		kV: 20	.00 Til	lt: 0.0	0 Take-	off: 34.	71 AmpT	: 12.8				
		SDD Ap	ollo XP	Res:	132.88	Lsec: 9	2					
-0.8k												
-0.6k	CeMa											
	NiLa					a I a						
					U.	era						
-0.4k												
U. WA												
	Nil <mark>a</mark>					Calls		Ph	oton ene	rgy [ke\	/]	
	CeMz					CELD				0,1	-	
0.2k	O Ka								NiKa			
с	Ka A ANA	SiKa			CeLl	Cel	CeLg	CoKa	CoKh			
		ال <u>معالم علم المح</u> رف ال	الانيطار والموريا معرور	بحروزها سرهناوالارما	and a state of the second		and a state of the second		N1Kb	ومعاقبته والكافلة والمعادمة فالمعاد	iteres starts	
lom -	100	2.00	3.00	1007	4.00	5.00	6.00	7.00	8.00	9.00	keV	D 400.05
UPS:0	U UI%: Lsec:9	2 Unts:47	KeV:3.920FS:	188/							Amp1:40.0 Def:SUTW-	+ Res:139.00

EDX analysis – Element mapping

- nearby peaks overlapping in real detectors
 - literature example: PtAuNb alloy 2.05 ... 2.25 keV
- "ghost" peaks at energy sums
 - reason: superimposed impulses
 - avoidance (reduction): counting dead time, software recognition
- inhomogeneous patterns, shaded areas
 - rough, hollow surface, porous material
- wrong peak identification
 - if we rely on the built-in software without criticism
- omitted elements
 - we can measure from beryllium

EDX analysis – Field of application

- Industry / research
 - minerals
 - metals and alloys
 - ceramics
 - glass
- A unique composition of grains of a few μm ... a few mm
 - research + development,
 - quality control,
 - error analysis,
 - more recently error correction
- Semiconductor production and development
 - ∞ bibliography

EDX analysis – Dual-beam specialities: FIB + EDS

depth EDS map

ion beam excitation: side effect: ion sputtering (non-destructive)

2

