
Mössbauer Spectroscopy



The Mössbauer-effect

The Mössbauer effect is the nuclear resonance fluorescence of  rays.

In normal (atomic) spectroscopies such a phenomenon is quite common and taken as
absolutely normal….

This is not the case for nuclei, but why is it interesting for anybody at all?



The energy of the excited nuclear levels is characterized by a C(E0, /2) Cauchy 
distribution function whose (un-normalized) density function is called a Lorentzian (or 
Breit–Wigner) curve in physics (Breit and Wigner 1936):
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For the natural line width the Heisenberg relation holds:

 Average life time of the excited
state of the nucleus

The average lifetime for 57Fe:  9.8x10-8 s
Planck’s constant: 4.136x10-15 eVs

The line width: 6.72x10-9 eV (!)



The extremely low line width may allow one to measure energy at a resolution of the nanoelectronvolt!

One has to find a phenomenon in which this linewidth plays a role. 

Nuclear resonance fluorescence!

But! 𝐸𝑟𝑒𝑐𝑜𝑖𝑙 =
𝐸𝛾
2

2𝑀𝑐2 For the 14.4 keV radiation of 57Fe: 𝐸𝑟𝑒𝑐𝑜𝑖𝑙= 1.92x10-3 eV

Resonace condition destroyed….



How can one yet accomplish the nuclear resonance fluorescence experiment?

Let us broaden the gamma line, so that the absorption and emission spectra have
some overlap!

Method:  thermal broadening using the Doppler principle

Thermal broadening in a gas:
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Averaging u and Θ

The expected value of Eγ is not affected by the
Doppler motion, but its variance is:
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Thus overlap between the
emission and absorption lines
may be achieved by heating the
system. Nuclear resonance
fluorescence is re-established.

But does it really make sense???

No!

The nanoelectronvolt resolution is lost….



One has to find a way to „get rid” of the recoil energy so that the original
line width and therefore the energy resolution for any spectroscopy built
on this phenomenon is preserved.

Quantization of lattice vibrations helps!

The recoil energy may be transferred…

…to the atom 
ejected from the
lattice, in the form
of kinetic energy.

…to the lattice, in the
form of vibrational
energy.

…to the whole
crystal grain as a 
rigid body, in the
form of kinetic
energy.

?



If the recoil energy is not enough to generate a phonon (lattice
vibration quantum) the third scenario will be realised. In this case, the
recoil energy is taken by the whole crystal grain the mass of which is
huge as compared to that of a single atom. Thus the recoil energy
becomes negligible even relative to the line width.

„Recoilless” nuclear gamma 
resonance absorption/emission
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Description of lattice vibrations:

Einstein: Debye:
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where a is the lattice 
constant, cs is the speed 
of the sound waves in the 
solid, and 2s is the 
wavelength of the sound 
associated with the 
vibration. The wavelength 
is supposed to satisfy the 
condition s = 2a. 
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Due to quantization:

Debye-frequency

Debye-temperature



The mean energy for a given frequency  at a given temperature T:
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(Bose-Einstein distribution function)

In quantum theory, the time-average of the square displacement (and

similarly that of the square speed) of an atom doing harmonic oscillation 

along the x axis with frequency  is given as follows:
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The mean square displacement at a given temperature is obtained by 

averaging the time-average of the square displacement over all frequencies:
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The mean square velocity of the lattice vibration at a given temperature can be 

derived similarly to that of mean square displacement:
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Mössbauer-Lamb - factor

Second order Doppler shift



Why is the mean square displacement interesting for us?
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The general formula to describe the time and spatial dependence of the
amplitude of the electromagnetic field emitted by a nucleus:
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In case of harmonic oscillation of the atom: x=acosωt, thus:

The new radiation will be a modulated one, the only question is if this vibration does
contain the original ω0 mode? 

This will give the contribution of the recoilless events!



Method:  Fourier transformation and finding the relative intensity of the ω0 mode!

Mössbauer-Lamb factor:  f

For weak modulation (when κa/ω is small), the following is valid*:
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Since there are several different vibration modes:

*This always holds in practice



The amplitude of the vibration of the atoms is always small (typically 10-5

fraction of the lattice constant), thus the Bessel function becomes very simple
by stopping with the summation at k=1:

2

0
4

1
1(z) zJ 

xex 1

22

2

1
ln m

m

xκf 


m

mxx 22

2

1Since the definition of the mean square displacement is:



The Mössbauer-Lamb factor:
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For high Mossbauer-Lamb-factor:
 Low mean square displacement
 High wavelength (low energy)

…is preferred
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The Mössbauer-Lamb factor expressed within the Debye-model (that gave <x2>):

Debye-temperature: where the discrete vibrational spectrum becomes continuous

Please note that the Debye model had been developed for a monatomic cubic 

lattice, and thus the quantitative results applied to an arbitrary lattice must be 

taken with some suspicion.



The Mössbauer periodic table.
Shaded cells contain elements
with no known Mössbauer
isotope. Unshaded cells also
indicate the mass number(s) of
the Mössbauer isotope(s) below
the chemical symbol. We have
indicated no more than two (of
the most important) isotopes for
each of the elements. An asterisk
‘’ after the last mass number
means that there are further
Mössbauer isotopes not shown
here.

May be measured at
room temperature.



With the help of the Mössbauer effect, hyperfine interactions can be 
measured because the linewidth of the emitted radiation is preserved. But
HOW?

Method: Let us measure the absorption of gamma 
rays emitted by a particular nucleus by another
nucleus of the same kind as a function of energy!

How to tune the energy of the emitted gamma rays on a scale of 10-10 eV 
resolution?

Doppler’s principle:
 E

c

v
E 

source absorber detector

The emitted line is a Lorentzian line.



What is a Lorentzian?
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Let us apply the description of the vibrational amplitude of the emitted radiation for
a large ensemble of atoms:

The spatial variation is omitted because we deal with the non-modulated line only! 
But the large ensemble of atoms decay according to the genaral decay law with decay
constant Γ.

To switch from the time domain to the energy (frequency) domain, one has to
calculate the Fourier transform of the above formula:





0

)dω(exp)(exp
2

1
)( ttiΓt/2tiωωa 0





2/

1

2

1
)(

0 iΓωω
ωa






This yields the amplitude distribution of the ωo frequency radiation:

4/)(

1

2
)(2)(

22

0

2

Γωω

Γ
ωaΓωI







From this, the normalised intensity of this radiation

A Lorentzian with
maximum intensity at
ωo and line width Γ.

This is the shape of the emitted line and also the profile of the absorption.  
How can one describe the measured line profile in a Mössbauer spectrum? 



Absorption line

Emitted line
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Convolution of functions:

When needed, the original function
may be calculated from the
resultant spectrum by
deconvolution, using a special
feature of Fourier trasformation (φ)

applied for convolution integrals:



Phenomenological description of attenuation (absorption) of radiation:
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Aside:
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Applying this math for the Lorentzians playing role in a Mössbauer
experiment, we end up with the Transmission integral, T(u):

Emitted Lorentzian
Absorbed Lorentzian

Due to nuclear (Mössbauer) 
absorption in the absorber
with effective thickness τA

Due to electronic
absorption in the
absorber with
thickness dA

Here the source is considered having zero thickness!

fs = Mössbauer-Lamb
factor in the source

Lambert-Beer absorption Law!

 AAAAA danf

cm2g cm-2
g-1



If the effective thickness of the absorber is very small (i.e., A → 0), then the exponential 

in the integrand can be replaced by the linear terms of its Taylor series. As a result, the peak 

shape can be expressed by the following integral:
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The resultant spectrum (convolution of two Lorentzians) will be 
a Lorentzian, too, with doubled line width!



Nuclide Eγ

(keV)

τ1/2

(ns)

αIC A

(%)

I Q μ

(μN)

g σ0

(10-24

m2)

W0

(mm/s)

ΔR/R
(x10-4)

57Fe 0 2.14 1/2- 0.0 0.090604 0.118821

14.4130 97.81 8.21 3/2- 0.21 -0.15532 -0.067897 256 0.1940 -14

119Sn 0 8.58 1/2+ 0.0 -1.0461 -0.8283

23.871 17.75 5.12 3/2+ -0.06 0.633 0.167 140 0.647 +1.2

141Pr 0 100 5/2+ -0.059 4.162 0.10820

145.4 1.85 0.46 7/2+ - 2.87 0.0533 10.6 1.017 -

151Eu 0 47.82 5/2+ 1.14 3.465 0.6083

21.532 9.7 28.60 7/2+ 1.50 2.587 0.3244 23.77 1.31 +3.0

Nuclear data of some Mössbauer nuclides:



The decay scheme of 57Co: 

 

 

 

 

 

 

 

EC, 270.5 days 

136.47 keV (8.8 ns) 

14.41 keV (98 ns) 

ground state 

9.4 % 

85.2 % 

I = 5/2 (-) 

I = 3/2 (-) 

I = 1/2 (-) 

57Fe 57Co 

Mössbauer transition



What kind of information may be read from a Mössbauer spectrum?

?
Fe-CDTA complex



Vibrational properties of the lattice

Debye temperature from temperature dependence of the area
of the Mössbauer (sub)spectrum:
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Note!   The physical meaning of the Debye temperature for complicated (non-
cubic, non- monoatomic) lattices is badly defined. One may learn from
tendencies.



Debye temperature from the second order Doppler shift of the
Mössbauer (sub)spectrum
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Important: An alternative definition of the Mössbauer effect is that the gamma 
emission or absorption of the nucleus does not cause change in the vibrational
state of the lattice, i.e., no phonon generation takes place.

But!  Since the mass equivalent of the gamma photon is not negligible, the
energy of the given phonon level will be altered:

The derivation is made at the condition when the momentum of the nucleus is constant („recoilless”).



The second order Doppler shift contains the mean square velocity of the atom 
which has already been calculated from the Debye model:
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Significant shift may occur in the line positions if
the temperature of the source and the absorber is 
not the same.

Keep in mind that if the
Debye temperature is
determined from the f-
factors and also from
the temperature shift,
the results should not
be expected to be the
same!



Interaction between the nucleus and the electrons
(nuclear charge in the electric potential of the electrons)
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Nuclear charge Dipole moment

Hyperfine Interactions

Applying the Taylor series for the potential of the electrons:

This is zero because
nuclei have no dipole
moment

Quadrupole interaction



The electric field gradient tensor V can be diagonalised by proper orientation of the
coordinate system. Then the third part of Ec is:
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In  this formula, the three Descartes coordinates vary independently. Let us
separate a spherically symmetrical part where the three coordinates are
constrained to be the same.  Then:
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contribution

Nuclear quadrupole moment

Isomer shift
Quadrupole splitting
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𝑍𝑒2𝑅2 )𝜓(0 2 Charge equivalent radius

Only the s-state, considered
uniform within the nucleus

The hyperfine interaction depends on the nuclear radius and the electron density within the nucleus.
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Note: Espherical is energy shift (Δ𝐸) that is solely due to the fact that the nucleus has a finite size. 
One can calculate this for the ground state and for the excited state. If the nuclear radius is different
(not necessarily!), the difference of the two Δ𝐸 values will yield the shift in the gamma energy: 
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2 − 𝛹 0 𝑠𝑜𝑢𝑟𝑐𝑒
2

Now calculating the gamma energy difference for two different chemical environments (one in the

source and one in the absorber) will yield the Isomer Shift:

Δ𝐸S*

Δ𝐸S Δ𝐸A

Δ𝐸A*



Velocity
function
generator

How to measure the isomer shift? Mössbauer apparatus:

Gamma spectrum of 57Co

Kr-filled proportional counter
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Typical ranges of 
isomer 57Fe shifts

Fe2+

Fe3+

Fe4+

HS

HS

HS

LS

LS

LS

Information from the isomer shift: oxidation state and spin state

Gütlich. P., Link. R., and Trautwein. A., 1978, Mössbauer Spectroscopy 
and Transition Metal Chemistry (Berlin: Springer Verlag).

relative to metallic iron

Question: 
Why does the
isomer shift 
increase with the
3d electron
density?

For 57Fe, the isomer shift 
decreases with the electron
density in the nucleus.



Source: https://chemistry.stackexchange.com/questions/47893/what-are-the-height-and-width-of-the-
large-and-small-nodes-of-the-sp3-hybridized

𝛿 =
2𝜋

5
𝑍𝑒2(𝑅𝑒𝑥𝑐𝑖𝑡𝑒𝑑

2 − 𝑅𝑔𝑟𝑜𝑢𝑛𝑑
2 ) 𝛹 0 𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑟

2 − 𝛹 0 𝑠𝑜𝑢𝑟𝑐𝑒
2

Repulsion between the 3d 
orbital and the main peak
of the 3s orbital dominates, 
resulting in reduction of 
the 3s electron density in
the nucleus.



Fe2+ and Fe3+ states in an amphibole sample:

jaeger.earthsci.unimelb.edu.au

http://jaeger.earthsci.unimelb.edu.au/msandifo/Teaching/Minerals/amphibole.html


119mSn 
isomer
shifts



The electric quadrupole interaction
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),,,( zyxxx ji Electric field gradient tensor:

After diagonalization the matrix can be given by components Vxx, Vyy and Vzz. 

According to the Laplace equation 2V = Vxx+Vyy+Vzz = 0 

zz

yyxx

V

VV 
Vzz

such that zzyyxx VVV   is satisfied 

Vi,j is given by:

(outside the sources of the electric field)

and



the nuclear quadrupole moment operator: 
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where I is the nuclear spin operator and δik is the Kronecker delta
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iiThe Hamiltonian for the

quadrupole interaction:

where I, Ix, Iy, Iz, I+ = Ix+i Iy and I− = Ix−i Iy are the nuclear spin operators, I is the nuclear spin 

and mI is its z component (magnetic quantum number)
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The eigenvalues can be given as follows:

An important case is I=3/2, 

having two energy levels at 

+e2Q/4 for Iz=3/2 and 

- e2Q/4 for Iz=1/2

in case of axial symmetry (η=0)

This scheme is valid for 57Fe and 119mSn

Quadrupole Splitting



Contribution of the different atomic orbitals to Vzz (e.g., q) may be calculated:

Fe3+ Fe2+

High Spin

High Spin

Low Spin

Low Spin



BBμH Ig N


Magnetic dipole interaction

„nuclear Zeeman effect”

The Hamiltonian of 
the interaction:

Eigenvalues:

II

I mg
I

m
E BB Nm  

Belectron

μnucleus

Manifestation:

Larmor precession of 
the nuclear magnetic
moment around the
magnetic field of the
atomic electrons.

Selection rules:  mI = 0, ±1

Magnetic Splitting



In case of 57Fe, one may expect magnetic splitting of the spectra in every case since
the nucleus has magnetic moment, and the electron configuration of (high spin) Fe2+ 

and Fe3+ both have very strong magnetic fields (S=5/2 and S=2, respectively).  

Why is the magnetic splitting not observed in most cases?

In order to observe magnetic interaction between the nucleus and the
electrons, there has to be enough time for the Larmor precession.

The life time of the excited state of 
the nucleus (Mössbauer lifeteime) 
should be longer than the Larmor
precession cycle time:

tLarmor<tMössbauer

The electronic paramagnetic
relaxation time should be longer
than the Larmor precession cycle
time:

tLarmor<trelaxation

and

This typically holds This typically does not hold for solid paramagnetic materials
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Combined quadrupole and magnetic interaction

BeQVzz This is valid if holds.
(small quadrupole perurbation of the magnetic interaction)

Dihapto-peroxo-cyclohexane-diamine-FeIII

example
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Line intensities in Mössbauer spectra

the relative intensity of the line belonging to the transition Ie,me  Ig,mg:

(Wigner-Eckart theory)

3j symbol Angular
dependence

e: excited state
g: ground state
σlm: refers to the multipolarity

polar angle enclosed by
direction of observation and 
the z axis of the principal 
axis system (e.g., Vzz, B)

Note that while the 3j symbol is connected with the quantummechanical

probabilities of being the nucleus in a certain state (and therefore transitions

between these states)  the angular dependence is due to the transfer of angular

momentum (a vector quantity) between the nucleus and the photon.



γ and B random 

γ and B parallel 

γ and B perpendicular

Iron metal measured in external magnetic field:

,3:2:1:1:2:3:::: 654321 : AAAAAA

For a sextet when random 
directional averaging applies: 

In an oriented sample, only
the 2nd and 5th line intensity
may vary as compared to the
others:

)cos1(3

sin4
2

2

6,1

5,2








A

A



Spectrum analysis
Task:
Fitting a series of counts assigned to velocities with combinations of Lorentzians (or much
more complicated line shapes…) 

Method: Least squares

Control:  chi square

Tool:

This checks the goodness of the model.



Applications of Mössbauer
Spectroscopy
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Oxygen

Fe at Site A

Fe at Site B

Fe3+ state

Mixed Fe3+/Fe2+ state

Fe3O4 =  (Fe3+
tet)A(Fe3+

octFe2+
oct)BO4

The unit cell (spinel):

Interpretation of the Mössbauer spectrum of magnetite

(inverse spinel!)

Mössbauer parameters:

Tetrahedral Fe3+

δ = 0.38 mm/s
B = 49.9 T

Octahedral Fe2.5+

δ = 0.69 mm/s
B = 46.4 T
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The Mössbauer spectrum of hematite
recorded at the Morin temperature (260 K): Exists above TM, weakly

ferromagnetic (spin canting)

Exists below TM,
antiferromagnetic

spins turn by about 90o

(EFG║μ)

(EFG┴μ)

Source: R. Zboril et al., 
Chem. Mater. 14 (2002) 
p.972

Hematite (α-Fe2O3)

Oxygen

Iron

δ (mm/s) ε   (mm/s) B (T)

295 K 0.37 -0.197 51.75

4.2 K 0.49 +0.41 54.17



Carbon nanostructures
Graphene

Nanotubes
Bucky balls

Mössbauer Study of the Thermal Degradation of Iron loaded 
Ion Exchange Resins



Source of carbon:  organic substance (ion exchanger resin)

Source of iron: adsorbed iron salts

Preparation:  thermal degradation

Primary methods for
characterization:  

•Mössbauer Spectroscopy
•XRD
•SEM

600 oC

700 oC

800 oC

500 oC

400 oC

1000 oC

900 oC

To produce nanostructures….



Phase analysis of iron containing phases...

Expected main phases:  
metallic iron, iron-carbon alloys, oxides that form under relatively reductive conditions

Special phenomena may be expected because:

•Finely dispersed iron can help formation of nano-structures
(non-equilibrium phases can form)

•Extreme excess of carbon is present as compared to iron production by reduction of iron
oxides with coal, from where iron-carbon phases became known.



Iron-carbon equilibrium phase diagram

Graphite

Graphite



Full diagram….



http://www.kitchenknifeforums.com/showthread.php/15632-What-is-retained-austenite-How-does-martensite-form The "Bain model" is FCC 
austenite with carbon interstitial atoms in it, which then transforms to BCT martensite on cooling.

austenite ferrite

Structure of most 
common iron-carbon
equilibrium phases

Non-eq. phase!

Cementite Fe3C

http://www.kitchenknifeforums.com/showthread.php/15632-What-is-retained-austenite-How-does-martensite-form


Magnetite, Fe3O4

Wustite, FeO1-δ

Structure of most 
common oxides…



Fe3N

Fe4N

Cementite:                                  0.21                0                 20.5

Fe

N



Mössbauer spectroscopy: 

50 %  α-Fe
13 %  γ-Fe
37 %   ? superparamagnetic

phase

XRD

Average grain size: 10 nm

Loading with iron(III) nitrate



400oC, 4h 400oC, 8h

500oC, 4h
500oC, 8h



700oC, 4h
700oC, 8h

600oC, 4h



800oC, 4h
800oC, 8h

900oC, 4h
900oC, 8h



Thermal evolution of iron containing phases in nitrate loaded resin

Really superparamagnetic?



Superparamagnetic magnetite in nitrate loaded resin (400oC, 4h)



8 h
900 ºC
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The colossal magnetoresistant (CMR)  La0.8Sr0.2CoO3-δ

The CMR effect: Substantial decrease of resisitivity
upon ferromagnetic ordering.

Suggested common feature of every CMR material: 
superparamagnetic-like behavior around Tc
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Differences to be considered when comparing
transmission and emission experiments:

1. Different doping site pereferences of Fe and Co.

2. „Nucleogenic” and „normal” 57Fe probe.

5/2

3/2

1/2

1/2 = 89 ns

(Mössbauer transition)

I

57Co
57Fe

136.3 keV

14.4 keV 1/2 =99.3 ns 

85.9 %

9.4 %

Electron Capture decay of 57Co:

3. After-effects      - never observed in perovskites.

Emission Mössbauer measurement….
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O

Co (Site B)

La,Sr (Site A)

The unit cell of perovskite:

ABO3 structure

57Co-substitution
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198 K

150 K

115 K

80 K

Temperature dependence of
the emission Mössbauer

spectrum of (La0.8Sr0.2)CoO3-d

I.

Main observations:

•Co-existence of the 
paramagnetic and the 
ferromagnetic phase in a 
wide temperature range.

•Different isomer shifts for the 
sextet and for the singlet.

paramagnetic

ferromagnetic
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fast relaxation

slow relaxation

Relaxation phenomena:

τLarmor< τrelax

τLarmor> τrelax

= magnetic moment of the
electronic system

= magnetic moment of the
nucleus

Fully developed
magnetic interaction

„no time” for
magnetic interaction

Larmor precession:

τrelax

τrelax
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Low T

fast relaxation

fast relaxation

High T

slow relaxation

slow relaxation

Superparamagnetic clusters?

singlet

sextet
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Temperature dependence of
the emission Mössbauer

spectrum of (La0.8Sr0.2)CoO3-d

II.

170 K

149 K

285 K

249 K

218 K

191 K

128 K

100 K

78 K
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Relative spectral areas of the paramagnetic 
and the ferromagnetic fraction
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Experiment II

Experiment III (reduced)

Experiment I

The superparamagnetic transition temperature is shifted downward upon oxygen 
removal.

magnetic cluster size reduced!
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Hyperfine magnetic field in
the ferromagnetic fraction

50 100 150 200 250 300
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Experiment II

Experiment III (red.)

Experiment IV

Experiment I

TCurie

Slight decrease of the field upon dexygenation.
The Curie temperature does not seem to change.
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Isomer shifts in the paramagnetic and
ferromagnetic fractions

50 100 150 200 250 300

0.2

0.4


 /

 m
m

*s
-1

T / K

paramagnetic fraction

ferromagnetic fraction

Considerable difference between the isomer shifts
in the ferromagnetic and in the paramagnetic fraction.
(insensitive to oxygen removal)



78

Why is the isomer shift lower in the 
ferromagnetic phase?

Nucleogenic 57Fe
in paramagnetic host

Nucleogenic 57Fe
in ferromagnetic host

57FeN
57FeN

magnetic transition

The ferromagnetic host lattice has 
an electron withdrawing effect on the Fe3d level.

Requires itinerant electrons (metallicity).

e-

e-

e-

e-


