NMR spectroscopy

basics and applications

Bodor Andrea, PhD. Habil. andrea.bodor@ttk.elte.hu

Institute of Chemistry Analytical and BioNMR Laboratory abnmr.elte.hu

NMR spectroscopy and applications

Recommended literature

Hornak: http://www.cis.rit.edu/htbooks/nmr/bnmr.htm P. J. Hore: NMR spectroscopy Atkins: Physical Chemistry M. Levitt: Spin Dynamics Keeler: Understanding NMR spectroscopy

Ы	Y	Л
Ш		Ш
11/		

What is NMR spectroscopy? What do we measure? How do we measure? How do we choose optimal conditions for the given purpose? Sample preparation Basic NMR knowledge/parameters Applications: analytical chemistry (pharma, food industry) In the presence of the \mathbf{B}_0 magnetic field the *z* component of the magnetic moment will be:

$$\mu_{z} = \gamma I_{z} = \gamma m \hbar$$

The energy:

$$\boldsymbol{E} = -\boldsymbol{\mu}_{z}\boldsymbol{B}_{0} = -\boldsymbol{\gamma}\boldsymbol{m}\boldsymbol{\hbar}\boldsymbol{B}_{0}$$

For a spin $\frac{1}{2}$ nucleus there are two orientations (1/2; -1/2) and therefore two energy levels (E_{α} , E_{β}).

How easy is to measure a given nuclei?

Influencing factors: magnitude of the magnetic field, the natural abundance of the isotope, the giromagnetic ratio, the spin quantum number

Nucleus	Ι	γ 10 ⁷ rad T ⁻¹ s ⁻¹	υ (B ₀ =11,74 T) MHz	Natural abundance, %
$^{1}\mathrm{H}$	1/2	26,7	500,00	99,98
¹³ C	1/2	6,73	125,72	1,108
¹⁴ N	1	1,93	36,118	99,63
¹⁵ N	1/2	-2,71	50,66	0,37
¹⁷ O	5/2	-3,63	67,78	3,7.10-7
²³ Na	3/2	7,07	132,25	100
²⁷ Al	5/2	6,97	130,28	100
²⁹ Si	1/2	-5,32	99,32	4,7
³¹ P	1/2	10,84	202,40	100
⁴³ Ca	7/2	-1,78	33,64	0,145
⁵¹ V	7/2	7,05	131,44	99,76
⁵⁹ Co	7/2	6,30	44,68	100
¹⁰³ Rh	1/2	-0,84	15,73	100
¹¹³ Cd	1/2	-5,96	110,91	12,26
¹⁹⁵ Pt	1/2	5,83	85,99	33,8
²⁰⁵ Tl	1/2	15,69	230,83	70,5
¹⁹ F	1/2	25,18	470,3	100

 $\upsilon = \gamma B_0/2\pi$

II. The spectrometer

Superconducting magnet: B0 Probe-head: transmitter to generate B1 and receiver to detect the NMR signal Preamplifier: magnifies the weak NMR signal

Shim-coil; Temperature controller Analog-to-digital controller

1 Ports for liquid N2

- 2 Ports for liquid He
- 3 Superinsulation and high vacuum
- 4 Main magnet coils + liquid helium
- 5 Sample lift and spinner assembly
- 6 NMR tube
- 7 Shim assembly
- 8 Probe-head

Magnets and magnetic field strength

700 MHz (16,4T), Prodigy, ELTE

Our newest investment: the industrial standard

400 MHz (9,3T), with sample changer, automated, ELTE

Probe-heads

'broadband': 1H, 19F and X nuclei
BBI (broadband inverse) inner coil 1H, outer coil X
BBO inner coil X (typically covering the 31P-15N frequency domain dual probe-heads
QNP: 1H, and 13C/19F/31P

Cryogenic probe-heads: the coil and the electronics are cooled N2 cooling open system(Prodigy) He cooling closed system (cryo)

Gradients: most common the z-gradient coil

The lock channel (²H)

Sample contains deuterated solvent

The shim coils

Arranged in various geometries

Variable current in the coils, that allow fine tuning the homogenity of the field around the sample: Z1-Z8, X, Y, XY..., X2-Y2, XY2...

Shim distorsion appears on ALL peaks of the spectrum!

Sample tubes

Most common: 5mm tube (OD) normal tube: 500-600 μl Shigemi tube: 280 μl (special for each solvent 10 mm tube: cca 2 ml sample

3mm tube: 150 μl 2mm tube: max 50 μl

Field availability

Low field instrumentation

Permanent magnets

Compact instruments: little or no maintenance is needed Small! No need for special room, huge space. 10, 20, 40, 60, 80 MHz

Relaxometers: T2 relaxation measurements

1D/2D measurements

¹H, ¹⁹F ³¹P ¹³C

NMR-MOUSE (Mobile Universal Surface Explorer) inhomogeneous field portable

III. Basics: The longitudinal relaxation time (T₁)

Reaching the equilibrium population difference Δn_{eq} is not instantaneous !!! For a spin ½ nucleus:

$$\Delta n(t) = \Delta n_{eq} [1 - exp(-t/T_1)]$$

T₁ ms-s order. Depends on the nuclei, the solution composition, the viscosity, measurement temperature, etc.
Longitudinal, or spin-lattice relaxation time

Excitation with the B₁ field

Transverse relaxation time (T₂)

What happens to the M_v magnetisation?

x My

The phase coherence in the xy plane is lost Analogy: clocks

Spin-spin relaxation time, small molecules $T_2 \le T_1$, proteins $T_2 \approx ms$

The longitudinal relaxation time (T_1)

- 1

- The magnetization is built-up in the *z* dimension
- Slower than the transverse relaxation

Z

• It is a highly important feature of quantitative NMR

у

Fourier transformation, the NMR signal!

If a receiver coil is placed near the sample in the *xy* plane then the receiver detects the signal during the acquisition time

This signal is the FID (Free Induction Decay) The Fourier transform of this siggnal-time curve is a signal-frequency variation called *spectrum*.

IV. Interactions between spins

1. The chemical shift

Indirect magnetic interaction between the B0 field and the spins via the electron cloud.

2. J coupling

Indirect magnetic interaction between the spins via their electron clouds. Spin-spin coupling via chemical bonds.

3. Direct dipole-dipole coupling

Direct magnetic interaction between the spins. Spatial proximity.

Informations from the spectrum

- 1. The chemical shift value
- 2. The coupling constant
- 3. nOe
- 4. Exchange processes

Where do we use this information?	(F	power of the technique
How do we get this information?	Ē	personal skills

APPLICATION OF NMR SPECTROSCOPY

ATOMIC LEVEL INFORMATION IN SOLUTION!

MOLECULAR INTERACTIONS

ADDITIONAL TECHNIQUES

+ DLS, SEC, SAXS....