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CMWP method for line profile analysis

3D experiments and modeling

XLPA based on microstructural properties – p.2/63



X-ray patterns
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X-ray patterns

The ideal X-ray pattern of an infinite single crystal is a set of
δ(2θ − 2θhkl) functions at the exact 2θhkl Bragg positions.
However in a real crystal, the maximal intensity has a finite

value (N2F 2

hkl) and the peaks are broadened.

Information in X-ray patterns:

the information about the crystal structure (e.g. the
lattice type and the lattice parameters) is in the position
and maximal intensity values of the profiles. The most
commonly used procedure is the Rietveld method.

the information about the microstructure (e.g. crystallite
size, crystallite shape, crystallite size distribution and
lattice defects: dislocation density, type of dislocations,
dislocation arrangement, planar faults) is in the width
and shape of the profiles.
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Macherauch, E. (~1965) 

 schematic classification of internal stresses 
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Macherauch, E. (~1965) 

 schematic classification of internal stresses 

sI:  macro-stress 

 averaged over many grains 

 

sII:  intergranular-stresses 

 averaged over individual grains 

  

sIII:  micro-strains  (or stresses) 

 produced by dislocations 
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Diffraction experiments 
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Diffraction experiments 

sII: intergranular-strains/stresses 
 

     peak-positions corresponding to  individual grains:  lattice-strain 
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Diffraction experiments 

sIII: micro-strains (or stresses) 

 are produced by dislocations:      peaks  broaden 
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X-ray broadening sources
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Fortunately the instrumental effect  

 - can be small 

 - can be corrected, if necessary 
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Diffraction from „perfect” crystals of LaB6 
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Diffraction from PbS - Galena, grinded for 12 hours  
T. Ungár, P. Martinetto, G. Ribárik, E. Dooryhée, Ph. Walter, M. Anne, J. Appl. Phys. 91 (2002) 2455-2465. 
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The difference betwee the Measured and the Instrumental profiles 

 tells us the microstructure 
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The effect of crystal defects

Any combination of these:

peak shift

broadening

asymmetry
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[001] Cu single crystals deformed in tension 
T.Ungár, H.Mughrabi, D.Roennpagel, M.Wilkens, Acta Metall. 32 (1984) 333. 

H.Mughrabi, T.Ungár, W.Kienle M.Wilkens, Phil. Mag. 53 (1986) 793.   

(i) broadening: 

     dislocations 

(ii) asymmetry: 

      internal stresses 

      gradient stresses 

(iii) shift: 

       homogeneous strains 

       due to vacancies 

(iv) background 

       has been subtracted 
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 Peak shifts 

 internal stresses of different kinds  

 stacking faults,   

 chemical inhomogeneities 

Broadening 

 microstrains 

 nanograins 

 subgrains 

 small crystallites 

Asymmetries 

 internal stresses of different kinds  

 stacking faults,   

 chemical inhomogeneities 
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Separation of the different effects is based on 

- order  dependence 

-  hkl  anisotropy 

 

- profile-shape 

 

-  sub-profile displacement 
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Size  broadening 

Strain  broadening 

Twinning  or  faulting 

Schematic picture of line broadening 
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Two different approaches  -  philosophies: 

 

 top-down 

 

 bottom-up  
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Top-down: 

 

 the  diffraction patterns are  

 fitted  by  analytical  profile-functions 

Bottom-up: 

 

 the  profile-functions are  

  created by  theoretical methods 

  based  on  actual lattice defects 

 diffraction patterns are fitted  by  

  these defect-related profile-functions 
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The ε(r) spatial dependence of strain

 0 dimensional:  point defects 

   point-defect-type, e.g.  precipitates 

           inclusions 

 

  e(r) ~ 1/r2 

 2 dimensional: planar defects, e.g. stacking faults 

     twin boundaries 

     grain boundaries 

     domain boundaries 

   e(r) ~ constant 

 1 dimensional: dislocations 

   non-equilibrium  triple-junctions 

   linear-type  defects 

   e(r) ~ 1/r 
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  crystal-space         versus        reciprocal-space 

   short  distance                 long  distance 

        [ m ]     [ 1/m ] 

   long  distance                   short distance 

        [ m ]     [ 1/m ] 
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        diffraction pattern 

 

 
 

 crystal-space 

0-dimensional:  point defects 

Nanocrystalline Ni-18Fe alloy 
L.Li et al. ActaMater.57(2009)4988-5000 
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       line-broadening 

          diffraction pattern 

 
 

 crystal-space 

Nanocrystalline Ni-18Fe alloy 
L.Li et al. ActaMater.57(2009)4988-5000 
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1-dimensional:  planar defects:  twinning 
 

       stacking faults 

Nanocrystalline Ni-18Fe alloy 
L.Li et al. ActaMater.57(2009)4988-5000 
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 0 dimensional:  point defects 

   point-defect-type, e.g.  precipitates 

           inclusions 

 

  e(r) ~ 1/r2 

 2 dimensional: planar defects, e.g. stacking faults 

     twin boundaries 

     grain boundaries 

     domain boundaries 

   e(r) ~ constant 

 1 dimensional: dislocations 

   non-equilibrium  triple-junctions 

   linear-type  defects 

   e(r) ~ 1/r 

lattice defects  

which cause strain broadening 
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The theoretical Fourier transform
The patterns are measured in function of 2θ, which should
be converted to the coordinate of the reciprocal space

using the transformation K = 2
sin θ
λ

. The Fourier transform

of a I(K) intensity profile is denoted by A(L).

According to Warren and Averbach (1952), the theoretical
Fourier transform is expressed as:

A(L) = AS(L)AD(L),

where S stands for size and D stands for strain effect.

This convolutional equation can be further extended
including all other sources of broadening, e.g.:

planar faults

instrumental broadening
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The size effect

The simplest case is the scattering of an infinite plane
crystallite with the thickness of N atoms. In the book of
Warren (1969) it is given as:

I(s) ∼
sin2 (N x)

sin2 (x)
, (1)

where x = πGa, G = g +∆g, g is the diffraction vector, ∆g

is a small vector, and a is the unit cell vector chosen to be
perpendicular to the plane of the crystallite.
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The size effect

For large values of N it can be approximated by:

sin2(Nx)

sin2 x
= N2

(

sin(Nx)

Nx

)2

= N2
sinc

2(Nx). (2)
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The size effect

A more general and more realistic will be described here. If
we suppose:

spherical crystallites

lognormal f(x) size distribution density function:

f(x) =
1

√
2πσ

1

x
exp






−

(

log
(

x
m

))2

2σ2






,

(σ: variance, m: median).
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The size effect

Example for the lognormal distribution function:
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Determining the size profile

According to (Bertaut; 1949 and Guinier; 1963) it can be
calculated exactly. The final form of the size intensity profile:

IS(s) =

∞
∫

0

µ
sin2(µπs)

(πs)2
erfc





log
(

µ
m

)

√
2σ



 dµ,

where erfc is the complementary error function, defined as:

erfc(x) =
2
√
π

∞
∫

x

e−t2 dt. (3)

It depends on two independent parameters: m, the median
of the lognormal size distribution and σ, the variance of the
distribution.

XLPA based on microstructural properties – p.33/63



The Size Function
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The Size Fourier Transform

A(L) can be determined in an almost closed form:

AS(L,m, σ) =

m3 exp
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The strain effect

According to Warren and Averbach (1952), the Fourier
transform of the line profile:

logA(L) = logAS(L)− 2π2g2L2〈ε2L〉

The distortion Fourier coefficients:

AD(L) = exp
(

−2π2g2L2〈ε2L〉
)

,

where

g is the absolute value of the diffraction vector,

〈ε2L〉 is the mean square strain.
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The strain effect

The most important models for 〈ε2L〉:
Warren & Averbach (1952) has shown that if the

displacement of the atoms is random, 〈ε2L〉 is constant.

Krivoglaz & Ryaboshapka (1963) supposed that strain
is caused by dislocations with random spatial

distribution. For small L values 〈ε2L〉 is expressed as:

〈ε2L〉 =
(

b

2π

)2

πρC log

(

D

L

)

,

where D is the crystallite size.

Wilkens (1970) supposed a restrictedly random
distribution of dislocations and calculated a strain
function which is valid for the entire L range.
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The Wilkens dislocation theory

Wilkens introduced the effective outer cut off radius of
dislocations, R∗

e, instead of the crystal diameter.
Assuming infinitely long parallel screw dislocations with
restrictedly random distribution (Wilkens, 1970):

〈ε2L〉 =
(

b

2π

)2

πρCf∗
(

L

R∗

e

)

,

where b is the absolute value of the Burgers-vector, ρ is the
dislocation density, C is the contrast factor of the
dislocations and f∗ is the Wilkens strain function.
f∗ is given in (Wilkens, 1970) in equations A6-A8 in
Appendix A. Kamminga and Delhez (2000) has shown
using numerical simulations that the line profile calculated
by the Wilkens model is also valid for edge and curved type
dislocations. XLPA based on microstructural properties – p.38/63



The meaning of the restrictedly random distribution of the
Wilkens model:

Wilkens supposed tubes with radius of Re. The
dislocations are located parallelly and inside the tubes,

the dislocations are distributed randomly in each tube
and the dislocation density in the tubes is exactly ρ.

The distortion Fourier–transform in the Wilkens model:

AD(L) = exp

[

−πb2

2
(g2C)ρL2f∗

(

L

R∗

e

)]

.
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The Wilkens function:
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The dislocation arrangement parameter

Wilkens introduced M∗, a dimensionless parameter:

M∗ = R∗

e

√
ρ

The M∗ parameter characterizes the dislocation
arrangement:

if the value of M∗ is small, the correlation between the
dislocations is strong

if the value of M∗ is large, the dislocations are
distributed randomly in the crystallite
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~~ 
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at I0.5  

shape of strain-profiles 
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Strain anisotropy

A dislocation with gb = 0 has no broadening effect in
isotropic material.

For a single dislocation the contrast factor C can be
calculated numerically depending on the relative orientation
of the b, n, l and g vectors and the Cij the elastic constants.

According to (Ungár & Tichy, 1999), the average contrast
factors of dislocations can be expressed in the following
form for cubic crystals:

C = Ch00(1− qH2),

where

H2 =
h2k2 + h2l2 + k2l2

(h2 + k2 + l2)
2

.
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For hexagonal crystals:

C = Chk0(1 + a1H
2

1 + a2H
2

2 ),

where

H2
1
=

[h2 + k2 + (h+ k)2] l2

[h2 + k2 + (h+ k)2 + 3

2
(a
c
)2l2]2

,

H2
2
=

l4

[h2 + k2 + (h+ k)2 + 3

2
(a
c
)2l2]2

,

and a
c

is the ratio of the two lattice constants.

The constants Ch00 and Chk0 are calculated from the elastic
constants of the crystal (Ungár et al, 1999).
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CMWP method for LPA

Microstructual parameters for size and strain effect:

size: m, σ

dislocations: ρ, M , q (or q1, q2)

planar faults: α

The measured and theoretical patterns are compared using a

nonlinear least-squares algorithm.

Itheoretical = BG(2Θ) +
∑

hkl

IhklMAXI
hkl

(

2Θ− 2Θhkl
0

)

,

where:

Ihkl = Ihklinstr. ∗ Ihklsize(m,σ) ∗ Ihkldisl.(ρ, q, Re) ∗ Ihklpl.faults(α),

Ihklinstr.: measured instumental profile which is directly used
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CMWP fit example
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CMWP fit:

m = 21nm

σ = 0.36

ρ = 1016 m−2
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√
ρ = 1.3

q = 1.3

The measured (solid lines) and theoretical fitted (dashed
lines) intensity patterns for Al-6Mg sample ball milled for 6
hours as a function of 2θ. The same figure is plotted in
logharitmic scale in the upper-right corner.
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Comparing CMWP results to TEM

Example for SiN: an experimental size distribution can be
obtained (with low statistics)

Example for Ti: a local dislocation density can be estimated

(ρ ≈ 7
122nm2

)
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3D experiments

XLPA (X-ray Line Profile Analysis): connection between
microstructure and line profiles

determining average size and strain based on line
broadening (modified Williamson-Hall method)

bottom-up procedure based on analytical models:
CMWP method based on microstructural parameters
and ab-initio profiles

some cases the microstructure is more complex, a
special model is needed

3D synchrotron expriments provide 3D profiles: extract
more information from the measurements
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3DXRD setup for LPA
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3D profiles
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FFT based method for LPA

In this case the microstructure is known, it’s the input of the
method, however some preliminary information e.g.
electron microscopy is needed.

The steps of the method:

input: eigenstrains based on 3D microstructure

relaxation: solving the stress-strain relation

calculating the displacement field, then line profiles

It can be used for modeling 3D line profiles.
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Example input: fcc Al, N=512, 0.5µm
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Output, solution files

mechanical fields: 3D stress-strain-displacement field
data

X-ray output files: 3D-s line profiles, visualisation:

analysing 3D-s intensity distributions by slicing (in
the case of modeling, the x-y-z resolutions are the
same so the voxels are cubes, in the case of 3D
synchrotron measurements, the ω resolution is
usually weak, this means that the voxels are
prolonged bricks)

3D amplitude and phase distributions can also be
calculated

1D line profiles and 2D rocking curves

XLPA based on microstructural properties – p.54/63



Example output: Al 420 Ig(222, y, z)

 0

 50
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 350

 400

 0  50  100  150  200  250  300  350  400

./proba-fcc-gvectors/IntensitygAlring0420.dat

 0

 2x1010

 4x1010

 6x1010

 8x1010

 1x1011

 1.2x1011

 1.4x1011

 1.6x1011

 1.8x1011
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Example output: Al 420 Ig(202, y, z)

 0

 50

 100
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 300
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 400

 0  50  100  150  200  250  300  350  400

./proba-fcc-gvectors/IntensitygAlring0420.dat

 0
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 2x109

 2.5x109

XLPA based on microstructural properties – p.56/63



Example for phase: Al 420 ϕ(128, y, z)

 0
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 250

 0  50  100  150  200  250

./proba-fcc-no-3d-3/phaseAlring0420
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LP Zr (c-loops) 10.0

 0

 5x1014
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 2.5x1015

 3x1015

 3.5x1015

-1 -0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8  1

Zr-dislocations-1/LPZrring1sum.dat

"Zr-dislocations-1/LP_Zr_ring1_sum.dat" u 1:2
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LP Zr (c-loops) 00.2

 0

 1x1015

 2x1015

 3x1015

 4x1015

 5x1015

 6x1015

 7x1015

-1 -0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8  1

Zr-dislocations-1/LPZrring2sum.dat

"Zr-dislocations-1/LP_Zr_ring2_sum.dat" u 1:2
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LP Zr (c-loops) 00.2

 1x109

 1x1010

 1x1011

 1x1012

 1x1013

 1x1014

 1x1015

 1x1016

-1 -0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8  1

Zr-dislocations-1/LPZrring2sum.dat

"Zr-dislocations-1/LP_Zr_ring2_sum.dat" u 1:2
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Zr (c-loops) rocking curve 10.0

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0  100  200  300  400  500  600  700  800

Zr-dislocations-1a/RCZrring1sum.dat

 0

 5x1012

 1x1013

 1.5x1013

 2x1013

 2.5x1013

 3x1013
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Zr (c-loops) rocking curve 00.2
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 0  100  200  300  400  500  600  700  800

Zr-dislocations-1a/RCZrring2sum.dat

 0

 1x1013

 2x1013

 3x1013

 4x1013

 5x1013

 6x1013
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Thank you for your attention!
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