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Advanced molecular dynamics techniques ChE210D 

Today's lecture: how to perform molecular dynamics at constant temperature, 

for systems with rigid bonds, and for systems with multiple time scales  

Thermostats 

As we have presented it so far, molecular dynamics is performed in the microcanonical ensem-

ble of constant NVE variables (and technically also: total momentum P).  We found that we 

could estimate the temperature using thermodynamic averages.  It is often desirable, however, 

to specify the temperature a priori and perform a simulation in the canonical ensemble.  There 

are several approaches to doing this.  We must consider whether the methods  

• preserve the correct thermodynamics, i.e., the correct microstate distribution in the 

canonical ensemble 

• preserve realistic dynamics in that the equations of motion can be used to compute 

transport quantities accurately 

With regards to the thermodynamics of the system, we want to reproduce the ensemble 

probabilities of the canonical ensemble: 
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Velocity rescaling 

We have already discussed this approach.  Consider the following estimator of the tempera-

ture: 

� = 2⟨�⟩� !DOF 

The idea is that we rescale the velocities at each step (or after a preset number of steps) so that 

the kinetic energy gives the desired target temperature: 

%new� = )%� 
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) = * ��inst 															�inst = 2�� !DOF 

Does this approach generate the correct thermodynamic properties of the canonical ensemble?  

It turns out that it does not.  Consider the limit in which we rescale the velocities at every time 

step.  In this case, the kinetic energy will remain constant in time, with zero fluctuations.  This is 

not correct, as the statistical mechanics of the canonical ensemble says that: 

/01 = 32�� 1�1 

In other words, velocity rescaling does not capture the correct energy fluctuations in the 

system. 

Berendsen thermostat 

The Berendsen thermostat [Berendsen et al., 1984] is similar to the velocity rescaling approach, 

but assigns a time scale for the updating of the velocities, rather than assuming they are com-

pletely scaled to the target temperature at each time step. Underlying this approach is the 

assumption that the system is weakly coupled to a heat bath whose coupling constant, or time 

scale of heat transfer, is 3.   

)1 = 1 + δ63 7 ��inst − 19 

Here, δ6 is the time step in the molecular dynamics simulation.  Typically, 3 = 0.1 − 0.4	ps for δ6 = 1	fs.   ) is the velocity rescaling factor as before. 

The Berendsen thermostat, however, suffers from the same problems as velocity rescaling in 

that the energy fluctuations are not captured correctly.  There are also some notable patholo-

gies for specific systems. 

Andersen thermostat 

The Andersen thermostat [Andersen, 1980] introduces a stochastic element to the temperature 

by having random collisions of molecules with an imaginary heat bath at the desired tempera-

ture.  In the single-particle approach, a random particle is chosen and its velocity is reassigned 

randomly from a Maxwell-Boltzmann distribution at the desired temperature: 

℘
?@,A� = 7 BA2C� �9
D1 exp F−BA?@,A12� � G 

This equation is applied to each component of the particle’s velocity.   
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Alternatively, a massive collision can be used in which each velocity component of every 

particle is reassigned simultaneously, pulling separately from this distribution 3� times.  After 

such events, it is typical to remove any center-of-mass motion in the system. 

In the Andersen scheme, one does not perform a collision with each molecular dynamics time 

step, but rather it is customary to adopt a collision frequency H or collision time 3 = 1/H.  The 

collision frequency should be chosen so as not to be too short to the time scales of molecular 

motions. 

In the limit of an infinitely long trajectory averaged over many heat bath collisions, it can be 

shown that the Andersen thermostat rigorously generates the correct canonical ensemble 

probabilities.  That is, the distribution of kinetic and potential energies, and the microstate 

probabilities of different configurations of the system, all rigorously approach their true form in 

the canonical ensemble. 

However, the presence of random collisions causes the velocities of particles to decorrelate 

(“lose memory” of their initial values from some previous point in time) much faster than the 

NVE dynamics.  As a result, true molecular kinetics are not preserved by the Andersen thermo-

stat.  For example, the computed diffusion constants for particles would give erroneous values. 

Nose thermostat 

Nosé devised a useful way of maintaining a system at constant temperature by a reformulation 

of the equations of motion [Nose, 1984].  This can be rigorously formulated using the Lagrangi-

an approach to classical mechanics; however, here we will only review the major results start-

ing at the level of the Hamiltonian.  For a detailed derivation, the reader is referred to Frenkel 

and Smit. 

Recall for a Cartesian system that the Hamiltonian takes the form 

J = ����� + K���� 
= 12LBA|�A|1 + K���� 

Nosé’s approach was to add two additional degrees of freedom to the system, with broad 

interpretations below: 

• N - the “position” of an imaginary heat reservoir to which the system is coupled 

• OP - the conjugate “momentum” of the imaginary heat reservoir 

In addition, the following parameter is introduced: 
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• � - an effective “mass” associated with N, such that OP = �NQ  
The physical significance of these variables is not really evident at this point.  The choice of their 

functional form is motivated by the way in which they transform the microcanonical partition 

function. 

The system Hamiltonian is then constructed as follows: 

J = 12LBA|�A|1 + K���� + OP12� + � ��3� + 1� ln N 

The added last two terms on the RHS give the kinetic and potential energies of the added 

degrees of freedom for the heat bath.  Again, this form is chosen for reasons we will see later. 

Here, the particle momenta are scaled and follow the relationship 

�A = BA%A × N 

It is through this scaling with the heat bath variable N that the momenta are coupled to con-

stant temperature.  The form of this relationship follows from the Lagrangian (not shown here). 

The microcanonical partition function then follows: 

Ω ∼ 1�!�VWJ − XY N���������OP�N 

= 1�!�V Z12LBA|�A|1 + K���� + OP12� + � ��3� + 1� ln N − X[ N���������OP�N 

The term N�� comes from the scaling of the particle momenta and the fact that the true conju-

gate momenta of �� are �� scaled by N (this must be shown through the Lagrangian). 

The outer integral in N can be performed analytically using the mathematical result 

�\]V�^ ln \ − _��\ = ^
D	`�]aD� b⁄  

The final result is: 

Ω = 1�! 		
d efg⁄

3� + 1 Z��OP	

hij 1k⁄efg [ l� 	
0
���am
���efg ������n 

= const × ���, �, �� 
where ���, �, �� is the canonical partition function for the original � particles.   
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The implication of this result is that a microcanonical simulation in the extended system 

(including heat bath degrees of freedom) returns a canonical ensemble for the original system.  

That is, if we evolve the extended system according to the extended Hamiltonian above (more 

exactly, the extended underlying Lagrangian), we expect to obtain a canonical distribution of 

the particle positions and momenta.  This evolution will correspond to solving the trajectory for 

the atomic coordinates and momenta as well as the heat bath degrees of freedom N and OP. 
Importantly, this thermostat rigorously generates canonical ensemble thermodynamics and can 

approximate the true dynamics of the system because the time evolution of the particles is 

deterministic, and doesn’t involve stochastic changes. 

Equations of motion can be developed for this extended Hamiltonian system.  A value must be 

specified for the constant �, which is important in determining the rate of exchange of system 

energy with the imaginary heat bath.   

The Nosé-Hoover thermostat 

The above formulation as written is not convenient to implement because the scaling of the 

particle momenta by N (which is variable throughout the simulation) implies that “real” time—

the time we should use to evaluate time-averages and kinetic properties like diffusivity—is also 

variable in the simulation. 

Hoover developed an alternate formulation of the Nosé approach that alleviates this problem 

[Hoover, 1986].  In this method, 

J = 12LB|�A|1 + K���� + q1�2 + 3�� � ln N 

Here, q is a friction coefficient that, broadly speaking, replaces OP.  The time-evolution of the 

particle positions and momenta is governed by the following equations. 

��A�6 = %A  
�%A�6 = − 1BA

rK����r�A − q%A 
�q�6 = sLBA|%A|1 − 3�� �t �u  

� ln N�6 = q 
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Notice that the velocity update of a particle resembles Newton’s equations with an additional 

force that is proportional to the velocity.  This is the friction term.  Moreover, notice that the 

variable q no longer changes in time when the instantaneous kinetic energy equals 
�1�� �.   

Numerical integration schemes, such as the velocity Verlet method, can be developed for these 

equations.  Again, the heat bath mass � is an important parameter to be chosen. 

The Nosé-Hoover equations are broadly used in the simulation community.  However, while 

they allow one to rigorously generate a canonical ensemble through molecular dynamics, they 

can at times exhibit pathological behavior for specific systems.  Some methods have been 

developed to increase robustness of the approach; in Nosé-Hoover chains, multiple heat baths 

(multiple degrees of freedom N) are linked to enhance temperature equilibration.  

Commentary 

Rigorous formulations of the equations of motions for various extended ensembles have been 

developed and are discussed by Frenkel and Smit.  These are all based on the Lagrangian 

formulation of classical mechanics, which is the most natural starting point for developing 

algorithms that correctly explore phase-space and have good numerical stability.  More specifi-

cally, Martyna, Tuckerman, and coworkers have developed a rigorous formulation for the 

equations of motion for arbitrary ensembles.  See for example [Martyna, Tuckerman, Tobias 

and Klein, Mol. Phys. 87, 1117 (1996)]. 

In general, if one is interested in microscopic dynamics and transport coefficients, it is recom-

mended to use the microcanonical ensemble, which is the only ensemble that correctly repro-

duces the true dynamics of the simulation.  A common approach is to equilibrate a system using 

a thermostat, but then to allow the production period to correspond to NVE dynamics. 

Barostats 

Often it is desirable to maintain a simulated system at both constant temperature and pressure.  

In a thermodynamic sense, systems at constant pressure are ones that can exchange volume 

with their surroundings (e.g., by way of a piston).  Their volume therefore fluctuates.  Likewise, 

simulated systems at constant pressure involve volume fluctuations.   

A number of different barostat techniques exist for maintaining a target pressure by way of 

adjusting the simulation volume.  Many of these are counterparts to thermostats we described 

earlier.  We won’t discuss the algorithms in detail, but the following lists a number of common 

barostat techniques: 
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• volume rescaling – the instantaneous pressure is made to equal the target pressure by 

rescaling the system volume at periodic intervals 

• Berendsen barostat – the pressure is weakly coupled to a “pressure bath” and the vol-

ume periodically rescaled 

• extended ensemble barostat – the system is coupled to a fictitious “pressure bath” us-

ing an extended Lagrangian and the introduction of new degrees of freedom, similar to 

the Nose-Hoover thermostat.  This approach was pioneered by Andersen and is often 

termed the Andersen barostat. 

Langevin dynamics 

Many simulated systems employ implicit solvation, in one of two ways: 

• the effects of the solvent free energy are incorporated into the intramolecular potential 

energy function in the form of effective pairwise interactions 

• the solvent free energy is included using an implicit solvation method, like the Poisson-

Boltzmann / Surface Area (PBSA) approach or the Generalized Born / Surface Area ap-

proach (GBSA). 

When explicit solvent atoms are removed, the solute molecules that remain no longer experi-

ence a solvent viscosity since this relates, in part, to the time scales of the solvent degrees of 

freedom.  In other words, the implicit solvent free energy assumes that the solvent degrees of 

freedom equilibrate instantaneously to any change in the solute conformation. 

Often the lack of a solvent viscosity is desirable, as it increases the exploration of the solute 

phase-space and thermodynamic properties can be evaluated more quickly. 

On the other hand, if realistic dynamics are desired, one must build viscous effects back into the 

equations of motion.  This can be accomplished using Langevin dynamics.  Here, Newton’s 

equations of motion take the form: 

BA �%A�6 = −rK����r�A + vfriction�%A� 
Here, the force that a particle experiences is due both to a gradient in the potential energy 

surface and a frictional force due to the solvent: 

vfriction�%A� = −xABA%A + y 
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Here, xA is a friction coefficient.  For spherical particles of radius ^ in a bulk medium of viscosity z, an approximate relation is 

xA = 6C^zB  

The component y is a random force due to stochastic collisions with the solvent, and it must 

“balance” the viscous force in order to recover the proper canonical ensemble.  It is Gaussian 

with zero mean and a variance that depends on the particle mass, xA, and the temperature: 

|@ = }2x� �~|�b�PP 

The above prescription for the equations of motion can be implemented in numerical, finite-

difference methods similar to the integrators described previously.  The Langevin equations 

rigorously converge to the canonical ensemble.  One important difference associated with the 

Langevin approach is that the random force y introduces a stochastic component to the 

numerical trajectories.  

Rigid bond constraints 

Motions along bonds in a simulated system are typically the fastest degrees of freedom and 

thus set an upper limit on the time step that can be used for integrating the equations of 

motion.  One way to move to larger time steps—which ultimately enables longer simulations—

is to rigidly constrain bonds to fixed lengths.  This is termed constraint dynamics.   

Here we discuss the proper approach.  Rigid bonds and constraint dynamics are common in 

particular in many models of liquid water.   

Statistical mechanics 

It may seem surprising, but a system of rigid bonds is not equivalent to the same system with 

harmonic bonds in the limit that the force constants approach infinity.  One clue to this phe-

nomenon is that a harmonic degree of freedom will always contribute to the potential energy 

of the system, regardless of the force constant, while a rigid bond will not.  In the limit that the 

harmonic degree of freedom is decoupled from other degrees of freedom (typically the case of 

very large force constants), one expects a potential energy contribution of 
D1� �. 

Problem formulation 

The correct way to treat rigid bonds is to add additional Lagrange multipliers to the Lagrangian.  

We will not cover this method in detail, but the following sketches some of the basic physical 

ideas.  A detailed discussion is in Frenkel and Smit. 
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Consider that we wish to constrain a bond between atoms 1 and 2 in our simulation to a length 

of �.  Physically what would hold two atoms at a fixed bond length would be a force along the 

bond vector that opposed any interatomic forces acting on the atoms.  In Cartesian coordi-

nates, we add this yet unknown bond force to the potential energy function.  We use the 

following form 

K����� = K���� + )/��D, �1� 
Here, /��D, �1� is a constraint equation that we desire to be equal to zero in order to satisfy the 

bond length between atoms 1 and 2: 

/��D, �1� = �D11 − �1 

The variable ) is a Lagrange multiplier that will change in time so as to ensure /��D, �1� = 0.  

Notice that as long as the constraint is zero, we maintain the same potential energy function as 

the original. 

The force acting on atom 1 is 

vD� = −rK�������D  

= −rK������D − ) ���D ��D11 − �1� = vD + 2)��1 − �D� 
For atom 2, 

v1� = v1 + 2)��D − �1� 
Newton’s equations of motions for particle 1 gives  

�1�D�61 = vD�BD 

If we integrate the position of particle 1 a short step in time δ6 using the Verlet algorithm, 

�D�δ6� = 2�D�0� − �D�−δ6� + vD�BD δ61 

= 2�D�0� − �D�−δ6� + vDBD δ61 + 2)BD W�D�0� − �1�0�Yδ61 

= ��D�δ6� + 2)BD W�D�0� − �1�0�Yδ61 
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Here, ��D�δ6� gives the position of the particle if we had not accounted for the constraint forces.  

In other words, ��D�δ6� would be the new position if we had simply integrated using the original 

potential energy function without rigid bonds.  These positions will not satisfy the bond length 

constraint and thus a correction .  Instead, we need to find the value of ) that will give the 

correct bond.  This is achieved by solving: 

|�D�δ6� − �1�δ6�|1 = �1 

Plugging in the above formula and a similar one for �1�δ6�, 
���D�δ6� + 2)BD W�D�0� − �1�0�Yδ61 − ��1�δ6� − 2)B1 W�1�0� − �D�0�Yδ61�

1 = �1 

���D�δ6� − ��1�δ6� + 4)BD W�D�0� − �1�0�Yδ61�
1 = �1 

This equation is quadratic in ) and can be solved to give a value of the constraint multiplier.  

This enables one to predict the particle positions after a time step δ6 using the predicted 

particle positions prior to the application of the rigid constraints. 

For multiple constraints in a system, one generalizes this approach using multiple Lagrange 

multipliers )e for each constrained bond �.  For systems involving more than one constraint on 

each atom (such as a triatomic molecule), the solution to all of the )e requires solving a system 

of � coupled nonlinear equations that can quickly become unwieldy.   

Constraints can also be used to hold bond angles and torsional angles at fixed values by using 

multiple constraints.  For example, a water molecule can be constrained to maintain the same 

H-O-H bond angle by applying three distance constraints between all pairs of atoms. 

Incidentally, the force along each constrained bond due to the Lagrange multipliers makes a 

contribution to the virial of the system.  In other words, the constrained bonds contribute to 

the total pressure of the system. 

SHAKE and RATTLE 

The SHAKE algorithm [Ryckaert, Ciccotti, & Berendsen, 1977] is a numerical procedure de-

signed to solve for the bond Lagrange multipliers at each time step in a molecular dynamics 

simulation.  It uses an iterative approach: 

1. Consider all rigid bonds in succession.   

2. For each bond � in turn, compute the value of )e for fixed constant values of all other ).   
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3. Go back to step 1 until all of the ) no longer change by some tolerance.  This procedure 

must be iterated because an atom may be involved in one or more constraints and 

therefore the value of ) for one constraint is coupled to that of another. 

The SHAKE algorithm is designed for use with the Verlet integrators (as presented above).  

Alternatively, the RATTLE algorithm [Andersen, 1983] is formulated for use with the velocity 

Verlet integrator.  Other algorithms are also available for other integrators. 

Efficient Fortran implementations of these algorithms, as well as many others, can be found at 

the online Computational Chemistry List at http://www.ccl.net/chemistry/index.shtml. 

Multiple time steps 

As we mentioned in the previous section on rigid bonds, bond vibrations typically set a maxi-

mum time step and hence maximum length of our simulation run.  A second and perhaps more 

general approach to reaching longer time scales, beyond constraint dynamics, is to integrate 

separately the slow and fast degrees of freedom in our system.  The r-RESPA (reversible refer-

ence system propagation algorithm) method was pioneered by [Tuckerman et al, 1992] and is 

a multiple time step approach: 

• One identifies terms in the force field that give rise to fast (e.g., bond vibrations) and 

slow (e.g., van der Waals interactions) time scales. 

• Separate molecular dynamics time steps are used for the slow (δ6slow) and fast (δ6fast) 
degrees of freedom, such that δ6slow > 	δ6����. 

• For every slow time step taken, multiple intermediate fast time steps (! = δ6slow/δ6fast) 
are performed.  A time savings is achieved because only the fast force field components 

need to be evaluated for the intermediate steps. 

In rRESPA, any number of different time steps can be used.  One can have separate Δ6 values 

for bond vibrations, angle bending, torsional interactions, and so on and so forth.  Moreover, 

the rRESPA algorithm was formulated to be time-reversible and area-preserving (via the 

Louiville formalism).  The resulting equations closely resemble the velocity Verlet-type integra-

tor. 

 


