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Figure: Density of states
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Friedel-model
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Figure: Density of states in the Friedel-model

There are 2*5 d elektron states
Eq

Eporg = 2/(5 — a)D(E)dE

For our case
E¢
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Friedel-model

nergy is determined by the number of electrons

The bounding energy is
w
E, =——Ny(10 — N,
bond 20 o ( )
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Second moment of the density of states

ider a base system given by |i)
states corresponding to the state |i) can be defined as

di(E) = > 6(E — E)ilvx) (ul)

all Ex

The second moment of dj(E) is

@ = / (E — Hy)2di(E)dE

That is
@ = / > (E — Hi)?8(E — Ex) il (vl iydE
band Ek
leading to
//,l(z) = Z(Ek - Hu)2<l|wk><¢k|’>
Ex
w®) = (i (Z Ivok) (Ex — Hii)2<¢k|) I
Ex

(H—H;)?

1B = STNH — H i) (H — Hi)li)
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Second moment of the density of states

(ilH — Hyliy =0 (ilH — Hyli"y = Hy i#i
one gets
/igz) = Hjy Hy;
That is @ ,
wi =28

with z is the number of core electrons, and g is the “hopping” probability.
In the Friedel model

5d+% o

1 %

#/(‘2) = / (E— Ed)ZWdE = ﬁ
e W
a— 2

From this one gets W
4
W = (122)2|g] B(R) ~ Nge™"F

B is an exponential function with characteristic length scale 1/x.
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Interaction energy

1
bN2(122)%
Ebong = —dTe “ANg(10 — Ng)

Erep = aN2e 2<R

Total energy

Ewh = Erep + Epond

With these
E.ph=Ae 2" — Be="F

B is calculated, A and « are empirical parameters.

Energy

Ean(®) —

Figure: E,,n(R)
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Interaction energy
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Figure: Predicted variations in properties across the 4d transient metal series based on the Friedel model in
the second moment approximation compared with experiment (from Pettifor 1987). Top left: the bandwidth,
W. Top right: the equilibrium bond ength, Ry in Bohr. Bottom left: the cohersive energy, ES, . Bottom right:
the bulk modulus Bin 10" Pa units.
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Finnis-Sinclair potential

Ey
Epond = 22/(5 —&i)0i(E)dE
i
For the density of state Finnis suggested a Gaussian function:

5 E —¢;)?
di(E) = P (((;)>
27r,u( ) 2u;

i

So the energy of the electron “bounded to the ith atom is:

E¢
- 10 Ef — &)?
ED =2 / A/(E)(E — =)o = ——— 1®) exp <_(;’u(2)l)>
—00

i
Assuming that the atoms are neutral
Ey
Ny = / d/(E)dE

—o0
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Finnis-Sinclair potential

uce L; with:

L
e—deX L= (Ef — 8/)

i
2
oo 2#5 )

10
Ny = —
==

Assuming that the number of electrons(N,) are the same for all atoms one sees L, is
independent from i:
Li:=1L

Az igy kapott kotési energian azt latjuk, hogy nem parok 6sszegeként all eld:

i _ /()
Ebond = const.\/ u;
Where @
wi =" HiHi =" ¢(ry)
) J
is a sum.
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Embedded potential

V(ﬁ?é: )_Z¢1(r1_rl)+z Z¢(nj

i

Generalized form

V(Fi, T, ) = > 1( r1r,)+ZF<Z¢(r,/)

i

where F is some function.
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