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Diffusion
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Magnetism Landau theory

logical F(M) relation that is invariant for M «— —M
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Ginzburg-Landau theory

e domain wall
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Niz Al superalloy

Istvan Groma, ELTE Condensed Matter Physics, Superalloy and Phase field theories 5/21



Niz Al superalloy

RSP

Figure 1~ The correlation between the
minimum creep rate &, and
the aspect ratio a/b of the
rafted y' particles.

Figure2-  Different morphological o) Region C;
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Niz Al superalloy

Figure: cubic phase — 7’ tetragona phase

77i=a% — 1: structural parameter (i = 1,2, 3)
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Niz Al superalloy

lons are deterministic
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with (fluctuation dissipation theorem)
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Form of free energy
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Niz Al superalloy

Ay(c) + Ax(c)
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Simplest possible case
Minima
m=mn=n=0
m==xm, n2=0 mn3=0
ne==+mo, m =0, mn=0
ng==+ny, m2=0, =0

Istvan Groma, ELTE Condensed Matter Physics, Superalloy and Phase field theories

> (% + 15 +n3) +

S 3+ mE)? +

9/21



Niz Al superalloy
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Adding elastic energy
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Niz Al superalloy

ej = (c() — c2)e’
e => 5N (p)
with this the elastic energy density
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Numerical method
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Niz Al superalloy

(€(K, 1),6(K', 1)) = 2kg TMK® NG 3(t — )
(e(k, t),€(K',t')) = 2kg TLpgdpgNoy kr 3(t — ')

Figure: Phase diagram of the model system. The thick line, dotted line, and dot-dashed line represent the
miscibility gap, spinodal congruent order < disorder transition lines, respectively. T* is the reduced
temperature and c is the composition.
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Niz Al superalloy

Figure: Temporal evolution of occupation probabilities for an alloy with a composition ¢ = 0.175. (a)

T = 370; (b) 7 = 460; (c) = = 470; (d) = = 800. Different values of occupation probabilities are represented
by shades of gray. The completely dark shade represents n(r) = 1.0 and the completely white shade
represents n(r) = 0.0.
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Niz Al superalloy

Figure: (a)-(f) Formation of a typical "split” pattern through shape transition and spatial rearrangement of two
growing coherent ordered particles which are "out-of-phase” with respect to each other, (a)-(f) correspond to
T =0, 5, 20, 100, 500. (g) SEM image of a similar particle configuration in Ni-Co-Al-Ti (Courtesy of Y. S.

Yoo and D. Y. Yoon [1]).
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Niz Al superalloy

Figure: Comparison between the simulation predictions and experimental observations. (a)-(b) Repeats of
Fig. 6 (c) and (d). (c)-(d) Dark field TEM images showing the aligned precipitates witl "odd” shapes in
Ni9.5Al-5.4Mo (Courtesy of G. Kostorz [8]).
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Solidification

Two fields, tration c, solid liquid phase order parameter ¢
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The free energy has the form

F= /[ (ve)? + (v0)2+g(¢>,c,T~-)} av

The function f has one or 2 minima depending on the temperature
Generalization for multi components and phases is straightforward.
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Solidification
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Solidification
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Phase order parameter
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Phase field crystal
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Phase field crystal
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Superconductivity, Ginzburg Landau theory
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where a(T) = ag(T — T¢)
Equilibrium
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