AP6180/AP8180 Modern Scattering Methods in Materials Science

Lecture given by Prof. Tamas UNGAR

Office: G6601

e-mail: tungar@cityu.edu.hk

Course leader: Dr Suresh M. Chathoth

Fundamentals of X-ray scattering

Fundamentals of X-ray scattering

Brief history

Laboratory X-ray sources,

Basic properties of X-rays,

X-ray spectra,

X-ray absorption edges,

Synchrotron X-ray sources,

Scattering mechanisms of X-rays by matter,

Atomic scattering factors for X-rays

Total X-ray reflection,

Darwin-breadth (qualitatively)

Monochromators (briefly)

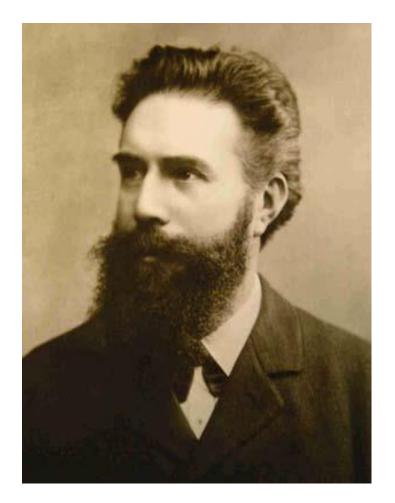
Fundamentals of X-ray scattering Brief history

Laboratory X-ray sources, Basic properties of X-rays, X-ray spectra, X-ray absorption edges, Synchrotron X-ray sources, Scattering mechanisms of X-rays by matter, Atomic scattering factors for X-rays Total X-ray reflection, Darwin-breadth (qualitatively) Monochromators (briefly)

Brief history

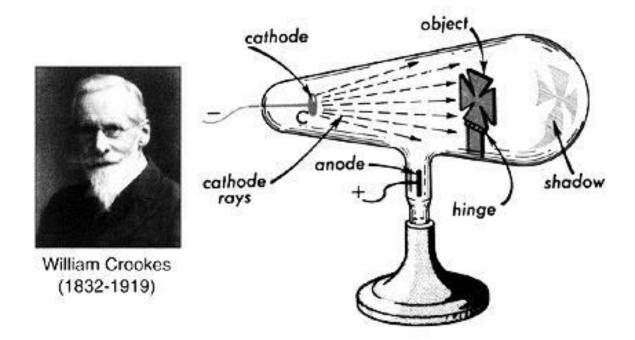
Reading:

- B.E. Warren, X-ray Diffraction, Dover Publ., 1969, 1990
- B.D.Cullity & S.R.Stock, Elements of X-ray Diffraction Prentice Hall Inc. 2001
- P.Klug & L.E.Alexander, X-ray diffraction procedures for polycrystalline and amorphous materials, Wiley, NY, 1954
- L.H.Schwartz & J.B.Cohen, Diffraction from Materials, AP. Academic Press, 1977

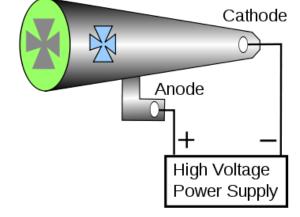


The tale:

Röntgen, a German physicist, was experimenting with a Crookes tube when it produced streams of electrons called cathode rays.

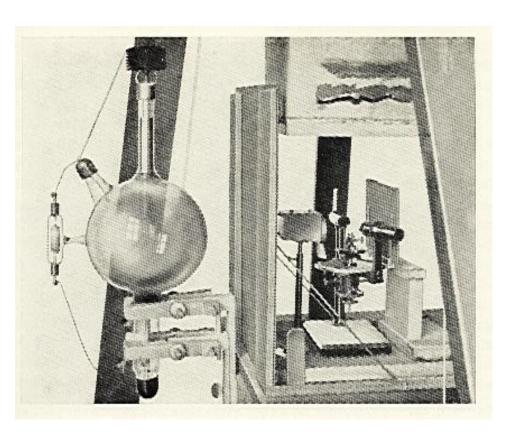

Just before leaving for lunch one day,
Röntgen put an activated tube on a book and
the book just happened to be lying on
a piece of photographic film.
Inside the book was a key and
when he later discovered that image,
he knew he was looking at
something entriely new.
The world's first ever x-ray

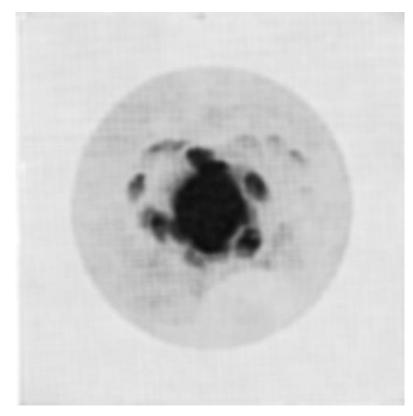
Discovery: 1895, Nobel Prize: 1901



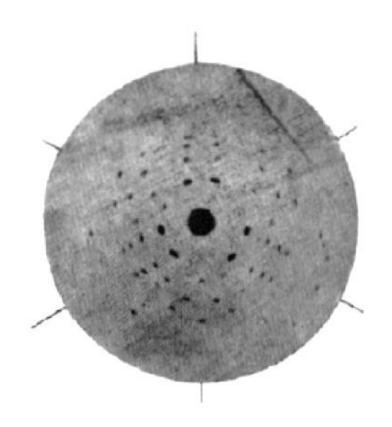
Wilhelm Konrad Röntgen
1845 - 1923

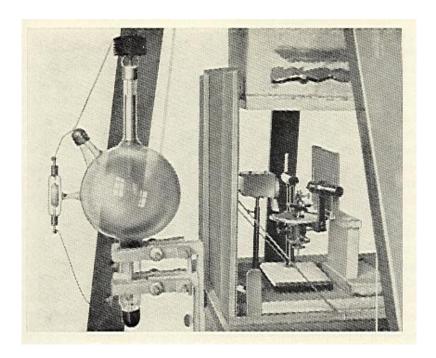
Crookes tube



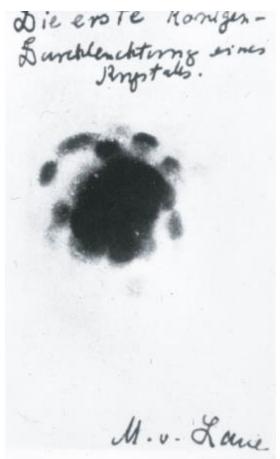


X-ray or röntgen image of one of the hands of Röntgen's wife





Laue photograph of zinc blend, ZnS along the three-fold axis M.vonLaue, Friedrich & Knipping, 1912



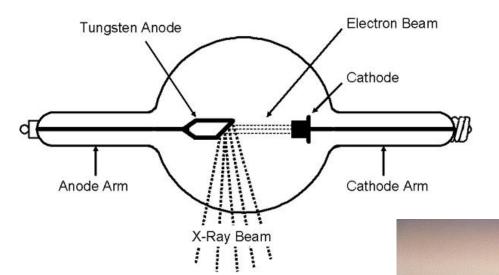
third improved image, after applying a pinhole

Laue photograph of zinc-blend, ZnS along the three-fold axis M.vonLaue, Friedrich & Knipping, 1912

two consequences

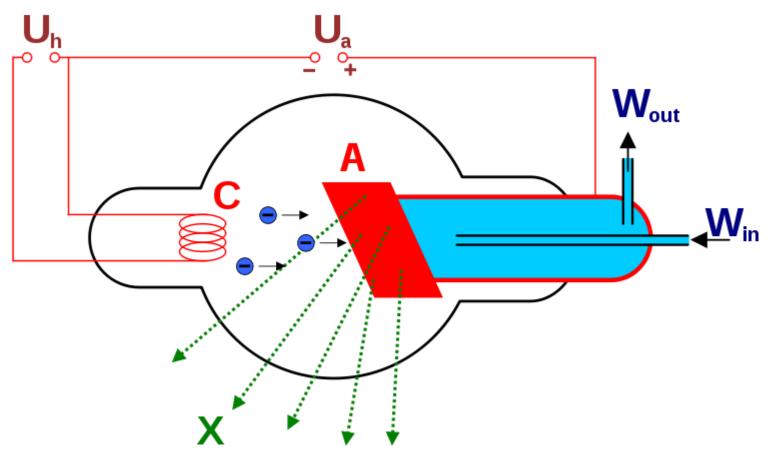
- 1) materials are crystalline consisting of atoms
- 2) X-rays are waves electromagnetic waves

Nobel Prize in Physics 1914

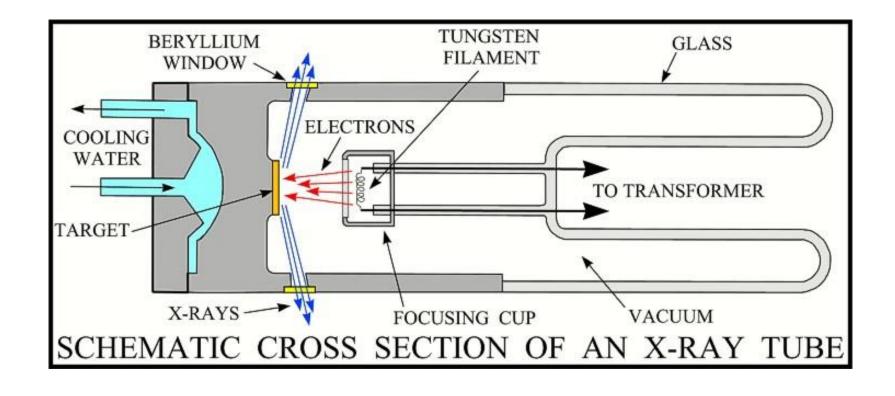

Fundamentals of X-ray scattering Brief history

Laboratory X-ray sources, Basic properties of X-rays,

X-ray spectra,
X-ray absorption edges,
Synchrotron X-ray sources,
Scattering mechanisms of X-rays by matter,
Atomic scattering factors for X-rays
Total X-ray reflection,
Darwin-breadth (qualitatively)
Monochromators (briefly)



the first X-ray tubes:

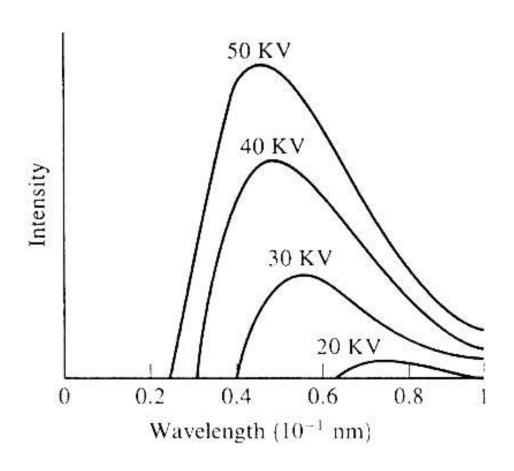


the first X-ray tubes:

X-ray tubes today

Fundamentals of X-ray scattering

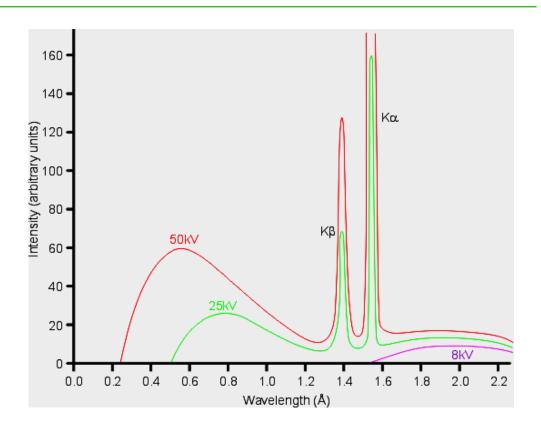
Brief history


Laboratory X-ray sources,

Basic properties of X-rays,

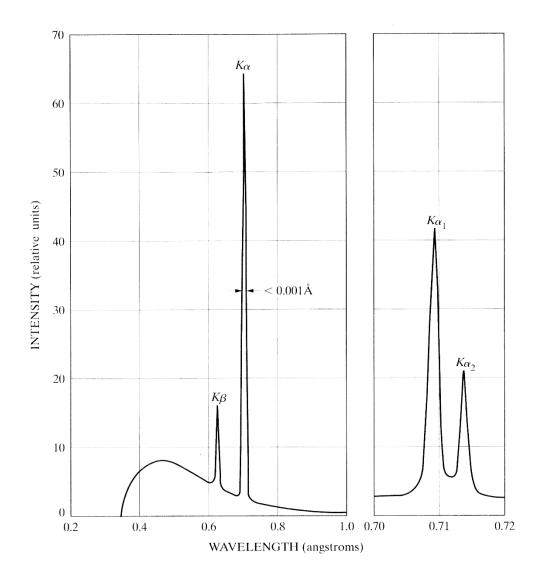
X-ray spectra,

X-ray absorption edges,
Synchrotron X-ray sources,
Scattering mechanisms of X-rays by matter,
Atomic scattering factors for X-rays
Total X-ray reflection,
Darwin-breadth (qualitatively)
Monochromators (briefly)



bremsstrahlung

radiation produced by random inelastic scattering by the electrons in the material


characteristic X-ray spectrum

radiation produced by when the exited atom relaxes by emitting a photon

characteristic X-ray spectrum

radiation produced by when the exited atom relaxes by emitting a photon

Figure 1-5 Spectrum of Mo at 35 kV (schematic). Line widths not to scale. Resolved $K\alpha$ doublet is shown on an expanded wavelength scale at right.

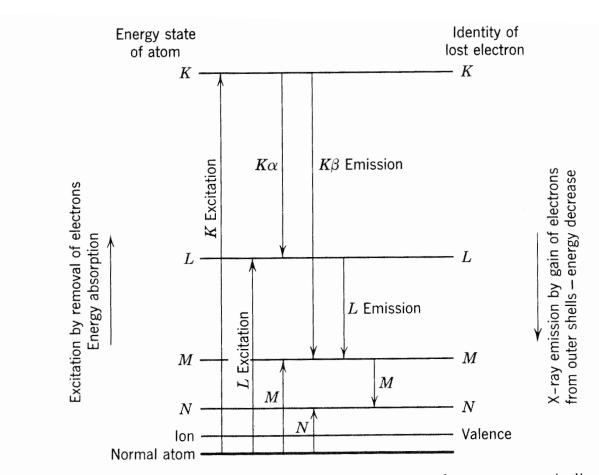


Fig. 2-16. Schematic energy-level diagram for a many-electron atom, indicating (by arrows) the processes of excitation and emission.

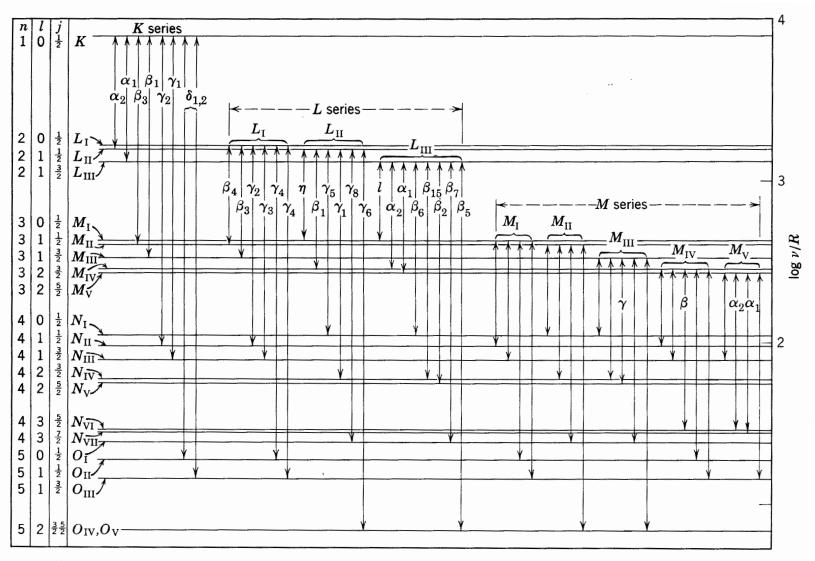
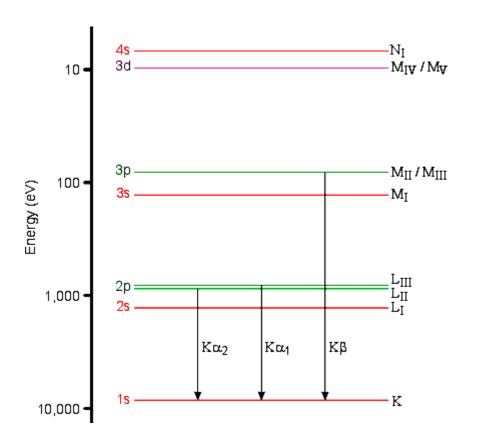
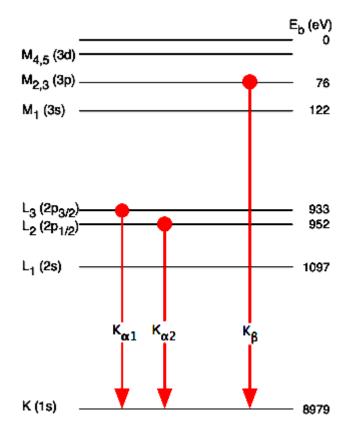


Fig. 2-17. X-ray energy-level diagram for uranium 92. (By permission, from F. Richtmyer and E. Kennard, *Introduction to Modern Physics*, Copyright, 1947, McGraw-Hill.)

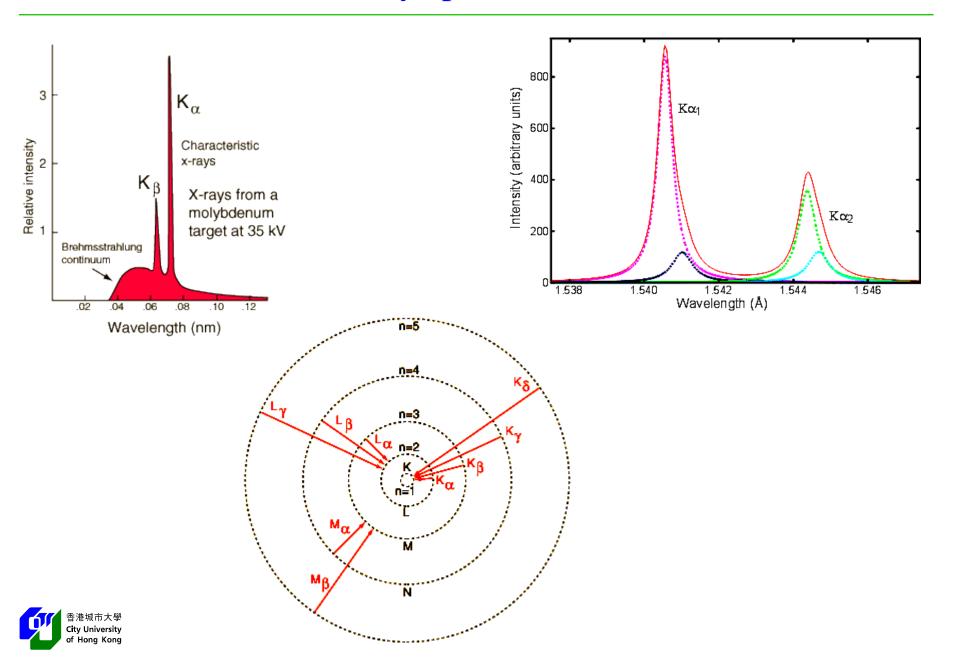

X-ray wavelengths used in the laboratory


Table 2-3. X-ray Wavelengths Most Useful in Diffraction Studies^a

.4859 25.52
.6198 20.00 .3806 8.98
.4881 8.33 .6082 7.71 .7435 7.11

^aThese values are taken from Bearden[43] in which they were listed on a readjusted scale of Å* units based on $\lambda(WK\alpha_1) = 0.2090100$ Å*. Since 1 Å* = 1 Å to ±5 ppm (probable error), values in this table are designated as being in angström units.

^bThese values are the customary weighted mean of $K\alpha_1$ and $K\alpha_2$, $K\alpha_1$ being given twice the weight of $K\alpha_2$.


Experimental K-alpha x ray energies

Z	Element	Κα2	Kα ₁				
	Liement	eV(unc)	eV(unc)				
10	Ne	848.61(26)	848.61(26)				
11	Na	1040.98(12)	1040.98(12)				
12	Mg	1253.437(13)	1253.688(11)				
13	Al	1486.295(10)	1486.708(10)				
14	Si	1739.394(34)	1739.985(19)				

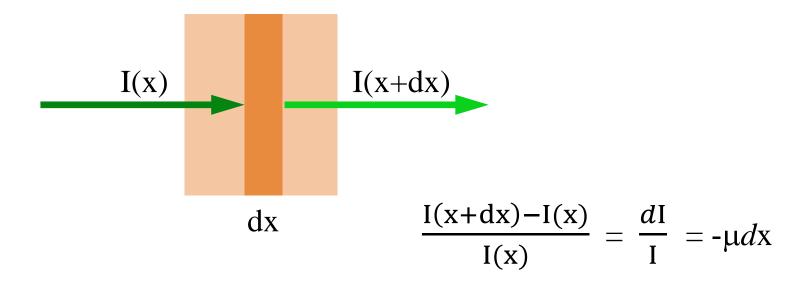
23	3 V	4944.671(59)	4952.216(59)
24	4 Cr	5405.5384(71)	5414.8045(71)
25	Mn	5887.6859(84)	5898.8010(84)
26	Fe	6391.0264(99)	6404.0062(99)
27	7 Co	6915.5380(39)	6930.3780(39)
28	Ni	7461.0343(45)	7478.2521(45)
29	Cu	8027.8416(26)	8047.8227(26)
30	Zn	8615.823(73)	8638.906(73)
31	Ga	9224.835(27)	9251.674(66)
32	Ge Ge	9855.42(10)	9886.52(11)

39	Y	14882.94(26)	14958.54(27)
40	Zr	15690.645(50)	15774.914(54)
41	Nb	16521.28(33)	16615.16(33)
42	Mo	17374.29(29)	17479.372(10)
43	Tc	18250.9(12)	18367.2(12) *
44	Ru	19150.49(18)	19279.16(18)
45	Rh	20073.67(20)	20216.12(20)
46	Pd	21020.15(22)	21177.08(17)
47	Ag	21990.30(10)	22162.917(30)
48	Cd	22984.05(20)	23173.98(20)

Fundamentals of X-ray scattering

Brief history

Laboratory X-ray sources,


Basic properties of X-rays,

X-ray spectra,

X-ray absorption edges,

Synchrotron X-ray sources,
Scattering mechanisms of X-rays by matter,
Atomic scattering factors for X-rays
Total X-ray reflection,
Darwin-breadth (qualitatively)
Monochromators (briefly)

$$I_{x} = I_{o}e^{-\mu x} = I_{o}e^{-(\mu/\rho)\rho x}$$

 μ/ρ : mass-absorption coefficient

$$\mu/\rho = k \lambda^3 Z^3$$
 between absorption edges

X-ray absorption spectrum for platinum

$$I = I_0 e^{-\mu x} = I_0 e^{-(\mu/\rho)\rho x}$$
 μ/ρ : mass-absorption coefficient

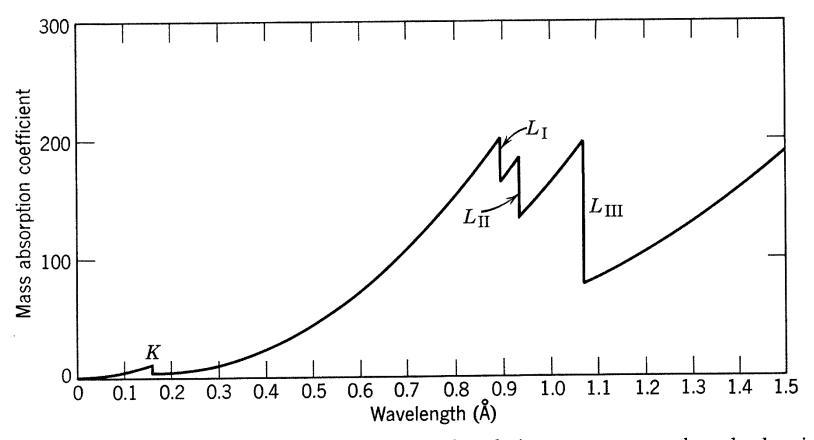


Fig. 2-19. Plot of the mass absorption coefficient for platinum versus wavelength, showing positions of the K and L absorption edges.

 cm^2/g

Appendix III

Mass Absorption Coefficients μ_m of the Elements (Z=1 to 83) for a Selection of Wavelengths (Values given in italics are of low accuracy)

(Reprinted from International Tables for X-Ray Crystallography, Vol. III, with the permission of the Editorial Commission of the International Tables.)

-	Toward				, 		,												
	Tar			g _{vo}		h	M			`u		co		'e			T		
_	radia λ(A		<i>K</i> ≅ 0.5608	<i>Kβ</i> ₁ 0.4970	<i>K</i> ₹ 0.6147	<i>Kβ</i> ₁ 0.5456	<i>K</i> ॡ 0.7107	<i>Κβ</i> ₁ 0.6323	<i>K</i> ₹ 1.5418	<i>Κ</i> β ₁ 1.3922	<i>K</i> ā 1.7902	<i>Κβ</i> 1 1.6208	<i>K</i> ā 1.9373	<i>Κ</i> β ₁ 1.7565	<i>K</i> ā 2.2909	<i>Κ</i> β ₁ 2.0848	<i>Κ</i> α 2.7496	<i>Κβ</i> , 2.5138	
	Abso	rber		_		μ, (σ	:m²/g)												
	H He Li Be B	1 2 3 4 5	0.371 0.195 0.187 0.229 0.279	0.366 0.190 0.177 0.208 0.244	0.375 0.199 0.197 0.251 0.314	0.370 0.194 0.185 0.224 0.270	0.380 0.207 0.217 0.298 0.392	0.376 0.200 0.200 0.258 0.327	0.435 0.383 0.716 1.50 2.39	0.421 0.333 0.571 1.15 1.81	0.464 0.491 1.03 2.25 3.63	0.443 0.414 0.804 1.71 2.74	0.483 0.569 1.25 2.80 4.55	0.459 0.474 0.978 2.13 3.44	0.545 0.813 1.96 4.50 7.38	0.507 0.661 1.52 3.44 5.61	0.658 1.26 3.26 7.64 12.6	0.595 1.01 2.53 5.88 9.67	
366	C N O F Ne	6 7 8 9	0.400 0.544 0.740 0.976 1.31	0.333 0.433 0.570 0.732 0.969	0.469 0.658 0.916 1.23 1.67	0.383 0.515 0.696 0.913 1.22	0.625 0.916 1.31 1.80 2.47	0.495 0.700 0.981 1.32 1.80	4.60 7.52 11.5 16.4 22.9	3.44 5.60 8.52 12.2 17.0	7.07 11.6 17.8 25.4 35.4	5.31 8.70 13.3 19.0 26.5	8.90 14.6 22.4 32.1 44.6	6.69 11.0 16.8 24.0 33.5	14.5 23.9 36.6 52.4 72.8	11.0 18.2 27.8 39.8 55.3	24.8 41.0 62.5 89.4 124	19.1 31.5 48.1 68.8 95.4	
	Na Mg Al Si P	11 12 13 14 15	1.67 2.12 2.65 3.28 4.01	1.22 1.54 1.90 2.35 2.85	2.15 2.73 3.42 4.25 5.20	1.56 1.97 2.45 3.04 3.71	3.21 4.11 5.16 6.44 7.89	2.32 2.96 3.71 4.61 5.64	30.1 38.6 48.6 60.6 74.1	22.3 28.7 36.2 45.1 55.2	46.5 59.5 74.8 93.3 114	34.8 44.6 56.2 70.1 85.5	58.6 74.8 93.9 117 142	44.0 56.3 70.9 88.3 108	95.3 121 152 189 229	72.5 92.4 116 144 175	162 204 255 315 381	125 158 198 245 297	
	S CI A K Ca	16 17 18 19 20	4.84 5.77 6.81 8.00 9.28	3.44 4.09 4.82 5.66 6.57	6.29 7.51 8.87 10.4 12.1	4.48 5.34 6.29 7.39 8.58	9.55 11.4 13.5 15.8 18.3	6.82 8.14 9.62 11.3 13.1	89.1 106 123 143 162	66.5 79.0 92.4 107 122	136 161 187 215 243	103 122 142 164 186	170 200 232 266 299	129 152 177 204 231	272 318 366 417 463	209 246 284 325 363	450 · 522 · 593 · 667 · 728	352 410 469 531 585	
	Sc	21	10.7	7.57	13.9	9.89	21.1	15.1	184	139	273	210	336	260	513	405	794	643	
	Ti	22	12.3	8.70	16.0	11.4	24.2	17.3	208	158	308	237	377	293	<i>571</i>	453	98.4	75.8	
	V	23	14.0	9.91	18.2	12.9	27.5	19.7	233	178	343	266	419	327	68.4	502	116	89.6	
	Cr	24	15.8	11.2	20.6	14.6	31.1	22.3	260	199	381	296	463	363	79.8	60.7	135	104	
	Mn	25	17.7	12.6	23.0	16.4	34.7	24.9	285	219	414	323	57.2	395	93.0	70.8	157	122	

 cm^2/g

	Tar	get	A	.0	R	h	М	•		`u	C	20		e ·			T	
ra	adia	tion	Kā	$K\beta_1$	Κā	 <i>Κβ</i> 1	Κā	$K\beta_1$	Κā	.u .κβ ₁	Κā	κβ,	Κā	κβ,	Κā	Cr Κβ ₁	Κã	1 <i>Κβ</i> 1
_	λ(/	<u>, , </u>	0.5608	0.4970	0.6147	0.5456	0.7107	0.6323	1.5418	1.3922	1.7902	1.6208	1.9373	1.7565	2.2909	2.0848	2.7496	2.5138
F	ė	26	19.7	14.0	25.6	18.2	38.5	27.7	308	238	52.8	349	66.4	50.0	108	82.2	182	141
C	ò	27	21.8	15.5	28.3	20.2	42.5	30.6	313	257	61.1	45.8	76.8	57.8	125	95.0	210	163
N	Ji	28	24.1	17.1	31.1	22.3	46.6	33.7	45.7	275	70.5	52.8	88.6	66.7	144	109	242	187
C	`u	29	26.4	18.8	34.1	24.4	50.9	36.9	52.9	39.3	81.6	61.2	103	77.3	166	127	280	217
Z	'n	30	28.8	20.6	37.2	26.7	55.4	40.2	60.3	44.8	93.0	69.7	117	88.0	189	144	318	246
G		31	31.4	22.4	40.4	29.1	60.1	43.7	67.9	50.5	105	78.4	131	98.9	212	162	356	276
G A		32 33	34.1 36.9	24.4 26.5	43.8 47.3	31.6 34.2	64.8 69.7	47.3 51.1	75.6 83.4	56.2	116	87.3 96.2	146	110	235	180	393	306
S		34	39.8	28.6	50.9	36.9	74.7	54.9	91.4	62.1 68.1	128 140	105	160 175	121 133	258 281	198 216	430 467	335 364
В		35	42.7	30.8	54.6	39.7	79.8	58.8	99.6	74.4	152	115	190	144	305	234	503	394
	۲	36	45.8	33.1	58.3	42.5	84.9	62.8	108	80.7	165	124	206	156	327	252	538	422
	lb	37	48.9	35.4	62.2	45.5	90.0	66.9	117	87.3	177	134	221	168	351	271	573	451
S		38	52.1	37.8	66.0	48.4	95.0	70.9	125	94.0	190	144	236	180	373	289	606	479
Y		39 40	55.3	40.3	69.9	51.5	100	75.0	134	101	203	154	252	193	396	308	638	506
Z			58.5	42.8	73.7	54.5	15.9	79.0	143	108	216	165	268	205	419	326	669	533
	МР	41	61.7	45.3	77.4	57.5	17.1	82.9	153	115	230	175	284	218	441	345	699	559
•	do	42	64.8	47.8	81.1	60.5	18.4	13.1	162	123	243	186	300	231	463	363	727	584
	C	43	67.9	50.3	13.0	63.5	19.7	14.1	172	131	257	197	316	244	485	382	753	609
	lu	44	10.7	52.8	13.9	66.4	21.1	15.1	183	139	272	209	334	259	509	403	784	637
	t h	45	11.5	55.2	14.9	10.6	22.6	16.2	194	148	288	222	352	274	534	424	814	665
	ď	46	12.3	57.5	15.9	11.3	24.1	17.3	206	157	304	235	371	289	559	446	845	694
	۱g	47	13.1	9.29	17.0	12.1	25.8	18.5	218	166	321	248	391	305	586	468	876	723
C	Cd	48	14.0	9.91	18.2	12.9	27.5	19.7	231	176	338	262	412	322	613	492	908	753
Ir		49	14.9	10.6	19.4	13.8	29.3	21.0	243	186	356	277	432	339	638	514	935	78 I
S	n	50	15.9	11.3	20.6	14.7	31.1	22.3	256	197	373	291	451	356	662	536	957	805
S	ь	51	16.9	12.0	21.9	15.6	33.1	23.8	270	207	391	306	472	373	688	559	1100	832
T	e	52	17.9	12.7	23.3	16.6	35.0	25.2	282	218	407	320	490	389	707	<i>578</i>	557	899
I		53	19.0	13.5	24.6	17.6	37.1	26.7	294	228	422	333	506	404	722	594	214	919
	(e	54	20.1	14.3	26.1	18.6	39.2	28.2	306	238	436	346	521	418	763	609	245	<u>511</u>
C	S	5 5	21.3	15.1	27.5	19.7	41.3	29.8	318	248	450	358	534	431	793	621	274	215

Warren, X-ray diffraction

 cm^2/g

_	Target radiation			g		th	M			Cu				Fe		Cr		ï
	radia ()		<i>K</i> ā 0.5608	<i>Κβ</i> ₁ 0.4970	<i>K</i> ≅ 0.6147	<i>Κ</i> β ₁ 0.5456	<i>K</i> ⊄ 0.7107	$K\beta_1$ 0.6323	<i>K</i> ₹ 1.5418	<i>Κβ</i> 1 1.3922	<i>K</i> ā 1.7902	<i>Κβ</i> ₁ 1.6208	<i>K</i> ā 1.9373	<i>Κβ</i> 1 1.7565	<i>K</i> ā 2.2909	<i>Κ</i> β ₁ 2.0848	<i>K</i> ā 2.7496	<i>Κβ</i> ₁ 2.5138
•	Abso	rber				μ,, (σ	m²/g)	·										**
	Ba	56	22.5	16.0	29.1	20.8	43.5	31.4	330	258	463	370	546	444	461	661	302	237
	La	57	23.7	16.9	30.6	21.9	45.8	33.2	341	268	475	382	557	456	202	681	329	259
	Ce	58	25.0	17.8	32.3	23.1	48.2	34.9	352	278	486	394	<u>601</u>	468	219	409	35 6	281
	Pr	59	26.3	18.8	34.0	24.4	50.7	36.7	363	288	497	405	359	479	236	183	381	302
	Nd	60	27.7	19.8	35.7	25.7	53.2	38.6	374	298	543	416	379	519	252	196	405	322
	Pm	61	29.1	20.8	37.6	27.0	55.9	40.6	386	308	327	428	172	538	268	209	429	342
	Sm	62	30.6	21.9	39.5	28.4	58.6	42.6	397	319	344	461	182	328	284	222	452	361
	Eu	63	32.2	23.0	41.4	29.8	61.5	44.8	425	329	156	478	193	344	299	234	473	379
	Gd	64	33.8	24.2	43.5	31.3	64.4	47.0	439	340	165	295	203	157	314	247	495	397
375	Tb	65	35.5	25.4	45.6	32.9	67.5	49.2	273	352	173	309	214	165	329	259	516	415
6	Dy	66	37.2	26.6	47.8	34.5	70.6	51.6	286	369	182	140	224	173	344	271	536	433
	Ho	67	39.0	27.9	50.0	36.1	73.9	54.0	128	231	191	146	234	181	359	283	555	450
	Ēг	68	40.8	29.3	52.4	37.9	77.3	56.6	134	242	199	153	245	190	373	295	574	466
	Tm	69	42.8	30.7	54.9	39.7	80.8	59.2	140	252	208	160	255	198	387	307	592	483
	Yb	70	44.8	32.2	57.4	41.5	84.5	61.9	146	111	217	167	265	206	401	319	610	499
	Lu	71	46.8	33.6	60.0	43.4	88.2	64.7	153	116	226	174	276	215	416	331	628	515
	Hf	72	48.8	35.1	62.5	45.3	91.7	67.4	159	121	235	181	286	223	430	343	645	532
	Ta	73	50.9	36.7	65.1	47.3	95.4	70.2	166	126	244	18 9	297	232	444	355	662	547
	W	74	53.0	38.2	67.8	49.3	99.1	73.1	172	132	253	196	308	241	458	368	679	563
	Re	75	55.2	39.8	70.4	51.2	103	75.9	179	137	262	204	319	250	473	380	696	<i>579</i>
	Os	76	57.3	41.4	73.1	53.2	106	78.7	186	143	272	212	330	259	487	393	712	595
	Ir	77	59.4	42.9	75.6	55.2	110	81.4	193	148	282	219	341	269	502	406	7 29	611
	Pt	78	61.4	44.5	78.0	57.1	113	83.9	200	154	291	228	353	278	517	419	745	<i>62</i> 8
	Au	79	63.1	45.8	80.0	58.7	115	86.0	208	160	302	236	365	288	532	432	761	644
	Hg	80	64.7	47.1	81.8	60.2	117	87.9	216	166	312	245	377	298	547	446	777	660
	Tl	81	66.2	48.4	83.5	61.7	119	89.5	224	172	323	253	389	309	563	460	<i>794</i>	677
	Pb	82	67.7	49.8	85.0	63.2	120	91.0	232	179	334	262	402	319	579	474	810	694
	Bi	83	69.1	51.1	86.1	64.6	120	92.0	240	185	346	272	415	330	596	489	827	712

Warren, X-ray diffraction

X-ray filters

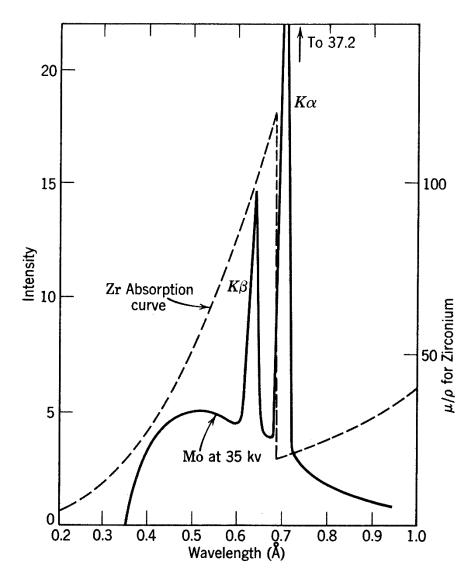


Fig. 2-20. The zirconium absorption curve superposed on 35-kV molybdenum radiation.

Fundamentals of X-ray scattering

Brief history

Laboratory X-ray sources,

Basic properties of X-rays,

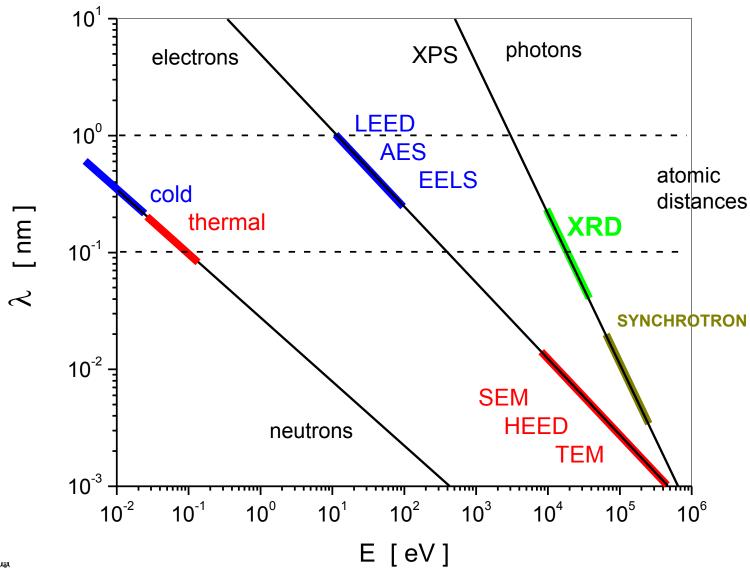
X-ray spectra,

X-ray absorption edges,

Synchrotron X-ray sources,

Scattering mechanisms of X-rays by matter,

Atomic scattering factors for X-rays


Total X-ray reflection,

Darwin-breadth (qualitatively)

Monochromators (briefly)

correspondence between different radiations

correspondence between different radiations

Properties	electrons	X-rays	neutrons
charge	e	0	0
rest-mass	m	0	M
λ	$h/\sqrt{2mE}=0.123 \text{ nm}\sqrt{eV}$	hc/E=	$h/\sqrt{2ME}$ =
	$\times \sqrt{E + 10^{-6}E^2}$	1240 nm eV /E	3.08 nm $/\sqrt{T(K)}$
interaction	Coulomb	electrodynamic	nuclear + magnetic
Energy range	10 eV – 400 keV	2 keV – 200 keV	10 meV - eV
absorption length	0.1 nm – 200 nm	1 nm – 10 mm	≥ 1 mm
scattering-length	0.1 nm	$-3 \times 10^{-14} \text{ m}$	±1×10 ⁻¹⁴ m

solving the acronyms

LEED: low energy electron diffraction

AES: Auger electron scattering

EELS: electron energy loss spectroscopy

SEM: scanning electron microscopy

HEED: high energy electron diffraction

TEM: transmission electron microscopy

XRD: X-ray diffraction

Cold/thermal: thermalized neutrons

XPS: X-ray-photon-spectroscopy

Synchrotron: synchrotron source of *photons*

Fundamentals of X-ray scattering

Brief history

Laboratory X-ray sources,

Basic properties of X-rays,

X-ray spectra,

X-ray absorption edges,

Synchrotron X-ray sources,

Scattering mechanisms of X-rays by matter,
Atomic scattering factors for X-rays
Total X-ray reflection,
Darwin-breadth (qualitatively)
Monochromators (briefly)

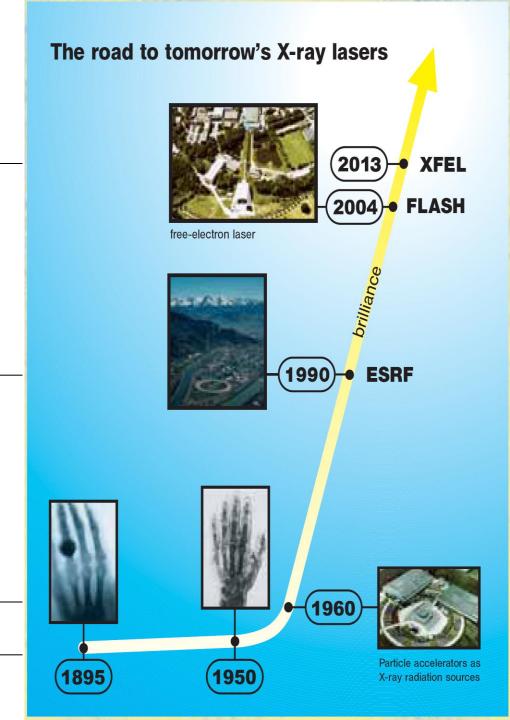
The first "synchrotron source"

"Synchrotron radiation was seen for the first time at the General Electric in the USA in 1947"

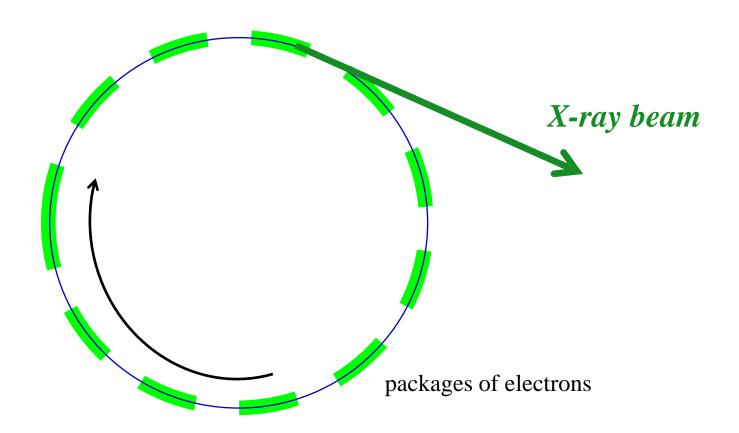
Brilliance of X-ray sources:

number of fotons

sec × mm²


foton/s/mm²

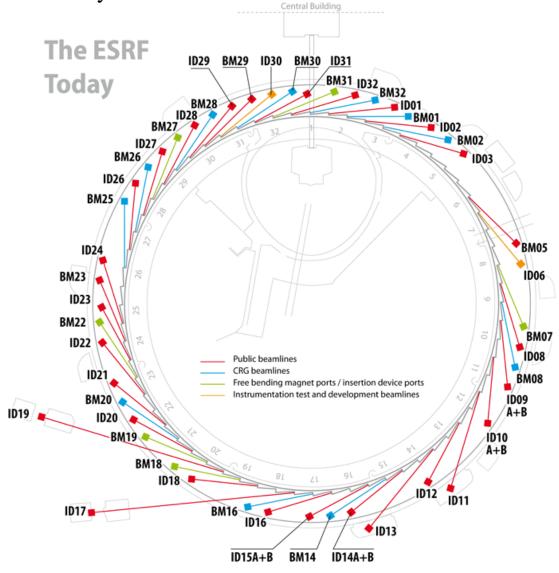
 10^{34}


 10^{24}

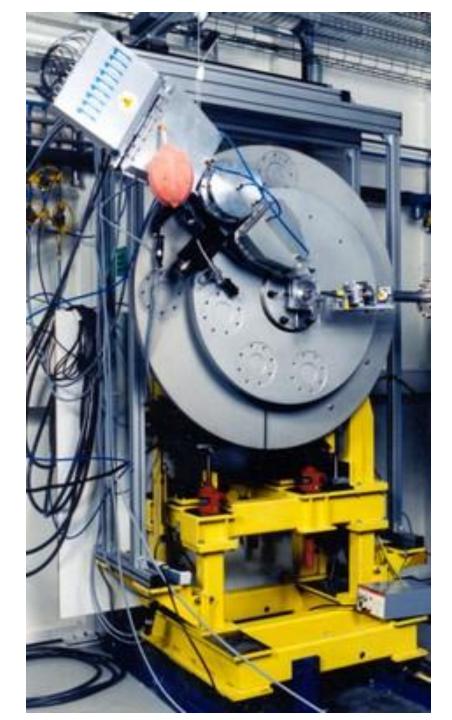
120 years of brilliance

10¹² 10⁸

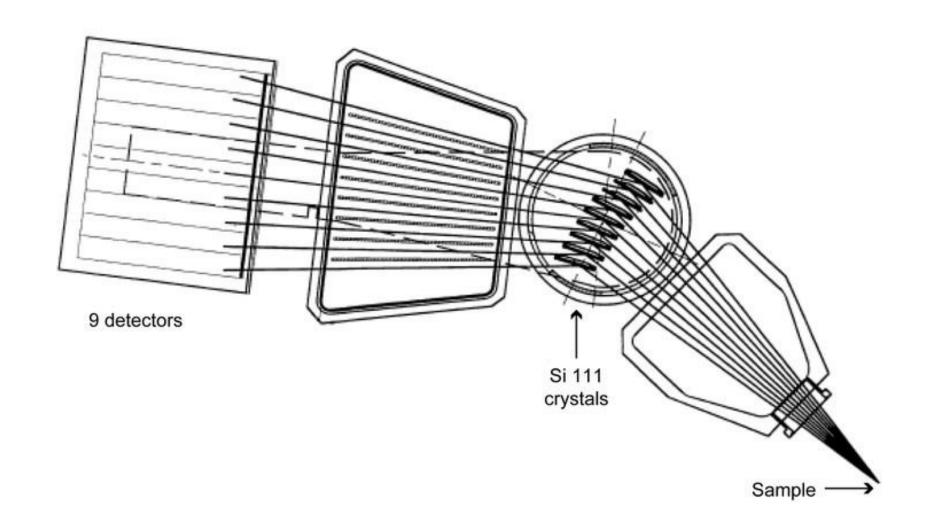
Synchrotron X-ray sources


ESRF, Grenoble

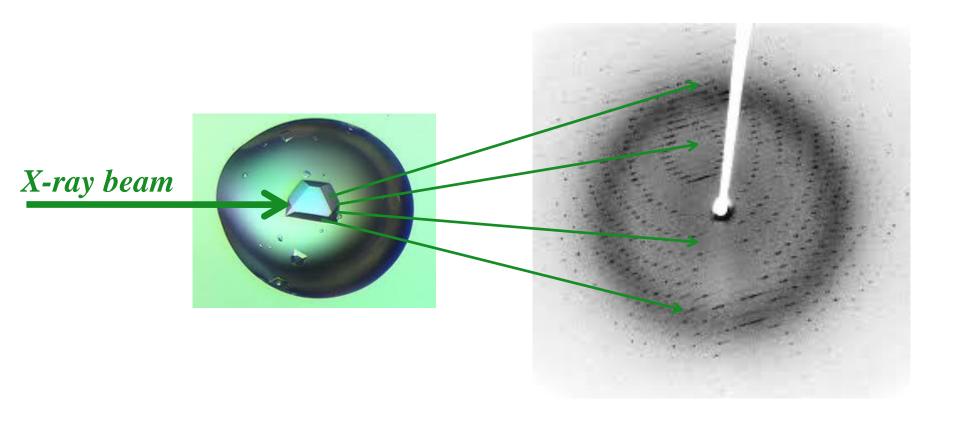
European Synchrotron Radiation Facility


ESRF, Grenoble

European Synchrotron Radiation Facility

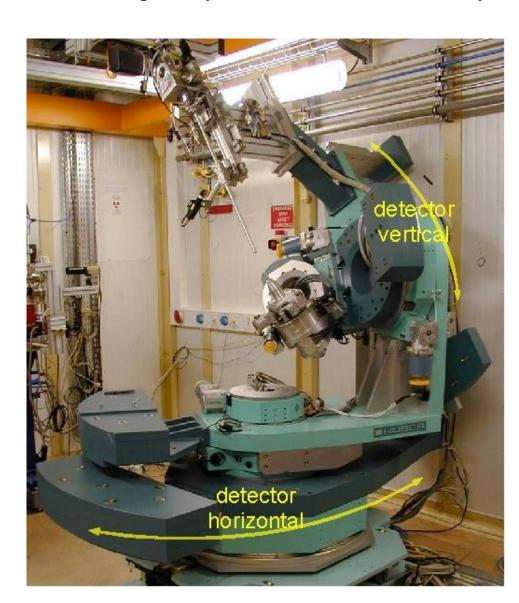


ID31 high resolution powder diffractometer

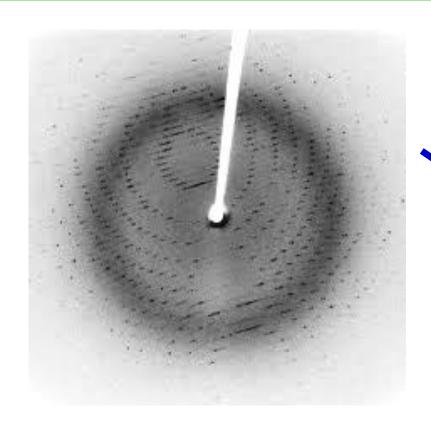

~ 3 m

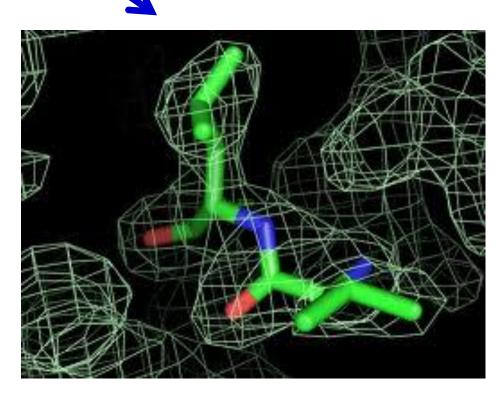
ID31 high resolution powder diffractometer: detector system

protein crystallography


ESRF, Grenoble

European Synchrotron Radiation Facility




ESRF, Grenoble

European Synchrotron Radiation Facility

protein crystallography

APS, Argonne, IL, USA

Advanced Photon Source

SPring-8

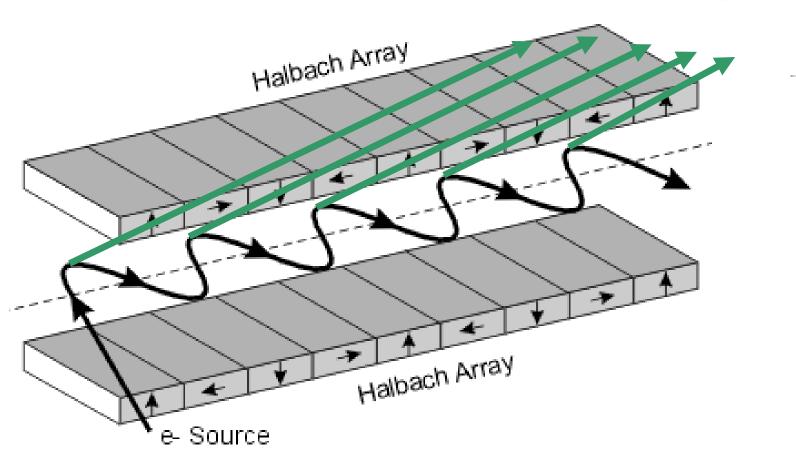
Japan's synchrotron

SPring-8

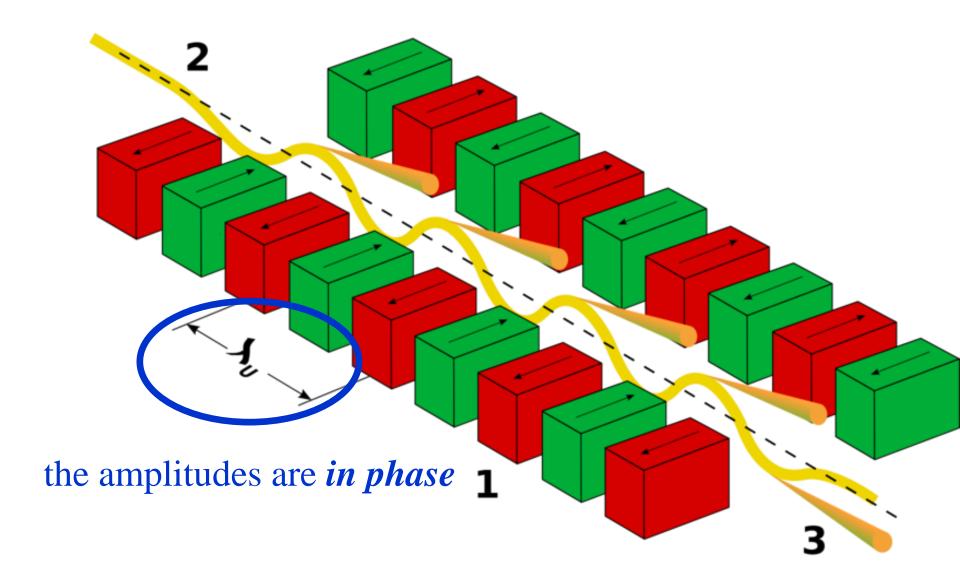
Japan's synchrotron

controlling the path of electrons

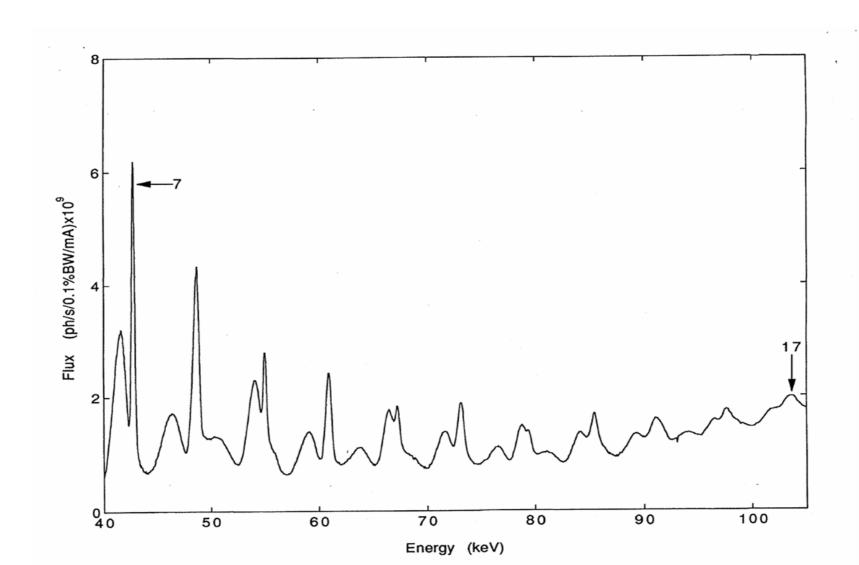
incertion devices

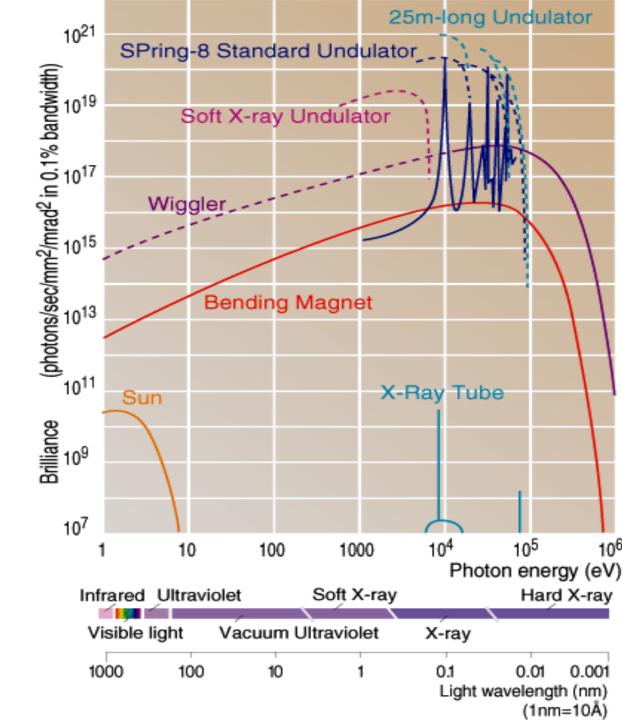

- Bending magnet
- Wiggler
- Undulator

Bending magnet



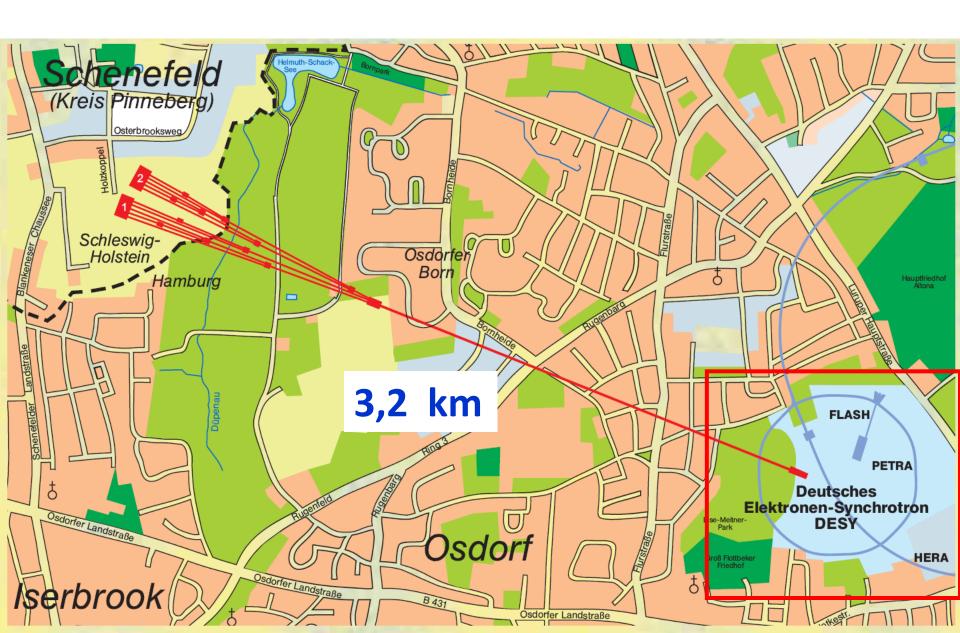
Wiggler

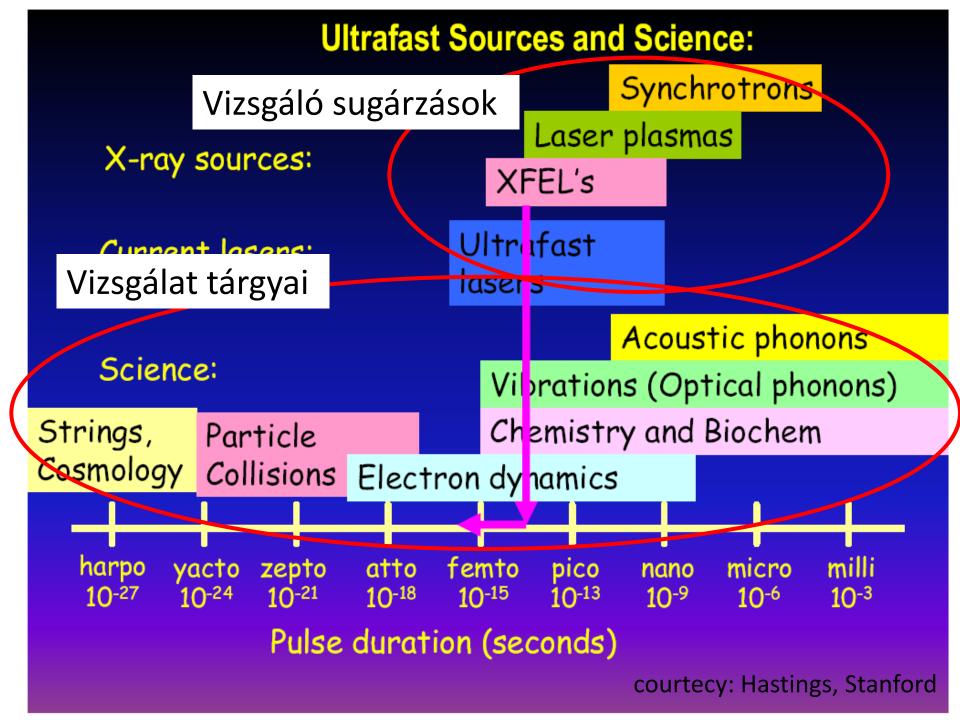

Intensities are adding up


Undulator

typical undulator spectrum at APS - Argonne

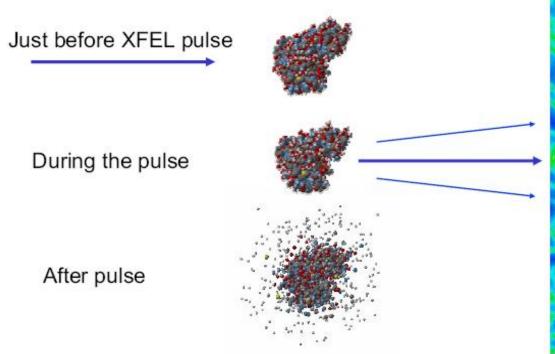
X-ray spectra at SPring-8



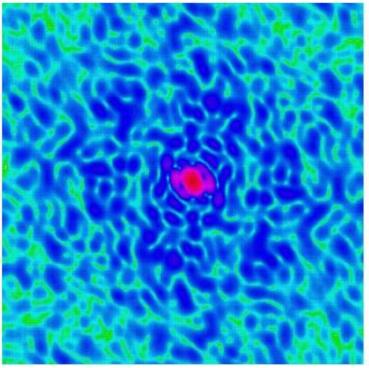

free electron laser: FEL a very long undulator

the synchrotron in Hamburg (Germany) today:

schematics of the European Free Electron Laser (XFEL)

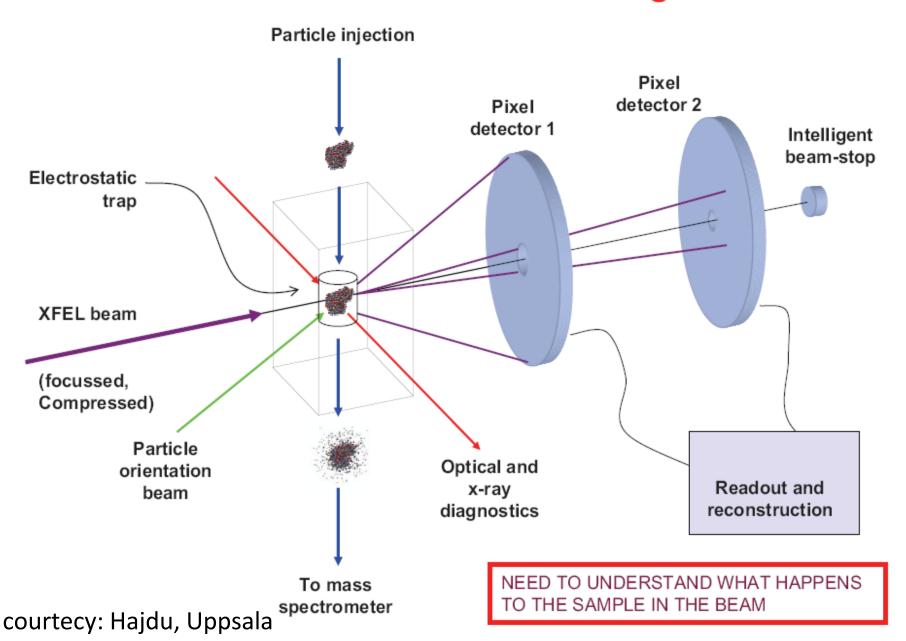


prospective diffraction on single molecules at the European FEL


THEORY predicts XFELs may allow high resolution imaging of single particles / molecules

Neutze, Wouts, van der Spoel, Weckert, Hajdu Nature 406, 752-757 (2000)

Concept: Capture an image with a short and intense X-ray pulse, before the sample has time to respond (explode)


Diffraction pattern

3D reconstruction possible from many views

courtecy: Hajdu, Uppsala

Interaction chamber and detector arrangement

Fundamentals of X-ray scattering

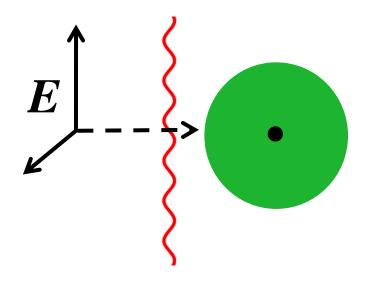
Brief history

Laboratory X-ray sources,

Basic properties of X-rays,

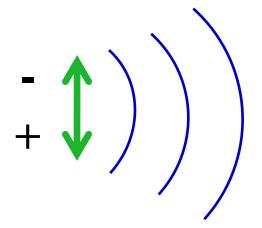
X-ray spectra,

X-ray absorption edges,


Synchrotron X-ray sources,


Scattering mechanisms of X-rays by matter,

Atomic scattering factors for X-rays
Total X-ray reflection,
Darwin-breadth (qualitatively)
Monochromators (briefly)



Mechanism of X-ray scattering

the atom is polarized

the polarized dipole radiates

Fundamentals of X-ray scattering

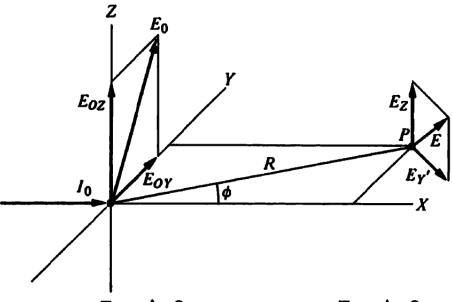
Brief history

Laboratory X-ray sources,

Basic properties of X-rays,

X-ray spectra,

X-ray absorption edges,


Synchrotron X-ray sources,

Scattering mechanisms of X-rays by matter,

Atomic scattering factors for X-rays

Total X-ray reflection,
Darwin-breadth (qualitatively)
Monochromators (briefly)

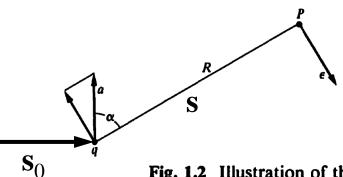


Fig. 1.2 Illustration of the electric field ϵ , produced by a charge q with acceleration a, according to classical electromagnetic theory.

the electric field, ε , in cgs units:

$$\epsilon = \frac{qa\sin\alpha}{c^2R}$$

the Y' component of the electric field at P:

$$\epsilon_{Y'} = \frac{e^2 E_{0Y}}{mc^2 R} \sin 2\pi \nu t \cos \phi$$

the amplitude is:

$$E_{\theta Y'} = \frac{e^2 E_{0Y}}{mc^2 R} \cos \phi$$

the E_{0Z} amplitude (for the E_{Z} ϕ =90°):

$$E_Z = \frac{e^2 E_{0Z}}{mc^2 R}$$

the observed intensity at P:

$$E^{2} = E_{Z}^{2} + E_{Y}^{2} = \frac{e^{4}}{m^{2}c^{4}R^{2}}(E_{0Z}^{2} + E_{0Y}^{2}\cos^{2}\phi)$$

assuming that the incoming beam is randomly polarized:

$$\langle E_{01}^2 \rangle + \langle E_{0Z}^2 \rangle = \langle E_{0}^2 \rangle$$
 and $\langle E_{01}^2 \rangle = \langle E_{0Z}^2 \rangle = \frac{1}{2} \langle E_{0}^2 \rangle$

finally:

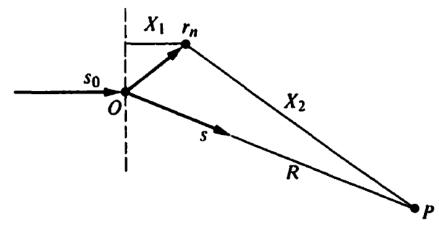
$$\langle E^2 \rangle = \langle E_0^2 \rangle \frac{e^4}{m^2 c^4 R^2} \left(\frac{1 + \cos^2 \phi}{2} \right)$$

polarization factor for an unpolarized incoming beam

the numerical factor in the scattered intensity:

$$\frac{e^4}{m^2c^4} = 7.94 \times 10^{-26} \, \text{cm}^2$$

the number of electrons in the volume illuminated by the incoming beam in a usual specimen:


$$\sim 10^{22}$$

therefore, the scattered intensity is approximately of-the-order of:

$$I_{\text{scattered}} \sim I_0 \times 10^{-4}$$

scattering of X-rays by an atom

 r_n is the position of the n-th electron in the atom

the amplitude scattered by the n-th electron at P:

$$\epsilon_n = \frac{E_0 e^2}{mc^2 X_2} \cos \left[2\pi vt - \frac{2\pi}{\lambda} (X_1 + X_2) \right]$$
 $X_1 << X_2$

it can be shown that:

$$X_1 + X_2 \rightarrow \mathbf{r}_n \cdot \mathbf{s}_0 + R - \mathbf{r}_n \cdot \mathbf{s} = R - (\mathbf{s} - \mathbf{s}_0) \cdot \mathbf{r}_n$$

scattering of X-rays by an atom

turning to complex exponentials and summing over all electrons:

$$\epsilon = \frac{E_0 e^2}{mc^2 R} e^{2\pi i \left[vt - (R/\lambda)\right]} \sum_n e^{(2\pi i/\lambda)(s-s_0) \cdot r_n}$$

scattering of X-rays by a smeared-out electron

$$\epsilon_e = \frac{E_0 e^2}{mc^2 R} e^{2\pi i \left[vt - (R/\lambda)\right]} \int e^{(2\pi i/\lambda)(s-s_0)^{-r}} \rho \ dV.$$

electron scattering factor, f_e ho is the average charge-density distribution of the electron

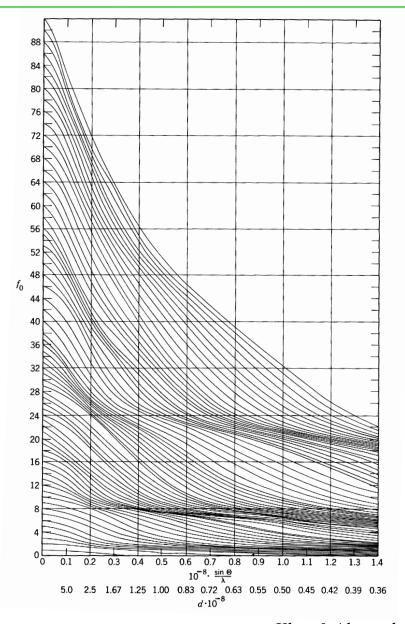
 f_e is the amplitude scattered by an electron in 1-electron-scattering-units

scattering of X-rays by a smeared-out electron

taking into account the real charge-density distribution: $\rho(r)$

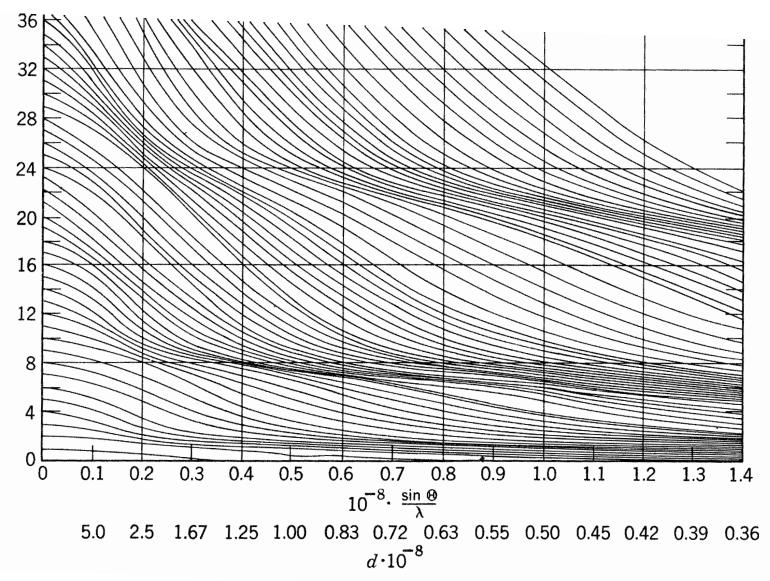
$$f_e = \int_0^\infty 4\pi r^2 \rho(r) \, \frac{\sin \, kr}{kr} \, dr$$

scattering of X-rays by an atom


the atomic scattering-factor:

$$f = \sum_{n} f_{en} = \sum_{n} \int_{0}^{\infty} 4\pi r^{2} \rho_{n}(r) \frac{\sin kr}{kr} dr$$

f is measured in units of scattering by a single electron



atomic scattering factors of X-rays

atomic scattering factors of X-rays

atomic scattering factors of X-rays

$$f = \sum_{n} f_{en} = \sum_{n} \int_{0}^{\infty} 4\pi r^{2} \rho_{n}(r) \frac{\sin kr}{kr} dr.$$

at k=0, where $k=4\pi sin\theta/\lambda$, $\sin kr/kr=1$, i.e. in the forward scattering case, or at small values of 2θ :

$$\sum_{n} \int_{0}^{\infty} 4\pi r^{2} \rho_{n}(r) dr = Z$$

comparison of scattering factors of X-rays and neutrons

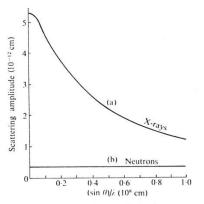


Fig. 16. X-ray and neutron scattering amplitudes for a potassium atom.

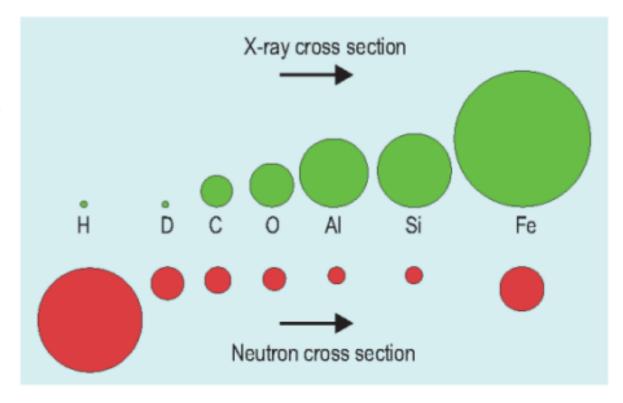


Fig. 2. Neutron and x-ray scattering cross-sections compared. Note that neutrons penetrate through Al much better than x rays do, yet are strongly scattered by hydrogen.

Fundamentals of X-ray scattering

Brief history

Laboratory X-ray sources,

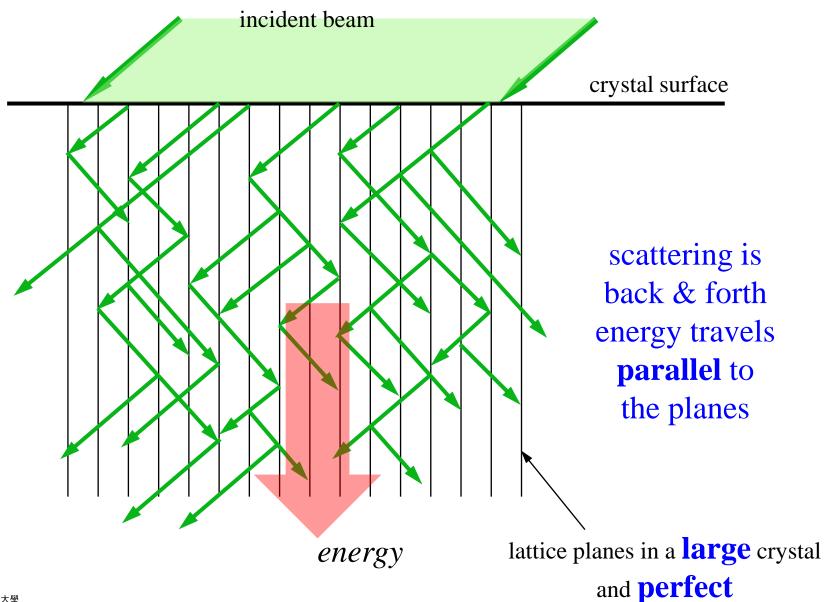
Basic properties of X-rays,

X-ray spectra,

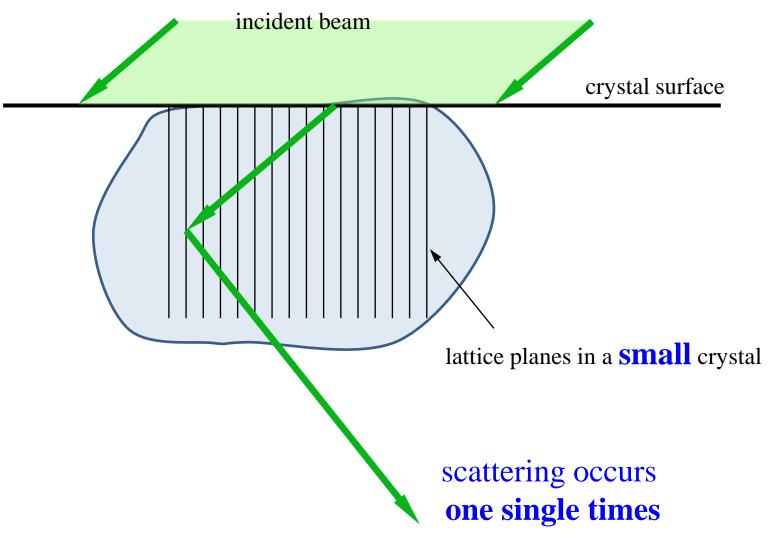
X-ray absorption edges,

Synchrotron X-ray sources,

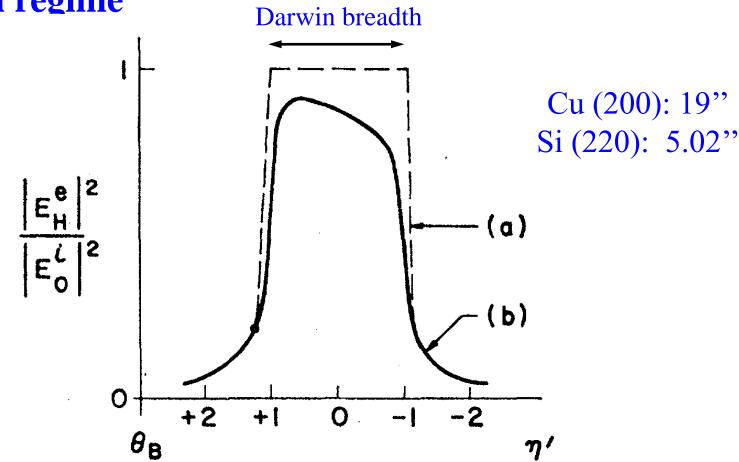
Scattering mechanisms of X-rays by matter,


Atomic scattering factors for X-rays

Total X-ray reflection,


Darwin-breadth (qualitatively)

Monochromators (briefly)



we want to deal with small crystals

where scattering occurs one single times:

this is: kinematical scattering

monochromators are large perfect crystal scattering occurs in the dynamical regime

http://www.chess.cornell.edu/oldchess/operatns/xrclcdwn.htm

Thank you

