Dislocation Avalanches: Earthquakes on the Micron Scale

Péter Dusán Ispánovity^{a,*}, Dávid Ugi^a, Gábor Péterffy^a, Michal Knapek^b, Szilvia Kalácska^a, Dániel Tüzes^a, Zoltán Dankházi^a, Kristián Máthis^b, František Chmelík^b, István Groma^a

^a Eötvös Loránd University, Department of Materials Physics, 1117 Budapest, Pázmány
 Péter sétany 1/a. Hungary
 ^b Charles University, Faculty of Physics of Materials, Department of Physics of
 Materials, 121 16 Prague 2, Ke Karlovu 5, Czech Republic

Abstract

Metals usually deform irreversibly as a result of the motion of dislocations that are line-like defects in the crystal lattice. Compression experiments of micron-scale specimens^{1,2} as well as acoustic emission (AE) measurements performed on bulk samples^{3,4} revealed that the motion of dislocations resembles a stick-slip process. As a result, deformation proceeds in a series of unpredictable local strain bursts with a scale-free size distribution^{5,6}. Here we use a unique, highly sensitive experimental set-up, which allows us to detect the weak AE waves of dislocation slip during the compression of micron-sized Zn pillars. This opens up new vistas for studying the stop-and-go dislocation motion in detail and understanding the physical origin of AE events. Profound correlation is observed between the size of the deformation events and the total energy of the emitted signals that, as we conclude, are induced by the collective dissipative motion of dislocations. We also show by statistical

Email address: ispanovity@metal.elte.hu (Péter Dusán Ispánovity)

^{*}Corresponding author

analyses of the acoustic event sequences that, despite of the fundamental differences in the deformation mechanism and the huge gap in the involved length and timescales, dislocation avalanches and earthquakes are essentially alike. Our experimental and computer simulation results not only unveil the complex spatiotemporal structure of strain bursts but also exhibit technological importance by unraveling the missing relationship between the properties of acoustic signals and the corresponding local deformation events.

Keywords: Crystal plasticity, dislocation avalanche, strain burst, micromechanics, acoustic emission

1 It was not until 1934 that the basic mechanism of irreversible (or plastic) de-² formation of metals was finally understood when Orowan, Taylor and Polányi 3 independently postulated the existence of a specific lattice defect^{7,8,9}. These 4 line-like defects, called dislocations, can move within the crystal lattice lead-5 ing to the rearrangement of the atoms and, as a consequence, to the plas-6 tic shear deformation of the crystal. Due to the huge dislocation content in ⁷ macroscopic metallic samples, their deformation usually appears as a smooth 8 process both in space and time. On microscopic scales, however, the picture 9 changes dramatically. Recent micromechanical experiments demonstrated 10 that when the sample diameter is below several couples of µm (depending on 11 the material), deformation becomes strongly heterogeneous. As pioneering 12 compression tests on Ni single crystal micropillars prepared using focused 13 ion beam (FIB) milling revealed, deformation is a sequence of sudden unpre-14 dictable strain bursts that are localized to specific crystallographic planes of 15 the sample^{1,2}. During these intermittent bursts, dislocations locally disen-16 tangle and move quickly for a short period and then form novel metastable 17 sub-structures at the end of an event. The burst sizes follow a scale-free 18 distribution that suggests an underlying self-organization of the dislocation 19 structure upon these plastic events^{5,6}.

A unique experimental method that is able to monitor this stochastic response is the detection of AE waves. The principle of the emission of acoustic waves in materials is analogous to earthquakes: Plastic deformation is caused by the local rearrangement of dislocation lines in a crystal, a process that is strongly dissipative and part of the released elastic energy escapes in the form of elastic waves, that can be detected at the surface 10. It was found that in bulk single crystals the recorded AE signal is burst-like and the energy associated with individual bursts follows a scale-free distribution 3,4. The found power-law exponent is robust, typically not affected by deformation mode, and for single crystals with hexagonal closed-packed (HCP) structure it was measured to be $\tau_E = 1.5 \pm 0.1^{11}$. These kinds of measurements so far have only been performed on bulk samples and it is believed – but not yet demonstrated – that the AE waves are emitted from similar local strain events that can be directly observed only for micron-scale objects.

One of the foremost achievements of this work is the realization of the nontrivial task of detecting extremely weak AE waves which arise during micropillar deformation. The main advantage of this approach is that, in this case, AE sources are highly localized within a small micropillar volume that prevents uneven attenuation of AE waves arising in different parts of the specimen, this being inherent to bulk materials testing. Hence, plenty of innate AE waves can be detected due to dislocation slip, which can, in turn, provide interesting insights into the dynamics of plastic events. To achieve

this goal, the experimental set-up sketched in Fig. 1a was developed (see Extended Data Fig. 1 for a photo). The device can be placed inside a scanning electron microscope (SEM) that allows us to collect three different types of information simultaneously during compression of the micropillars: (i) stress and strain using a capacitive displacement sensor measuring the elongation of a spring, (ii) acoustic signal from a piezoelectric transducer and (iii) visual images using the electron beam of the SEM. The major difficulties for AE detection in micropillars comprised the relatively low number of dislocations involved in the slip process (compared to bulk materials testing) and various sources of noise signals in the SEM chamber, mostly of electromagnetic origin. For further details on the experimental set-up and remedies to these issues see Methods.

Firstly, rectangular micropillars with a 3:1:1 aspect ratio and side lengths of d=8-32 µm were prepared from a Zn single crystal oriented for single slip (for more details on the sample see Methods). In Fig. 1b a micropillar during the course of the experiment is shown. One can observe that dislocation slip indeed takes place solely on the basal plane of the HCP lattice (see also Supplementary Video 1). Since the crystal orientation in the pillar remains the same throughout the entire loading (see Extended Data Fig. 2) only dislocation glide is operative and deformation due to twinning can be excluded.

Figure 1c plots the measured compressive stress σ as a function of time 64 t for the micropillar with $d=32~\mu m$ shown in Fig. 1b (see also Supplemen- 65 tary Video 1). The pronounced, close-to-vertical drops correspond to the strain bursts that lead to the sudden elongation of the spring of the device.

67 To analyse the spatial distribution of a strain burst two consecutive SEM 68 images taken before and after the stress drop highlighted with grey color in 69 Fig. 1c were compared with edge detection on the differential image and we 70 concluded that deformation took place solely in a thin slip band highlighted 71 with red in Fig. 1b. During the compression, AE signal is also recorded that 72 comprises numerous individual bursts and their rate exhibits robust corre-₇₃ lation with the stress drops (Fig. 1c). To elaborate further on this finding 74 Figs. 1d and 1e plot consecutively zoomed parts of the stress-time curve 75 shaded with grey colour. According to Fig. 1d AE events can only be de-76 tected when plasticity occurs, that is, when the stress-time curve deviates 77 from the linear ramp-up characteristic of purely elastic deformation. Interest-78 ingly, it is possible that several AE events correspond to the same stress drop 79 as also indicated by the event count number (Fig. 1d). The reason for this 80 is that the data acquisition rate differs considerably between stress (200 Hz) 81 and AE (2.5 MHz) measurements, the latter allowing for a more detailed analysis. Figure 1e shows that the AE signal consists of short ($\lesssim 100 \mu s$) 83 peaks standing out from the background noise. We, thus, conclude that the 84 AE events are indeed due to the dislocation activity leading to plastic slip 85 within the micropillar, however, the abundance of AE events suggests that a ₈₆ measured stress drop is a result of complex internal dynamics on timescales 87 not accessible by stress measurements.

88 Origin of AE events

89 To quantify the correlation between plastic deformation and AE we now 90 turn to the statistical analyses of the measured data. In agreement with

91 studies on other single crystalline micropillars the distribution of the size of 92 the individual stress drops $\Delta\sigma$ follows a scale-free distribution with a cut-off 93 σ_0 : $P(\Delta\sigma) \propto \Delta\sigma^{-\tau_{\sigma}} \exp(-\Delta\sigma/\sigma_0)$ (Fig. 2a)^{5,6}. According to the inset, if the 94 axes are re-scaled with the cross section $A=d^2$ of the micropillars (that is, 95 force drop $\Delta F=A\Delta\sigma$ is considered as variable) the curves overlap and can 96 be fitted with a master function yielding $\tau_{\sigma}=1.8\pm0.1$ and $F_0=1.5\pm0.1$ mN 97 for the exponent and the cutoff, respectively. Note that noise of the stress 98 measurement prohibits the reliable detection of drops below \sim 0.1 mN. The 99 distribution of the AE event energy E is characterized by another scale-free of distribution now without an apparent cut-off and dependence on pillar size: 101 $P(E) \propto E^{-\tau_E}$ (Fig. 2b) with $\tau_E=1.7\pm0.1$. Note that the recorded AE 102 events were, in general, well-defined in time, with no significant effect of 103 signal overlapping or reflections (see Methods), as often observed in bulk 104 samples.

The facts that (i) stress drops $\Delta \sigma$ and AE energies E are detected in a correlated manner, (ii) both obey a scale-free distribution and (iii) the exponents are relatively close to each other suggest that there is a physical relation between them. To shed light on such a link, Fig. 2c provides a scatter plot of $\Delta \sigma$ and E corresponding to the individual stress drops (given that at least one AE event was detected during the stress drop) for $d=32~\mu m$ pillars (for smaller pillar sizes see Extended Data Fig. 3). As said above, several AE events may be detected during a single drop. In such cases the energies of the corresponding AE events are added. As seen, there is a large scatter between $\Delta \sigma$ and E but, clearly, larger stress drops tend to emit signals with larger energies also expressed by the Pearson correlation found to be 0.5 ± 0.1 . If one,

however, bins the data with respect to the stress drop size a clear power-law relation $E \propto \Delta \sigma^{\eta}$ is obtained between the two quantities with $\eta = 1.2 \pm 0.2$. This can be rationalized by assuming $P(E) dE = P(\Delta \sigma) d\Delta \sigma$ yielding the relation $\eta = (\tau_{\sigma} - 1)/(\tau_{E} - 1)$ which is fulfilled by the measured exponents within error margins. This means that although a one-to-one correspondence between E and $\Delta \sigma$ does not exist, there is a close to linear relationship in the average sense that allows one to obtain the distribution of the stress drops (that are proportional to the plastic strain induced by the local deformation that the distribution of the stress drops (that are proportional to the plastic strain induced by the local deformation from the statistics of the AE events.

125 Aftershock and foreshock statistics

126 As mentioned above, AE signals emitted by local plastic deformation events 127 are similar to elastic waves caused by the seismic activity in the Earth's 128 crust (although they differ in their amplitude and frequency spectra by sev-129 eral orders of magnitude). To deepen the analogy, we now continue with the 130 analysis of AE signals that offer a much better time resolution than the stress 131 measurements. We intend to assess whether the AE bursts obey the three 132 ubiquitous fundamental scaling laws associated with earthquakes. (i) The 133 Gutenberg-Richter law 12 states that the probability density of an earthquake 134 with released energy E decays as a power-law 13: $P(E) \propto E^{-w}$ with $w \approx 5/3$. (ii) According to the Omori law, the rate of aftershocks $r_{\rm as}$ after a main shock decays approximately inversely with the time t elapsed 14, 15: $r_{\rm as}(t) \propto t^{-p}$ with 137 $p \approx 1$. (iii) The 'aftershock productivity' law in seismology concludes that 138 main shocks with larger energy $E_{\rm ms}$ produce on average more aftershocks: 139 $r_{\rm as} \propto E_{\rm ms}^{2\alpha/3}$ with $\alpha \approx 0.8$ found empirically 16. The existence of scale in-

¹⁴⁰ variance through these power-law relationships has also been demonstrated ¹⁴¹ in laboratory-scale compression experiments on porous bulk materials¹⁷ and ¹⁴² rocks¹⁸.

It is found by our analysis that, despite the huge difference in spatial and temporal scales, the deformation mechanisms and the mode of loading, all three scaling laws are found to hold for micropillars, too. The Gutenberg-Richter law was demonstrated in Fig. 2b and Fig. 3a proves the Omori law for d=32 µm pillars. The line colours refer to the energy of the main shock, and it is clear that the rate indeed decays as a power-law with $p=1.1\pm0.1$ for approx. three decades and then saturates likely due to the onset of novel sequences. In accordance with the productivity law the rate is larger for larger main shocks and collapse can be obtained by re-scaling the rate with $E_{\rm ms}^{0.5}$ (Fig. 3b), yielding $E_{\rm ms}^{0.5}$ (Fig. 3b), yielding $E_{\rm ms}^{0.5}$ (Fig. 3b), by increase in the rate of foreshocks $E_{\rm ms}^{0.5}$ before a main shock shock $E_{\rm ms}^{0.5}$ (Extended Data increase in the rate of foreshocks $E_{\rm ms}^{0.5}$ before a main shock shock $E_{\rm ms}^{0.5}$ Fig. 4 shows the corresponding figures for smaller pillars.)

The distribution of waiting times $t_{\rm w}$ between subsequent AE events, a key measure of temporal correlations and clustering in temporal processes 20,21 , was also analysed. For earthquakes a universal gamma distribution upon re-scaling with the seismic occurrence rate was reported A similar distribution is found here (Fig. 3d): $P(t_{\rm w}) = [At_{\rm w}^{-(1-\gamma)} + B] \exp(-t_{\rm w}/t_0)$, which can be interpreted as follows. The power-law decay for small ($\lesssim 0.1$ s) waiting times corresponds to the correlated temporal clusters originating from the same plastic event, often observed as a single stress drop. The exponent $1.0 \pm 1.0 \pm 0.1$ coincides with the Omori exponent p within error margins,

as expected. For larger times a plateau with an exponential cut-off is observed corresponding to a Poisson-like process of uncorrelated signals coming from different plastic events. To confirm this hypothesis we repeated the experiments for the d=8 µm pillars with different platen velocities $v_{\rm p}$ (i.e., deformation rates). Whereas the single event dynamics (power-law part) is unaffected by the velocity $v_{\rm p}$ (Fig. 3e), the collapse of the curves in the cut-off region after re-scaling the axes with the velocity $v_{\rm p}$ (Fig. 3f) yields $t_0 \propto v_{\rm p}^{-1}$ and $B \propto v_{\rm p}$.

173 Numerical modelling

To provide a possible physical explanation for the experimentally observed behaviour we conduct discrete dislocation dynamics (DDD) simulations of parallel straight edge dislocations gliding on a single glide plane (see sketch in Fig. 4a). Deformation of Zn micropillars is predominantly single slip, wet, the computational model is a simplification of the realistic system as it neglects, e.g., curvature and applies different boundary conditions (see Methods for details). However, it captures properly the long-range stress field of dislocations that was shown to play an essential role in the critical behaviour of dislocations 3,23 . Since no length-scale other than the average dislocation spacing and the system size is present (due to the scale-free 1/r-194 type dislocation interactions) dimensionless variables denoted with $(\cdot)'$ are introduced hereafter (see Methods and Extended Data Table 1) 24,25 .

A loading method analogous to the micropillar experiments is imple-187 mented, i.e., a platen is moved with velocity $v_{\rm p}'$ and the load is transferred 188 to the system via a spring. As a result, dislocation avalanches appear as 189 stress drops here as well (Fig. 4b). During the avalanches, dislocations 190 move rapidly, and due to the overdamped dynamics assumed for dislocations $_{191}$ $(v' \propto F')$, where v' and F' is the velocity and the acting force for dislocations, 192 respectively) the elastic energy release rate reads as $\sum_i v_i'^2$, with the sum 193 performed over all dislocations. By thresholding this rate one can emulate 194 the sensitivity of the AE sensor and obtain simulated AE events as well as the 195 corresponding released energies (see Methods). Like in the experiments, the 196 simulated AE events show strong correlation with the stress drops (Fig. 4b, 197 Supplementary Videos 2, 3). It has been known that size distribution of dis-198 location avalanches exhibits a different exponent in simulations compared to 199 the real samples^{23, 26}, yet, the temporal clustering of the simulated AE events 200 shows very similar behaviour to experiments in terms of the correlation be-₂₀₁ tween stress jumps and the AE energies (Fig. 4c), Omori law (Fig. 4d), and 202 waiting time distribution (Fig. 4e). We thus conclude, that the complex dy-₂₀₃ namic behaviour observed in experiments is the result of the spatio-temporal 204 correlations of the dislocations due to their long-range elastic interactions 205 and the lack of short-range mechanisms, such as dislocation reactions.

206 Outlook

It has always been the fundamental assumption of AE experiments that the parameters of the signals are characteristic of the local deformation process. The experiments and simulations reported here prove this long-standing hypothesis and reinforce that intermittency and scale-invariance characterizing plastic deformation of HCP single crystals (and, most likely, crystalline metals/solids in general) are related to the self-organized critical (SOC) be-

haviour of dislocations. In addition, we showed that plastic events, similarly to earthquakes, do not only exhibit spatial but also temporal clustering with long-range correlations, however, the involved length and timescales are profoundly different, as summarized in Extended Data Table 2. This phenomenon also raises analogy with many other physical systems exhibiting crackling noise²⁷. It is known, however, that SOC behaviour is not ubiquitous in crystal plasticity, for instance, it is suppressed under multiple slip conditions and at high temperatures^{28,29}. Dedicated further experiments and modelling based on the new methodologies of this paper are needed to study and understand whether dislocation dynamics is altered under such circumstances in terms of magnitude and spatiotemporal distribution of plastic fluctuations.

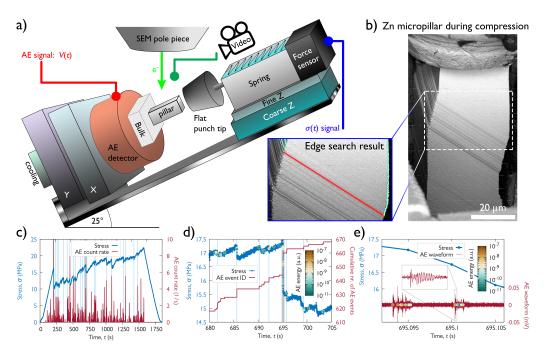


Figure 1: Compression experiment of Zn micropillars oriented for single slip. a, Sketch of the experimental set-up with a disproportionately large micropillar for clarity. b, Backscattered electron image of a d=32 µm micropillar during compression. The magnified image shows the slip band in red corresponding to the stress drop highlighted in grey in panels c and d. The location of the band was obtained by edge search on SEM images before and after the stress drop. c, Measured stress vs. time as well as the averaged rate (obtained by convolution with a Gaussian of 0.5 s width) of the detected individual AE bursts. The light blue vertical lines mark the stress drops larger than 1 MPa. d, Zoomed stress-time curve of the region shaded by grey in panel c. The coloured data points along the stress curve represent the individual AE events and their energies whereas the red curve shows the cumulative number of these events. The light blue vertical lines mark short periods with at least two AE events. e, Zoomed stress-time curve of the region shaded in grey in panel d and the detected AE waveform of the same interval. The inset shows the magnified view of a single event and coloured data points correspond to individual signals detected by thresholding the AE signal.

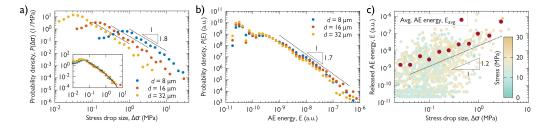


Figure 2: Correlation between the stress drops and the acoustic signals. a, Distribution of stress drop sizes $\Delta\sigma$ for different pillar diameters d. The probability density functions (PDFs) follow a power-law with exponent $\tau_{\sigma}=1.8\pm0.1$. The inset shows the PDF as a function of the force drop $\Delta F=\Delta\sigma\cdot d^2$ with units in mN. The collapsed curves can be fit with a master function above the detection threshold and exhibit a cut-off at $F_0=1.5\pm0.1$ mN. b, Distribution of AE energies of individual signals detected at the sample surface. The curves are characterized by a power-law exponent $\tau_E=1.7\pm0.1$ and do not exhibit an apparent cut-off and do not depend on the pillar diameter d. c, Scatter plot of the stress drops of d=32 µm pillars and the corresponding summed released AE energies. The color-scale refers to the actual stress at which the stress drop took place along the stress-time curve and do not show correlation with the size of the stress drop. The red dots represent the average released energies $E_{\rm avg}$ obtained by averaging the datapoints for stress drop size bins of logarithmically increasing width. The dashed line represents the $E \propto \Delta\sigma^{\eta}$ power-law relationship with the exponent found to be $\eta=1.2\pm0.1$.

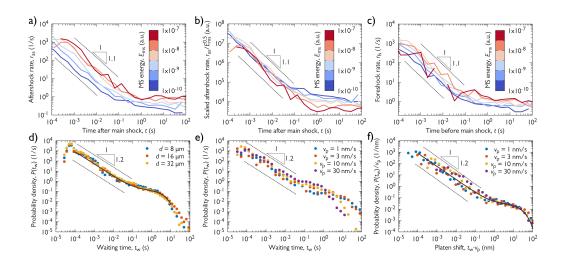


Figure 3: **Temporal statistical analyses of AE events. a**, The rate of aftershocks $r_{\rm as}$ after a main shock with an energy given by the colour for $d=32~\mu{\rm m}$ pillars (Omori law). **b**, Curves of panel a) divided with the square root of the main shock energy $E_{\rm ms}$ (aftershock productivity law). **c**, Rate of foreshocks $r_{\rm fs}$ before a main shock of energy given by the colours for $d=32~\mu{\rm m}$ pillars (inverse Omori law). **d**, PDF $P(t_{\rm w})$ of waiting times $t_{\rm w}$ between subsequent AE events for pillars of various sizes. **e**, $P(t_{\rm w})$ for $d=8~\mu{\rm m}$ pillars and different platen speeds $v_{\rm p}$. **f**, $P(t_{\rm w})$ re-scaled with the platen velocity $v_{\rm p}$. Note that the minimum $t_{\rm w}$ of 20 $\mu{\rm s}$, i.e., the minimum time between two subsequent AE events, is defined as one of the AE event individualization parameters (see Methods).

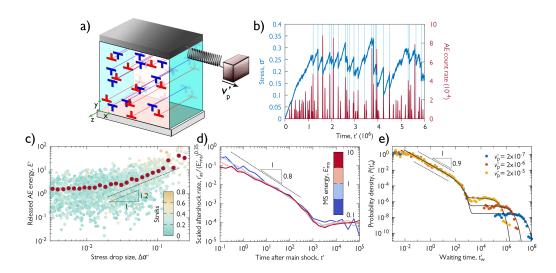


Figure 4: **DDD** simulations. **a**, Sketch of the simulation set-up. The system is infinite in direction z and periodic boundary conditions are applied in directions x and y. **b**, Stress vs. time curve as well as the averaged rate of the simulated individual AE bursts for a representative configuration. The light blue vertical lines show the stress drops larger than 0.02. **c**, Scatter plot of the stress drops and the corresponding summed released AE energies for systems of N = 1024 dislocations, see caption of Fig. 2c for details. **d**, The rate of aftershocks r'_{as} scaled with $(E'_{ms})^{0.35}$ after a main shock with energy E'_{ms} given by the colour for N = 1024 dislocations (Omori and productivity laws). **e**, PDF $P(t'_{w})$ for N = 256 dislocations and different platen speeds v'_{p} .

225 Methods

226 Sample preparation

High purity single crystalline zinc heat treated at 100 °C for 4 h under atmospheric air, oriented for basal slip with side orientation corresponding to
the $\langle 2\bar{1}\bar{1}0\rangle$ -type normal direction (Extended Data Fig. 2a) was mechanically
polished sequentially with SiC grinding paper and alumina suspension (down
to 1 µm). This was followed by a fast (10 s) electropolishing with Struers D2
solution at 20 V, 1 A. A sharp perpendicular edge was then created on the
bulk specimen by low energy Ar ion polishing (5 kV, 2 mA).

Experimental work including micropillar milling, EBSD measurements and micromechanical testing was carried out inside the vacuum chamber of an FEI Quanta 3D dual beam scanning electron microscope (SEM). Focused ion beam (FIB) operating with Ga^+ ions was used to fabricate square-based pillars of various sizes (8 µm: 13 pieces, 16 µm: 5 pieces and 32 µm: 4 pieces with an approximate 3:1 aspect ratio of height to side), with final beam conditions of 30 kV, 1-3 nA. In order to minimize Ga^+ ion contamination the surface and create practically non-tapered ($\leq 2.5^{\circ}$ between the side and the loading axis) samples, the pillars were fabricated in a lathe milling configuration. On the top of the pillars a thin (~ 350 nm) Pt cap was deposited by FIB to act as hard buffer material between the pillars and the flat punch tip and also to reduce ion contamination during FIB-milling.

246 Analytical methods

247 Microstructure analysis

For electron backscatter diffraction (EBSD) measurements, the Edax Hikari camera was used with 1×1 binning, and the OIM Analysis v7 software provided the orientation results. Unit cell corresponding to the cross-sectional side of the pillar can be seen in Extended Data Fig. 2. To calculate the initial geometrically necessary dislocation (GND) density, a digital image cross-correlation based technique called high (angular) resolution electron backscatter diffraction (HR-EBSD) was applied 1. The estimated average value of $\rho^{\rm GND} = 1.2 \times 10^{13} \, {\rm m}^{-2}$ was measured on a surface prepared by the same FIB conditions as it was used for the pillar fabrication prior to deformation. This value is close to the detection limit of the GND density by HR-EBSD, hence it is concluded that the sample preparation did not introduce a significant/measurable dislocation content in the sample.

260 X-ray line profile analysis

Dislocation density characterization by X-ray diffraction measurements was performed on the bulk Zn single crystal sample prior to the micropillar fabrication. The X-ray line profiles of the (10 $\bar{1}1$) reflection were obtained by a double-crystal diffractometer using Cu K α radiation (Extended Data Fig. 5a). The experimental setup is of $\theta - 2\theta$ type, that consists of a high intensity Rigaku RU-H3R rotating anode X-ray generator with a copper anode, a monochromator that filters out the Cu K α 2 component and redirects the X-ray beam to the sample, and the Dectris MYTHEN 1D wide range solid state X-ray detector that records the peak at a distance of 960 mm. We

²⁷⁰ also used a cylindrical vacuum chamber between the sample and the detec-²⁷¹ tor in order to increase the peak-to-background ratio. The quantification of ²⁷² the total dislocation density was carried out by the variance method^{32,33} by ²⁷³ analyzing peak broadening based on the asymptotic behaviour of the second ²⁷⁴ order restricted moment:

$$M_2(q) = \frac{1}{\pi^2 \epsilon_F} q + \frac{\Lambda}{2\pi^2} \langle \rho \rangle \ln \frac{q}{q_0}, \tag{1}$$

where $q = 2(\sin \theta - \sin \theta_0)/\lambda$, λ corresponds to the wave length of the applied X-rays, and θ and θ_0 are half of the diffraction and Bragg angles, respectively. Parameter q corresponds to the distance from the peak center in reciprocal space, q_0 is a constant depending on the dislocation-dislocation correlations, the coherent domain size, and $\langle \rho \rangle$ is the average dislocation density. The value of Λ is commonly given as $\Lambda = 2|\mathbf{g}|^2|\mathbf{b}^2|C_g/\pi$, where \mathbf{b} and \mathbf{g} are the Burgers and diffraction vectors, respectively, and C_g is the diffraction contrast factor that depends on the type of dislocations in the system and on the relative geometrical position between the dislocation line direction \mathbf{l} and the direction of \mathbf{g} .

As the coherent domain size is larger than $\sim 1~\mu m$, the first term in Eq. (1) $_{286}$ is negligible. As a result of the second term caused by the dislocations, M_2 versus $\ln(q)$ plot indeed becomes a straight line in the $q \to \infty$ asymptotic $_{288}$ regime, as shown in Extended Data Fig. 5b. From the fit a total dislocation $_{289}$ density of $\langle \rho \rangle^{\rm XRD} = (7.5 \pm 0.5) \times 10^{13}~{\rm m}^{-2}$ was obtained. As expected, $_{290}$ this value is higher than the GND density determined by the HR-EBSD $_{291}$ technique, therefore it can be assumed that the initial dislocation network $_{292}$ mostly consisted of statistically stored dislocations.

293 Micromechanical experiments

²⁹⁴ Testing device

Room temperature compression tests on the micropillars were carried out in high vacuum mode inside the SEM chamber to allow in situ monitoring of the deformation process and slip activity on the pillars' surface by secondary and backscattered electrons. A custom-made nanoindenter 34,35 shown in Extended Data Fig. 1 was used without any load or strain feedback loop integrated. The precision of the indentation depth and load was 301 ~ 1 nm and ~ 1 μ N, respectively. The applied sampling rate was 200 Hz, while platen velocity (if not stated otherwise) and spring constant were 10 nm/s and 10 mN/ μ m, respectively. For a detailed description of the device, the reader is referred to 34 . Exemplary stress-strain curves are presented in Exmo tended Data Fig. 6. The curves show the intermittent nature of plasticity in micropillars and also provide evidence of the so-called plasticity size effect ('smaller is harder').

308 Edge detection

In order to investigate the spatial distribution of the plastic strain corre- $_{310}$ sponding to individual stress drops, edge detection was performed sequen- $_{311}$ tially on each SEM image of the d=32 μ m micropillar shown in Fig. 1b. $_{312}$ We aimed at detecting the vertical edge on the right side of the micropillar $_{313}$ as it was characterized by a large difference in the intensity in the horizontal $_{314}$ direction (due to the dark background). First, a vertical line was selected $_{315}$ at the middle of the pillar as a reference. To detect the sudden change in $_{316}$ intensity the pictures were then processed row by row starting from the ref317 erence line. If the drop in the intensity was larger than the given threshold, 318 the point was marked as part of the edge. The raw images were processed 319 using the OpenCV package³⁶.

The used backscattered electron detector introduced high intensity noise in the form of short horizontal lines with a width of few pixels, which needed be to be filtered. Noise filtering was applied with the Savitzky-Golay filter of the SciPy library³⁷ with window size selected to be 11 pixels and the order of the fitted polynomial selected to be 2.

The time development of the edge is shown in Extended Data Fig. 7.
The base of the sample was moved to the origin and the results were rotated
by one degree clockwise. The white gaps represent strain bursts when large
plastic deformation occurs between consecutive images. The slip band can
be located by determining the end of the gap. As seen, the gaps end at
well-defined points, confirming that strain bursts take place within 'thin' slip
bands.

Based on Extended Data Fig. 7, the SEM images recorded before and 333 after the stress drop analysed in Figs. 1c-e were identified and the corre-334 sponding edge shapes were denoted by purple and pink colours, respectively. 335 These SEM images are shown in Extended Data Figs. 8a-b. Although it is 336 barely seen by visual inspection, the quantified difference of the two images (Extended Data Figs. 8c) proves that deformation took place along the slip 338 plane at the height of \sim 28 µm (as also seen as horizontal grey line in Ex-339 tended Data Fig. 7 and highlighted by a red line along the corresponding 340 basal plane in Fig. 1b).

341 AE measurements

342 Detecting AE signals

By definition, acoustic emissions are transient elastic waves generated in materials due to sudden localized and irreversible structure changes³⁸. The detection of AE waves is based on its physical nature – when the material is subjected to external loading, released energy forms stress pulses propagating through the material as transient elastic waves. The wave component perpendicular to the surface is detected typically by a piezoelectric transducer (attached directly to the specimen surface), which converts recorded displacements into an electrical signal.

The nanoindenter device was equipped with a Physical Acoustics Corpo- 352 ration (PAC) WS α wide-band (100-1000 kHz) AE sensor, which showed a 353 superior combination of frequency and sensitivity characteristics over other 354 tested sensors (PAC Micro30S, PAC F15I-AST). The Zn single-crystal (with 355 FIB-milled micropillars on the surface) was attached to the transducer over 356 a layer of vacuum grease to ensure effective acoustic coupling. Mechanical 357 bonding ('clipping') was carried out by means of a thin metallic strip bent 358 over the sample and fixed at both ends to the device, ensuring a constant 359 contact pressure during the compression tests. The recorded signal was am- 360 plified using the Vallen AEP5 pre-amplifier set to 40 dB_{AE}. Data acquisition 361 and processing were performed using the computer-controlled Vallen AMSY- 362 6 system. Data acquisition was carried out in continuous data streaming 363 mode, i.e., the whole raw acoustic data sets were recorded for further post- 364 processing at a sampling rate of 2.5 MHz.

365 Identification of AE events

To individualize the AE events, an in-house script implemented in Matlab was used. The threshold voltage was set to $V_{\rm th}=0.01$ mV, this value being slightly above the background noise. The hit definition time (HDT), i.e., the minimum period between two subsequent AE events, used for the separation of events was 20 μ s.

In Extended Data Fig. 9 various parameters of a representative event related to the AE measurements are defined. The original AE waveform V(t) is plotted in the inset as a function of time t. The AE event energy is defined as the area under the squared signal amplitude curve:

$$E = \int_{t_{\rm b}}^{t_{\rm e}} V^2(t) \mathrm{d}t, \tag{2}$$

where $t_{\rm b}$ and $t_{\rm e}$ denote the beginning and end of the event, respectively (that $t_{\rm b}$ is, $t_{\rm b}$ is the extent of the area shaded in blue in Extended Data Fig. 9). The AE counts are defined as the number of data points (in absolute values) crossing the threshold level $t_{\rm th}$. The duration of one AE event is defined as the time between the first and the last AE count in that event.

380 Data validation

The common source of both load drops and AE events in the tested micropillars are dislocation avalanches in the basal plane. In order to exclude
any other external effects that might lead to the generation of AE events,
additional aspects of the AE measurement had to be addressed: (i) friction
between the indenter's flat diamond tip and the top of the pillars and (ii)
possible noise or vibrations from external sources and the nanotesting device
itself.

To address point (i) we investigated six micropillars with identical geometry, fabricated by three different methods for this purpose. Two pillars were
prepared with Pt coating, two with C coating and two pillars without any
coating on top. Although three materials with different friction properties
were used, the analysis produced practically identical results with respect
to the AE events and strain bursts. To avoid the presence of any spurious
extrinsic vibrations considered within point (ii), three further compression
tests were carried out where a special tip suspension was applied – another
elastic part (a piece of rubber) was added to the device to isolate possible
vibrations and noises from external sources. Just as in the previous case (i),
this analysis demonstrated that there were no observable differences in the
AE data compared to the tests without this additional suspension.

400 The overlapping of AE events

Assuming that the AE events originate from individual well-defined plastic events (i.e., dislocation avalanches related to stress drops) and there are no significant scattering and echoing mechanisms during the wave propagation, one may expect an exponential decay of the waveform resulting from intrinsic absorption 39,40. In that case, the relationship between the maximum squared amplitude

$$A^{2} = \max_{t \in [t_{b}, t_{e}]} V^{2}(t), \tag{3}$$

407 and the duration $T=t_{
m e}-t_{
m b}$ could be written as

$$A^{2}(T) = V_{\rm th}^{2} \exp\left(\frac{T}{\tau}\right),\tag{4}$$

where τ is a timescale characterizing the rate of absorption⁴⁰. This relation was fitted to all data points that were detected under the same noise conditions. This set of data contained more that 13,000 events from the compression tests on Zn pillars with various dimension. The data trends and exponential fits shown in Extended Data Fig. 10 prove the validity of relation (4); thus, we concluded that the majority of detected events are due to short pulse-like events at the source attenuated only by intrinsic absorption, while recording of wave reflections and overlapping events is not common with the AE event individualization parameters used in this study (see above). It is also noted, that the fitted value of $\tau = 45$ µs is below the typical time-scales characteristic of the Omori-law and waiting time distributions in Fig. 3.

419 Rates of aftershocks and foreshocks

Large AE events, similarly to earthquakes, are usually followed by several aftershocks. To quantify the rate of these aftershocks the following procedure was implemented. First, we select an energy interval $[E_{\rm ms} - \Delta E/2, E_{\rm ms} + 423 \Delta E/2]$ and consider only AE events with energies falling in this given bin. These will be the main shocks with energy $E_{\rm ms}$. The sequence of events (aftershocks) corresponding to each main shock lasts until an event with energy falling in this or larger bin takes place. The time after the main shock main shock logarithmically, and the AE events in the sequence following the main shock falling in each bin are counted, and then repeated for all main shocks with energy $E_{\rm ms}$. To obtain the rate of the aftershocks $r_{\rm as}(t)$ the number of events in the time bin around t is normalized with the bin width and also with the number of sequences that reached the given length t. The obtained $t_{\rm as}(t)$ curves for t = 32 t pm pillars are plotted in Figs. 3a-b. The corresponding figures for smaller micropillars are shown in Extended Data Figs. 4a-d.

In the case of foreshock rates $r_{\rm fs}$ the same procedure was adopted and inverted in time to investigate sequences before main shocks. The obtained rates for $d=32~\mu{\rm m}$ pillars are seen in Fig. 3c and for smaller ones in Extended Data Figs. 4e-f.

439 Waiting time of AE events

440 The waiting time distributions of Figs. 3d-f are obtained as follows. 441 identification of the individual AE events described above in section 'Identi-442 fication of AE events' yields the time t_i of each event. The waiting time is then simply $t_{w,i} = t_{i+1} - t_i$, and the distribution of these values is computed. Since only those AE events can be detected that rise above the back-444 445 ground noise, it is important to check the role of thresholding in the obtained 446 distributions. To this end, the procedure described above was repeated after 447 considering only events with energies E larger than a threshold $E_{\rm th}$. Ac-448 cording to Extended Data Fig. 11a they only differ in the exponential tail 449 characterized by parameter t_0 related to the average time between subse-450 quent uncorrelated event clusters. As seen, increase of $E_{\rm th}$ leads to fewer 451 detected events and, thus, an increased t_0 . To prove that thresholding does 452 not influence the conclusions of the paper, in Extended Data Fig. 11b the distributions were re-scaled with the average waiting time $\langle t_{
m w} \rangle$ correspond-454 ing to the given threshold $E_{\rm th}$. The obtained collapse of the curves means that $t_0 \propto \langle t_{\rm w} \rangle$ similarly to what was obtained in the case of different platen $v_{\rm p}$ (Figs. 3e-f), and it proves scale-invariance of the AE events.

457 Simulations

458 Discrete dislocation dynamics

The model to be investigated is one of the simplest discrete dislocation systems that still incorporates the following fundamental physical properties of dislocations:

- 1/r-type long-range interactions between dislocation lines.
- Non-conservative motion of dislocations due to the strong phonon drag.
- Geometrically constrained motion of dislocation lines, since at low temperatures they can only glide in certain planes (called glide planes). As a result, the system cannot reach a global energy minimum state, rather, it gets trapped in a meta-stable configuration.

The system consists of straight edge dislocations parallel with the z axis, and their slip planes are parallel with the xz plane (single slip). Since the system is translationally invariant along the z axis it can be considered two-dimensional (2D) and it is sufficient to track the motion of dislocations in the z z plane. In this set-up the Burgers vector points in the z direction and, thus, reads as z reads as z as

Because of the strong dissipation due to phonon drag, the motion of dislocations is assumed to be overdamped, that is, the force acting on a

dislocation of unit length is proportional to its velocity. If the system consists of N dislocations and $\mathbf{r}_i = (x_i, y_i)$ denotes the position of the ith $(i = 1, \ldots, N)$ dislocation then the equation of motion reads as

$$\dot{x}_i = M s_i b \left[\sum_{j=1; j \neq i}^{N} s_j \sigma_{\text{ind}}(\boldsymbol{r}_i - \boldsymbol{r}_j) + \sigma \right], \tag{5}$$

$$\dot{y}_i = 0. ag{6}$$

Here M is the dislocation mobility, σ is the externally applied shear stress and σ_{ind} is the shear stress field generated by individual dislocations. For the latter the solution corresponding to isotropic continua is used⁴¹:

$$\sigma_{\text{ind}}(\mathbf{r}) = \frac{\mu b}{2\pi (1 - \nu)} \frac{x(x^2 - y^2)}{(x^2 + y^2)^2},\tag{7}$$

where μ and ν denotes the shear modulus and the Poisson number, respectively. Dislocations are arranged in a square-shaped simulation area and periodic boundary conditions (PBC) are applied. The emerging image dislocations alter the stress field of Eq. (7) (that corresponds to an infinite medium), which can be obtained using a Fourier method (see Extended Data Fig. 12b)⁴². The equations of motion (5,6) are solved using a fully implicit scheme that makes usage of annihilation unnecessary, so, it is not implemented⁴³.

One of the main advantages of the model system introduced is that the dislocation interactions exhibit a 1/r-type decay. This means that apart from the average dislocation spacing (being equal to $\rho^{-0.5}$, where ρ is the total dislocation density) no additional length scales appear in the model. One may, thus, introduce dimensionless variables by measuring length, stress, strain and time in units summarized in Extended Data Table 1, where notation $G = \mu/[2\pi(1-\nu)]$ is introduced.

Initially, an equal number of positive and negative sign dislocations are positioned randomly in the square-shaped simulation area with uniform distribution. At zero applied stress the system is first let to evolve into a relaxed equilibrium configuration. After that the applied shear stress is increased using a protocol emulating the experimental set-up of micropillar compression. Namely, the applied stress is computed at every time step according to

$$\sigma' = r'(v'_{p}t' - \varepsilon'L'), \tag{8}$$

where $v_{\rm p}'$ is the platen velocity (see Fig. 4a), t' is the simulation time, r' is to a constant characterizing the strength of the spring connecting the platen and the dislocation system, and ε' is the accumulated plastic shear strain computed as:

$$\varepsilon'(t') = \sum_{i=1}^{N} s_i [x_i'(t') - x_i'(0)]. \tag{9}$$

In the simulations r'=1/32 was used and the platen velocity (if not stated otherwise) was set to $v_{\rm p}'=1.6\times 10^{-4}$.

513 Event detection

The overdamped dynamics used in Eqs. (5,6) reflects the fact that dislocation motion is a highly dissipative process during which stored elastic energy $E'_{\rm el}$ of the embedding crystal is transformed into other types of energies (e.g., heat or elastic waves). This energy dissipation rate $r'_{\rm en}$ can be obtained as

$$r'_{\rm en} = -\dot{E}'_{\rm el} = \sum_{i=1}^{N} (v'_i)^2,$$
 (10)

where $v_i' = \dot{x}_i'$ is the velocity of the *i*th dislocation.

Stress drop detection is based on the finding that in active periods the 520 dissipation rate $r'_{\rm en}$ increases several orders of magnitudes as demonstrated 521 on an exemplary event in Extended Data Fig. 13. To obtain the beginning 522 $t_{\rm b}$ ' and end $t'_{\rm e}$ of the event a threshold of $r'_{\rm th} = 5 \cdot 10^{-6}$ was used for the 523 dissipation rate as demonstrated in Extended Data Fig. 13. The size of the 524 stress drop then follows as $\Delta \sigma' = \sigma'(t'_{\rm e}) - \sigma'(t'_{\rm b})$.

As seen in Extended Data Fig. 13, a plastic event exhibits a fine structure with many peaks in the dissipation rate $r'_{\rm en}$. In order to emulate an AE detector, an additional threshold $r'_{\rm th,AE}$ is defined that characterises the sensitivity of the detector: whenever $r'_{\rm en} > r'_{\rm th,AE}$ the detector is able to measure the dissipation rate. With this, emulated AE events can be defined as demonstrated in the inset of Extended Data Fig. 13. The threshold $r'_{\rm th,AE}$ breaks up the signal in individual AE events, with their energy E' being the size of the area shaded alternately in blue and red colour. Data processing was carried out with the utilization of the NumPy library⁴⁴.

From the list of stress drops and AE events the AE count rate, the correlation between stress drops and AE energies, the aftershock rates and the waiting time distributions in Figs. 4b-e were determined with the same procedure as for experiments. The role of the threshold $r'_{\rm th,AE}$ used to model AE detector sensitivity was also investigated. According to Extended Data Fig. 14 the Omori law as well as the productivity law are recovered in a wide range of thresholds, however, small thresholds lead to the coalescence of events leading to a deviation from the power-law behaviour for small times the figs. 4d-e $r'_{\rm th,AE} = 3.16$ was used for AE individualization.

543 Data availability

544 All data are available in the main Article and Methods, or from the corre-545 sponding author upon reasonable request.

546 Code availability

The numerical methodology used in this study is described in Methods and the source code is available at:

549 https://github.com/pgabor/dislocation-avalanches-earthquakes.

550 Acknowledgements

The work was performed within the ELTE Institutional Excellence Program (TKP2020-IKA-05) supported by the Hungarian Ministry of Human Capacities. P.D.I, D.U., G.P., D.T. and I.G. acknowledge support by the National Research, Development and Innovation Fund of Hungary (contract number: NKFIH-K-119561). This research received financial support from the Czech Science Foundation, Grant No. 19-22604S (M.K. and F.C.).

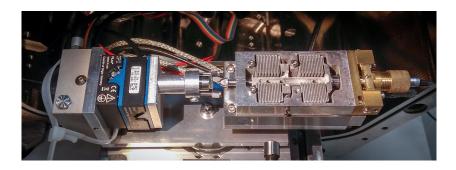
557 Author Contributions

P.D.I. designed the research and supervised the project. P.D.I., D.U., Z.D., D.T. and I.G. designed and developed the microdeformation stage. D.U. performed micropillar fabrication and compression experiments as well as EBSD and X-ray measurements. D.U., M.K., K.M. and F.C. performed the AE measurements. S.K. assisted with the sample preparation and analysis. P.D.I., D.U. and S.K. analysed the experimental data. I.G. assisted at every ⁵⁶⁴ experimental measurement. G.P. developed and performed the simulations ⁵⁶⁵ and performed the slip band analysis. P.D.I., D.U., G.P., S.K., M.K. and ⁵⁶⁶ K.M. wrote the paper, with contributions from all authors.

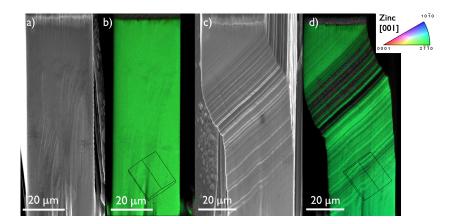
567 Competing Interests Statement

 $_{568}$ The authors declare no competing interests.

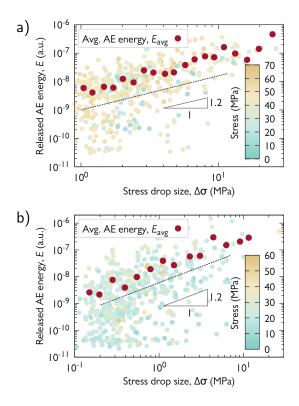
$_{\rm 569}$ Extended data figures and tables



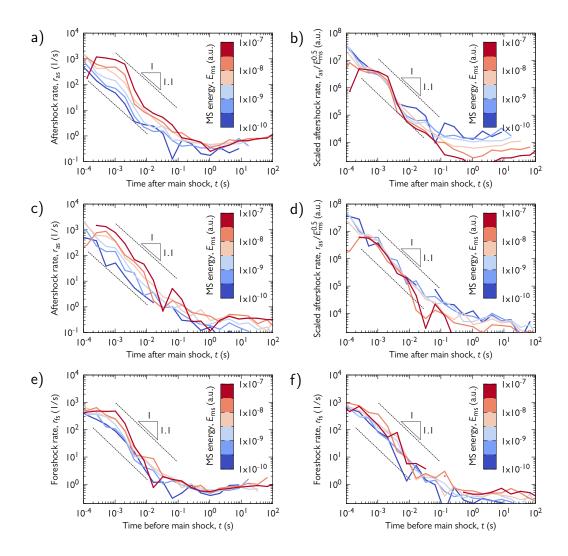
Extended Data Figure 1: In-house developed in situ nanoindentation set-up.



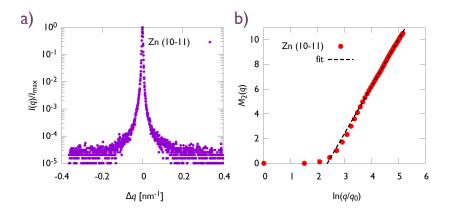
Extended Data Figure 2: **SEM imaging of the micropillars. a**, **c**, Secondary electron image of the same pillar in a tilt-corrected (70°) view before and after deformation. Note the uni-directional parallel slip bands in the deformed pillar. **b**, **d**, EBSD orientation map measured before and after compression of a Zn micropillar. The uniform color confirms single crystal structure both before and after the deformation. The orientation of the unit cell is also shown proving that the slip bands are parallel with the basal plane of the crystal.



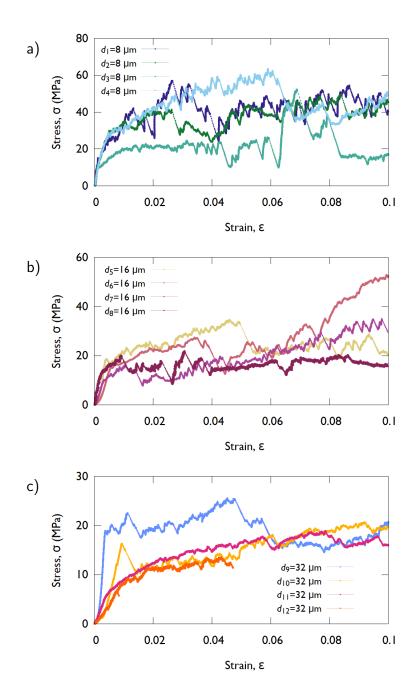
Extended Data Figure 3: Correlation between stress drops and released AE energy. a, Equivalent figure to that of Fig. 2c for $d=8~\mu m$ micropillars. b, Equivalent figure to that of Fig. 2c for $d=16~\mu m$ micropillars.



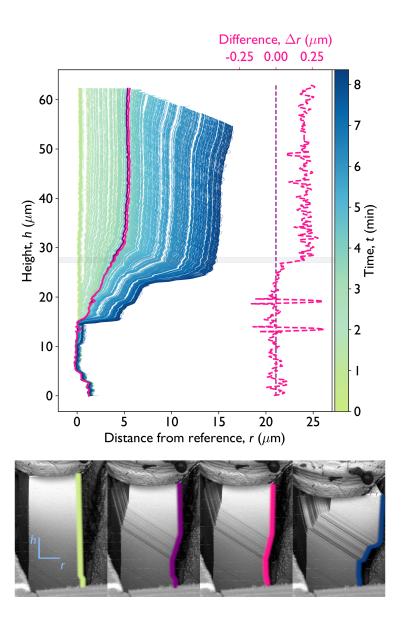
Extended Data Figure 4: Aftershock and foreshock rates for d=8 µm and d=16 µm micropillars. a, Aftershock rates $r_{\rm as}$ after main shocks of various energies $E_{\rm ms}$ for d=8 µm micropillars. b, Aftershock rates $r_{\rm as}$ of panel a) scaled with $E_{\rm ms}^{0.5}$ for d=8 µm micropillars. c, Aftershock rates $r_{\rm as}$ after main shocks of various energies $E_{\rm ms}$ for d=16 µm micropillars. d, Aftershock rates $r_{\rm as}$ of panel a) scaled with $E_{\rm ms}^{0.5}$ for d=16 µm micropillars. e, Foreshock rates $r_{\rm fs}$ before main shocks of various energies $E_{\rm ms}$ for d=8 µm micropillars. f, Foreshock rates $r_{\rm fs}$ before main shocks of various energies $E_{\rm ms}$ for d=16 µm micropillars.



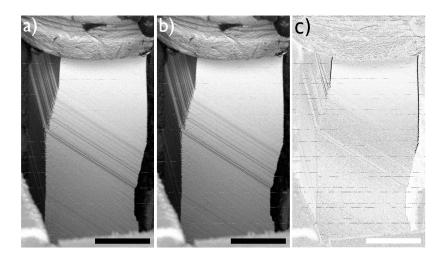
Extended Data Figure 5: **X-ray diffraction measurements on the original bulk Zn sample. a**, The measured X-ray line profile of the $(10\bar{1}1)$ reflection of the Zn single crystal. **b**, Second restricted moment M_2 as a function of $\ln q/q_0$, with $q_0 = 1$ nm⁻¹. Dislocation density can be obtained from the linear fit from Eq. (1).



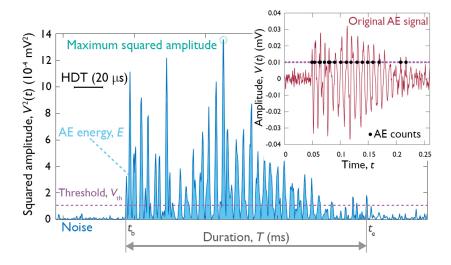
Extended Data Figure 6: **Exemplary stress-strain curves of micropillars of various sizes.** $a, d = 8 \mu m, b, d = 16 \mu m$ and $c, d = 32 \mu m$ pillars.



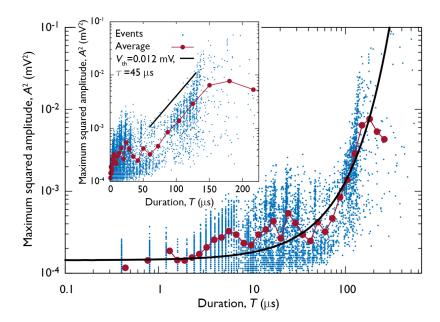
Extended Data Figure 7: **Time development of the right edge of the micropillar.** Distance from the reference line with the corresponding height as a function of time indicated by the colour for the micropillar shown in Fig. 1b. The purple and pink lines indicate the pillar shape before and after the stress drop investigated in Figs. 1c-e, respectively. The light gray horizontal line highlights the place where slip occurred.



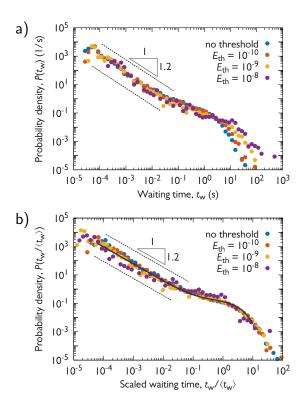
Extended Data Figure 8: Locating spatial distribution of a strain burst. a, b, Backscattered electron images of the micropillar before and after the stress drop analysed in Figs. 1c-e. The scale bar represents 20 µm. c, The difference of panels a) and b). The dark edges at the upper part of the pillar are due to plastic slip that occurred on the slip band highlighted in red in Fig. 1b.



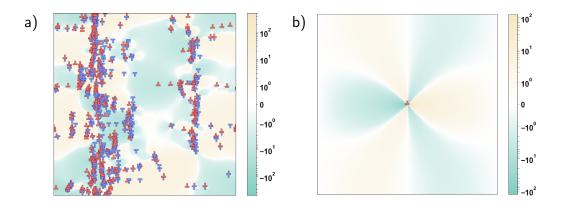
Extended Data Figure 9: **Parameters of a typical AE event.** Squared amplitude $V^2(t)$ of the AE signal as a function of time, showing the definitions of the AE parameters. The energy is the area of the region shaded in light blue. The inset presents the original waveform.



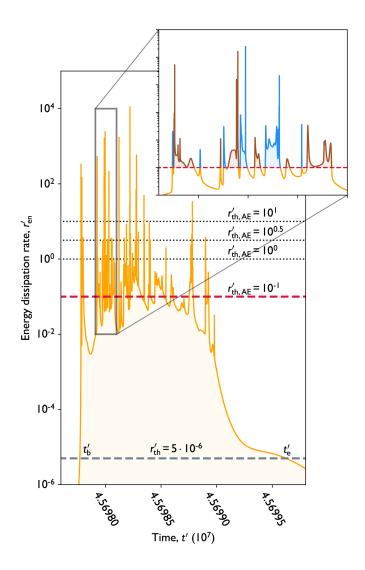
Extended Data Figure 10: **Analysis of AE signal attenuation.** Scatter plot of the maximum squared amplitude of individual AE events and their duration. The red data points represent the average relationship obtained by logarithmic binning with respect to the signal duration. Black solid line corresponds to the fit according to Eq. (4).



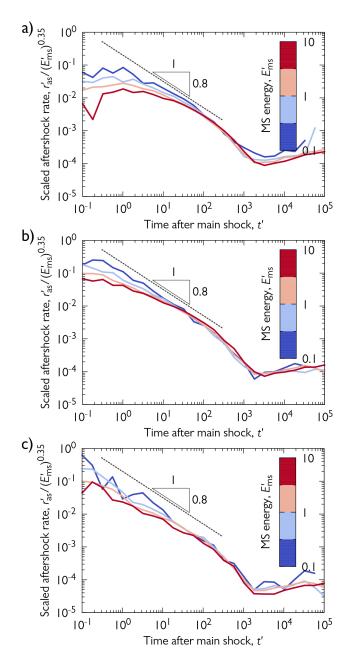
Extended Data Figure 11: Effect of thresholding on waiting time distributions of $d = 32 \mu m$ micropillars. a, Waiting time distributions for AE events with energies larger than $E_{\rm th}$. b, Distributions of panel a) re-scaled with the average waiting time of the events. The master curve fitting the collapsed curves is identical to that of Fig. 3f.



Extended Data Figure 12: **2D** discrete dislocation dynamics simulations. **a**, An exemplary configuration with 512 positive (red) and 512 negative (blue) sign dislocations. The background colour and the colour scale refers to the internal shear stress generated by the individual dislocations. **b**, Shear stress field of an individual positive sign dislocation σ'_{ind} with periodic boundary conditions applied at all edges of the square-shaped simulation area.



Extended Data Figure 13: **Event individualization in DDD simulations.** The time dependence of the energy dissipation rate $r'_{\rm en}$ during an exemplary plastic event (also shown in Supplementary Video 3). The thick horizontal black line denotes the threshold $r'_{\rm th}$ used for identification of a plastic event, whereas dotted horizontal black lines refer to thresholds $r'_{\rm th,AE}$ used to individualize emulated AE bursts. The inset shows the identified AE bursts that took place during the stress drop at $r'_{\rm th,AE} = 0.1$ (shown with dotted red line in the main panel). The areas shaded alternately in blue and red correspond to the energies of the emulated AE events.



Extended Data Figure 14: Effect of thresholding on the emulated scaled aftershock rates in DDD simulations. Aftershock rates $r'_{\rm as}$ after main shocks with different energies $E'_{\rm ms}$ scaled with $(E'_{\rm ms})^{0.35}$. The panels correspond to rates observed at different thresholds $r'_{\rm th,AE}$ used for the emulation of AE events: \mathbf{a} , $r'_{\rm th,AE} = 0.1$. \mathbf{b} , $r'_{\rm th,AE} = 1$. \mathbf{c} , $r'_{\rm th,AE} = 10$.

QuantitylengthstressstraintimeUnit
$$\rho^{-0.5}$$
 $Gb\rho^{0.5}$ $b\rho^{0.5}$ $(Gb^2M\rho)^{-1}$

Extended Data Table 1: Units of the dimensionless quantities used in the simulations.

Property	Earthquakes	Dislocation avalanches
Mechanism	Slip / crack	Dislocation movement
Expanse	in plane	in plane
Typical amplitude	m	nm
Typical reach	km	μm
Typical duration	minute — month	ms – s
Typical frequency	Hz	MHz
Size distribution	Gutenberg-Richter	Gutenberg-Richter
Aftershocks	Omori- and productivity law	Omori- and productivity law

Extended Data Table 2: Comparison between earthquake and dislocation avalanche properties.

570 Supplementary information

571 Link: https://youtu.be/kAf4iP8PnkU

 $_{572}$ Video 1: In situ SEM video of a compression of a d=8 µm micropillar $_{573}$ together with the measured force and the rate of AE events and released $_{574}$ AE energies. The ultrasonic AE signal recorded during the compression was $_{575}$ transformed into audible frequency domain that appears as a crackling noise.

576 Link: https://youtu.be/XLLjSKhkWzA

Video 2: Representative DDD simulation of N=1024 dislocations subjected to increasing shear stress with the protocol described in Methods. Dislocation configuration is seen in top right panel. Red and blue colours refer to the sign of the dislocations and the background colour with the colour scale represents the internal shear stress generated by the dislocations. The force-time curve shown in the left panel together with the emulated AE count rate (see Methods for details).

584 Link: https://youtu.be/Wb_ffzf2Cno

Video 3: Slowed down video of a representative plastic event (stress drop)

586 from Supplementary Video 2.

587 References

- ⁵⁸⁸ Uchic, M. D., Dimiduk, D. M., Florando, J. N. & Nix, W. D. Sample
- Dimensions Influence Strength and Crystal Plasticity. Science 305, 986–
- 989 (2004).
- 2 Volkert, C. A. & Lille odden, E. T. Size effects in the deformation of sub-
- micron au columns. *Philos. Mag.* **86**, 5567–5579 (2006).
- ³ Miguel, M.-C., Vespignani, A., Zapperi, S., Weiss, J. & Grasso, J.-R. Inter-
- mittent dislocation flow in viscoplastic deformation. Nature 410, 667–671
- 595 (2001).
- ⁴ Weiss, J. & Marsan, D. Three-dimensional mapping of dislocation
- ⁵⁹⁷ avalanches: clustering and space/time coupling. Science **299**, 89–92
- 598 (2003).
- ⁵ Dimiduk, D. M., Woodward, C., LeSar, R. & Uchic, M. D. Scale-free
- intermittent flow in crystal plasticity. Science **312**, 1188–1190 (2006).
- ⁶Csikor, F. F., Motz, C., Weygand, D., Zaiser, M. & Zapperi, S. Disloca-
- 602 tion avalanches, strain bursts, and the problem of plastic forming at the
- micrometer scale. Science 318, 251–254 (2007).
- ⁷ Orowan, E. Zur kristallplastizität. iii. *Z. Phys.* **89**, 634–659 (1934).
- ⁸ Polanyi, M. Über eine art gitterstörung, die einen kristall plastisch machen
- 606 könnte. Z. Phys. 89, 660–664 (1934).
- ⁹ Taylor, G. I. The mechanism of plastic deformation of crystals. part
- 608 i.—theoretical. P. R. Soc. London 145, 362–387 (1934).

- 609 10 Scruby, C. B. An introduction to acoustic emission. *J. Phys. E* **20**, 946 610 (1987).
- 611 ¹¹ Weiss, J. et al. Evidence for universal intermittent crystal plasticity from
- acoustic emission and high-resolution extensometry experiments. Phys.
- ⁶¹³ Rev. B **76**, 224110 (2007).
- 614 ¹² Gutenberg, B. & Richter, C. F. Magnitude and energy of earthquakes.
- 615 Ann. Geofis. 9 (1956).
- ¹³ Utsu, T. Represeantation and Analysis if the Earthquake Size Distribution:
- A Historical Review and Some New Approaches. Pure Appl. Geophys. 155,
- ⁶¹⁸ 509–535 (1999).
- 619 ¹⁴ Utsu, T., Ogata, Y. & Matsu'ura, R. S. The Centenary of the Omori
- Formula for a Decay Law of Aftershock Activity. J. Phys. Earth 43, 1–33
- 621 (1995).
- ⁶²² ¹⁵ Guglielmi, A. V. Interpretation of the Omori law. *Izv.*, *Phys. Solid Earth*
- **52**, 785–786 (2016).
- $_{624}$ Helmstetter, A. Is earthquake triggering driven by small earthquakes?
- 625 Phys. Rev. Lett. **91**, 058501 (2003).
- $_{\rm 626}$ $^{\rm 17}$ Baró, J. et~al. Statistical Similarity between the Compression of a Porous
- Material and Earthquakes. Phys. Rev. Lett. 110, 088702 (2013).
- 628 18 Meng, F., Wong, L. N. Y. & Zhou, H. Power law relations in earthquakes
- from microscopic to macroscopic scales. Sci. Rep. 9, 10705 (2019).

- 630 ¹⁹ Jones, L. M. & Molnar, P. Some characteristics of foreshocks and their pos-
- sible relationship to earthquake prediction and premonitory slip on faults.
- 632 J. Geophys. Res.-Sol. Ea. 84, 3596–3608 (1979).
- Bak, P., Christensen, K., Danon, L. & Scanlon, T. Unified scaling law for
 earthquakes. *Phys. Rev. Lett.* 88, 178501 (2002).
- Karsai, M., Kaski, K., Barabási, A.-L. & Kertész, J. Universal features of
 correlated bursty behaviour. Sci. Rep. 2, 1–7 (2012).
- ⁶³⁷ Corral, A. Long-term clustering, scaling, and universality in the temporal occurrence of earthquakes. *Phys. Rev. Lett.* **92**, 108501 (2004).
- ⁶³⁹ ²³ Ispánovity, P. D. et al. Avalanches in 2d dislocation systems: Plastic
 ⁶⁴⁰ yielding is not depinning. Phys. Rev. Lett. 112, 235501 (2014).
- ⁶⁴¹ ²⁴ Csikor, F. F., Zaiser, M., Ispánovity, P. D. & Groma, I. The role of density
 fluctuations in the relaxation of random dislocation systems. *J. Stat. Mech.* **2009**, P03036 (2009).
- Zaiser, M. & Sandfeld, S. Scaling properties of dislocation simulations in
 the similitude regime. *Model. Simul. Mater. Sci.* 22, 065012 (2014).
- Lehtinen, A., Costantini, G., Alava, M. J., Zapperi, S. & Laurson, L.
 Glassy features of crystal plasticity. Phys. Rev. B 94, 064101 (2016).
- Sethna, J. P., Dahmen, K. A. & Myers, C. R. Crackling noise. Nature
 410, 242–250 (2001).
- Weiss, J. et al. From mild to wild fluctuations in crystal plasticity. Phys.
 Rev. Lett. 114, 105504 (2015).

- Alcalá, J. et al. Statistics of dislocation avalanches in fcc and bcc metals:
 dislocation mechanisms and mean swept distances across microsample sizes
 and temperatures. Sci. Rep. 10, 1–14 (2020).
- Uchic, M., Shade, P. & Dimiduk, D. Plasticity of micromoter-scale single
 crystals in compression. Annu. Rev. Mater. Res. 39, 361–386 (2009).
- Britton, T. B. & Wilkinson, A. J. High resolution electron backscatter
 diffraction measurements of elastic strain variations in the presence of
 larger lattice rotations. *Ultramicroscopy* 114, 82–95 (2012).
- Groma, I. & Székely, F. Analysis of the asymptotic properties of x-ray line broadening caused by dislocations. *J. Appl. Cryst.* **33**, 1329–1334 (2000).
- Borbély, A. & Groma, I. Variance method for the evaluation of particle
 size and dislocation density from X-ray Bragg peaks. Appl. Phys. Lett. 79,
 1772–1174 (2001).
- Hegyi, A. I. et al. Micron-scale deformation: A coupled in situ study of
 strain bursts and acoustic emission. Microsc. Microanal. 23, 1076–1081
 (2017).
- Kalácska, S. et al. Investigation of geometrically necessary dislocation
 structures in compressed cu micropillars by 3-dimensional hr-ebsd. Mat.
 Sci. Eng. A. 770, 138499 (2020).
- 36 Bradski, G. The OpenCV Library. Dr. Dobb's J. **25**, 120–125 (2000).
- ⁶⁷² Virtanen, P. *et al.* SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. *Nat. Methods* **17**, 261–272 (2020).

- Heiple, C. R. & Carpenter, S. H. Acoustic emission produced by deformation of metals and alloys A review. *J. Acoustic Emission* 6, 177–237
 (1987).
- Jordi, B. et al. Experimental evidence of accelerated seismic release without
 critical failure in acoustic emissions of compressed nanoporous materials.
 Phys. Rev. Lett. 120, 245501 (2018).
- ⁶⁸⁰ ⁴⁰ Vu, C. C., & Weiss, J. Assymetric damage avalanche shape in quasibrittle
 ⁶⁸¹ materials and subavalanche (aftershock) clusters. *Phys. Rev. Lett.* **125**,
 ⁶⁸² 105502 (2020).
- ⁴¹ Hirth, J. P. & Lothe, J. *Theory of Dislocations* (John Willey & Sons, New
 York, 1982), 2nd edn.
- ⁴² Bakó, B., Groma, I., Györgyi, G. & Zimányi, G. Dislocation patterning:
 The role of climb in meso-scale simulations. *Comp. Mater. Sci.* 38, 22–28
 (2006).
- Péterffy, G. & Ispánovity, P. D. An efficient implicit time integration
 method for discrete dislocation dynamics. *Model. Simul. Mater. Sci.* 28,
 035013 (2020).
- ⁶⁹¹ ⁴⁴ Harris, C. R. *et al.* Array programming with NumPy. *Nature* **585**, 357–362
 ⁶⁹² (2020).