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RC: Reviewers’ Comment, AR: Authors’ Response, � Manuscript Text

WE THANK THE REVIEWERS FOR THEIR VALUABLE THOUGHTS AND COMMENTS ON THIS WORK, AND
FOR RECOMMENDING THE MANUSCRIPT FOR PUBLICATION. OUR RESPONSE IS PROVIDED BELOW.
CHANGES TO THE ORIGINAL MANUSCRIPT HAVE BEEN HIGHLIGHTED (DELETED PARTS ,

::::::
ADDED

:::::
PARTS) IN THIS DOCUMENT AND TRACED BY “LATEXDIFF” IN THE REVISED FILE.

Reviewer #1

RC: Manuscript „Dislocation Avalanches: Earthquakes on the Micron Scale“ by P.D. Ispánovity et al. The
manuscript deals with the acoustic emission occurring during deformation of hexagonal metal (Zn) single
crystal micropillars and relates these emissions with the acoustic emission of earthquakes. In terms of the
signal types, there are undoubtedly strong similarities – beside the different amplitudes and time regimes
of course. Such similarity was already stated earlier in principle, but not proven on basis of a quantitative
evaluation like in the present case. The compression set-up used for the micropillar experiments was
specially developed for complementary SEM studies. Moreover, the underlying dislocation movement
was modelled by means of discrete dislocation dynamics simulation. In summary, the manuscript is a
very interesting study worth being published in Nature. However, some clarifications are necessary:

AR: We thank the Reviewer the careful assessment and positive evaluation of our work and for acknowledging the
main findings of our paper.

RC: i) In order to determine dislocation densities on basis of X-ray investigations, the contrast factors have to
be known. In particular, there is only limited information on contrast factors for hexagonal metals. It
is unclear, however, which contrast factors were used. Is there a reference on preliminary work or on
contrast factors in literature?

AR: We thank the Reviewer for pointing this out. Here we clarify how the contrast factors were determined. We
start again from the intensity distribution generated by dislocations that was shown by Groma et al.[1] to
decay asymptotically as

I(q) =
Λ

4π2
〈ρ〉 1

q3
, (1)

where 〈ρ〉 is the dislocation density, Λ is a constant depending on the diffraction, the Burgers, and the line
direction vectors of the dislocation (see below), and q = 2

λ [sin(Θ)− sin(Θ0)], in which λ is the wavelength
of the X-ray, Θ is the scattering angle, and Θ0 is the Bragg angle of the reflection used. The quantity Λ is
commonly written in the form Λ = π

2 g
2b2Cg [1, 2, 3], where Cg is called the “contrast factor”.

In order to determine Λ we use linear elasticity, that is, it is assumed that dislocations are embedded in
an elastic medium. So large deformations around the dislocation core are neglected, as due to their small
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total volume they practically do not contribute to the diffraction. So, the type of crystal structure enters the
calculation through the elastic constants of the medium, see below. As the first step, one has to calculate the
integral

φijkl =

∫ 2π

0

∂iuj(r, ϕ)∂kul(r, ϕ)r2dϕ (2)

where ui(r, ϕ) is the displacement field generated by a straight dislocation of a specific type that is parallel to
the z axis and positioned at the origin of the xy plane. The variables r and ϕ denote the polar coordinates in
the xy plane. (It should be noted that due to the 1/r decay of the distortion generated by a dislocation the
above integral is independent from r).

From Eq. (2) the contrast factor for a given dislocation type and diffraction vector g

Cg =
2π2

b2g4
φijklgigjgkgl (3)

where the diffraction vector g is given in the coordinate system corresponding to u used in Eq. (2) [2, 3].

For isotropic materials there is a closed expression for C [1], but in case of an elastically anisotropic material
it can only be determined numerically.

We now shortly summarize the main steps of the calculation. According to [4] the displacement field can be
given as

ui =
1

π

3∑
α=1

AiαDα ln(x1 + pαx2) (4)

where pα are the roots of the sextic equation provided by the elastic equilibrium equation [see Eq. (10.9) in
[4]]. The values of pα can, thus, be determined only numerically. Aiα and Dα are functions of the roots pα
and the elastic constants [4]. With the knowledge of the parameters in Eq. (4) corresponding to the dislocation
considered, the value of C can be determined in a straightforward manner.

It should be noted, that the calculation of the contrast factor requires the solution of an elasticity problem.
So, as said above, the actual crystalline structure does not make a real difference. As a consequence the
calculation can be performed with a similar method for FCC, BCC or HCP structures as well. What really
makes a difference is the relative strength of the elastic anisotropy.

In most cases there are several types of dislocations present or created during the deformation. In this case
one has to determine the appropriate weighted average Λ. Since the relative populations of the different types
of dislocations are often unknown, one has to measure as many reflections as possible. After determining
the ρ∗ = Λρ values from the different peaks the relative populations of the different dislocations can be
determined. If, for some reason, only a few reflections can be measured one has to make some assumption
about the dislocation populations.

In the investigations reported in this paper X-ray line profile analysis was applied to determine the initial
dislocation density of the samples. For simplicity, we assumed that each type of dislocations with Burgers
vector in the basal plane are present equal number. Dislocations with non-basal Burgers vector have
larger energy, so they could be neglected. In the measurements the diffraction peak corresponding to
(1, 0, 1̄, 1) was used. The corresponding average contrast factor (determined by the program ANIZC at
http://metal.elte.hu/anizc/program-hexagonal.html) is C = 0.1992, while g2b2 =
2.54. From this Λ = πg2b2C/2 = 0.506 [5, 6].
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The shortened version of this discussion was added to the corresponding part of Methods as a new paragraph:

:::
For

::::
this

:::::::
reason

:::
for

::::
the

:::::::::::::
determination

:::
of

::::
the

::::::
initial

::::::::::
dislocation

:::::::
density

::::
one

::::
has

:::
to

::::::
make

::::::::::
assumptions

:::::
about

::::
the

:::::::
relative

::::::::
densities

:::
of

:::::::::::
dislocations

::
of

::::::::
different

::::::
types.

:::::::
Since

::::
the

::::::
energy

::
of

:::::::::::
dislocations

:::::
with

:::::::
Burgers

::::::
vector

::::::
lying

:::
in

::::
the

:::::
basal

::::::
plane

:::
is

:::::
lower

::::::::::
compared

:::
to

:::::
other

::::
types

:::
it

::
is
::::::::::

reasonable
:::

to
:::::::

assume
::::

that
:::

in
::::

the
:::::::

original
:::::::::::

undeformed
:::::::

sample
:::::

each
::::

slip
:::::::

system

::::
with

::
a
::::::::

Burgers
::::::

vector
::::::

lying
:::

in
::::

the
:::::

basal
::::::

plane
:::

is
:::::::

equally
::::::::::

populated.
::::::

To
:::::::

account
::::

for

:::::
elastic

::::::::::
anisotropy

::::
the

::::::::::::
corresponding

::::::::
average

::
Λ
:::::

was
::::::::::
determined

:::::::::::
numerically

:::
by

::::
the

:::::::
ANIZC

:::::::
program

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(http://metal.elte.hu/anizc/program-hexagonal.html)

::::
and

::::::
using

:::
the

:::::
elastic

::::::
moduli

::
of

::::
Zn,

:::::::
yielding

:::::::::
Λ = 0.506

:::
[5]

:::
[6].

:

RC: ii) The high-resolution EBSD is not explained to sufficient detail. The authors should give some more
information on these measurements.

AR: We thank the Reviewer for this comment. Indeed, the details of the HR-EBSD evaluation were lacking,
therefore the following text was added to the manuscript. We also show here an exemplary diffraction pattern
and the 20 regions of interest chosen for the analysis (Figure 1a) and the resulting GND density map (Figure
1b).

To calculate the initial geometrically necessary dislocation (GND) density, a digital image cross-
correlation based technique called high (angular) resolution electron backscatter diffraction (HR-
EBSD) was applied [7].

:::::::::
HR-EBSD

:::::::::
determines

:::::
local

:::::
strain

::::
and

:::::
stress

:::::
tensor

:::::::::::
components

::::
with

:::
the

:::
help

:::
of

:::
the

:::
raw

:::::::::
diffraction

:::::::
patterns.

::::
This

:::::::
method

:::::::
requires

:
a
::::::::
reference

:::::::::
diffraction

::::::
pattern

:::
for

:::
the

:::::
image

:::::::::
correlation,

::::
that

::
is

::::::
ideally

:::::::
captured

:::
in

:::
the

::::::::
strain-free

:::::
state

::
of

:::
the

::::::
lattice.

:::
A

::::::
perfect

::::::::
reference

::::::
pattern

:
is
:::::
often

:::::::
difficult

::
to

::::::
obtain

::::::::::::
experimentally,

::::::::
therefore

::
in
::::
our

::::
case

:
a
::::::
pattern

::::
with

:::
the

::::::::::
presumably

::::::
lowest

::::
stress

::
is
:::::::

chosen,
:::::::

creating
::

a
:::::::
relative

::::
scale

:::
for

::::
the

:::::
GND

:::::::
density.

::::::::::
Diffraction

:::::::
patterns

::::
were

::::::::
recorded

::::
with

::::::
approx.

:::::::::
500× 500

::::
px2

::::::::
resolution

:::::
from

::
an

::::
area

:::
of

::::::::::
16.2× 14.2

::::
µm2

::::
with

:
a
::::

step
::::
size

::
of

::::
100

:::
nm.

:::
The

:::::::::
evaluation

::::
was

::::::
carried

:::
out

::
by

:::::::::::
BLGVantage

::::::::::
CrossCourt

::::
v4.2

::::::::
software.

:::
20

::::::
regions

:::
of

::::::
interest

:::
(of

::::::::
128× 128

::::
px2

:::::
each,

::::
Ext.

:::::
Data

:::
Fig.

:::
1)

:::::
were

:::::::
selected

::::
from

:::::
each

:::::::::
diffraction

::::::
pattern

::
to

:::::
carry

:::
out

:::
the

:::
HR

:::::::::
processing

::::
with

:::::::
applied

::::
high

:::
and

::::
low

::::
pass

:::::::
filtering.

::::
All

:::::
points

:::
in

:::
the

::::
map

::::
were

:::::::::
evaluated.

:
The

estimated average value of ρGND = 1.2× 1013 m−2 was measured on a surface prepared by the same
FIB conditions

:::
(30

:::
kV,

::
3

:::
nA)

:
as it was used for the pillar fabrication prior to deformation. This value is

close to the detection limit of the GND density by HR-EBSD, hence it is concluded that the sample
preparation did not introduce a significant/measurable dislocation content in the sample.

RC: iii) The energy of single acoustic emission events seems to be calculated on basis of the time domain. The
authors should give the reason why they didn’t use the frequency domain as some other authors did in
literature.

AR: We employed a conventional definition of AE energy, EAE, in the time domain: EAE =

∫ ∞
−∞
|x(t)|2dt, where

x(t) is the AE signal. Upon transforming the AE signal into the frequency domain, AE energy is defined

as EAE =
1

2π

∫ π

−π
|X(ω)|2dω, where X(ω) is the Fourier transform of x(t) and ω is the angular frequency.

However, according to Parseval’s theorem, these two definitions are equivalent, i.e.:
∫∞
−∞ |x(t)|2dt =

1
2π

∫ π
−π |X(ω)|2dω. The AE signal analysis in the frequency or time-frequency domain can often provide

additional information on the deformation dynamics; yet, we believe that such analyses are beyond the scope
and objectives of this paper.
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a) b)

Figure 1: a, A typical Kikuchi pattern collected from the sample used for the HR-EBSD evaluation. 20
regions of interest are marked with yellow squares. b, The resulting GND density map. Black point (in the
middle) marks the reference pixel.

[pi: I like the answer very much, but I have one comment. When we calculate the energy of one event, then
we don’t do integration from−∞ to∞, but just for a finite time interval. For that the theorem would certainly
not hold, so I don’t know, that in this case why could one at all perform the integration in the frequency
domain. What do you think?]

Reviewer #2

RC: Advantages: The dislocation avalanches resulted in strain burst in micropillar is well known crystal
plasticity experiment in the last two decades. Focused ion beam (FIB) operation is used to fabricate
square-based pillars under compression force. The authors have set up an ingenious experiment facility
in this paper to measure the signal of dislocation avalanches (AE) events. Then, there is a nice creativity
topic to analogy AE on the micron scale to earthquakes in macro scale. Achieved from this work is that
the realization of nontrivial task of detecting extremely weak AE waves which arise during micropillar
deformation. The principle of the emission of acoustic waves in materials is analogous to earthquakes.
Plastic deformation is caused by the local rearrangement of dislocation lines in a crystal. This process is
strongly dissipative and part of the released elastic energy escapes in the form of elastic waves, that can
be detected at the surface. The complex dynamic behavior observed in experiments is the result of the
spatio-temporal correlations of the dislocations due to their long-range elastic interactions mechanism.

AR: We thank the Reviewer the careful assessment and positive evaluation of our work and for acknowledging the
main findings of our paper.
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RC: Disadvantages: 1.Zn single crystal with hexagonal closed-packed (HCP) structure is used in the experi-
ment. While, Al Co and Ni FCC single crystals are used in the most experiments of micron pillar com-
pression. The question is that these metals can be used by analogous with earthquake like Zn expressed
in this paper.

AR: The Referee is absolutely right in suggesting that the lattice structure may have an influence on the observed
behaviour. The AE experiments reported here were so far only conducted for Zn, so we can only speculate
about the case of FCC microcrystals. The reason why we used Zn is simply that bulk HCP samples typically
emit much stronger AE signals than those with FCC or BCC structure. We believe that the crystal structure is
important in an indirect way, by affecting the arrangement and possible reactions of dislocations. In HCP
Zn studied here, dislocations with the lowest energy are those on the basal plane and these dissociate into
partials as in FCC [8], so in the initial state the slip systems of this plane are expected to contain much larger
amount of dislocations than the prismatic and pyramidal slip systems. Since the samples are oriented for
basal slip, this becomes even more the case during compression, so, the emergent deformation is single slip
with practically no forest dislocations on the other slip systems. This leads to the absence of short-range
dislocation reactions and, thus, long-range forces dominate the dynamics. In FCC, on the other hand, due to
the higher symmetry of the crystal we expect dislocations to be present on inclined planes even if the sample
is oriented for single slip. This would lead to short-range interactions that could dominate over the long-range
interactions and perhaps change the observed behaviour. We extended the corresponding discussion in the
manuscript, as seen below. Note, that a similar comment was also raised by Referee #3, see our response
below.

The experiments and simulations reported here prove this long-standing hypothesis and reinforce that
intermittency and scale-invariance characterizing plastic deformation of HCP single crystals (and, most
likely, crystalline metals/solids in general) are related to the self-organized critical (SOC) behaviour of
dislocations. In addition, we showed that plastic events, similarly to earthquakes, do not only exhibit
spatial but also temporal clustering with long-range correlations, however, the involved length and
timescales are profoundly different, as summarized in Extended Data Table 2. This phenomenon also
raises analogy with many other physical systems exhibiting crackling noise [9]. It is known, however,
that SOC behaviour is not ubiquitous in crystal plasticity, for instance, it is suppressed

:
in

::::::::
materials

::::
with

::::
FCC

:::
and

:::::
BCC

::::::
crystal

:::::::
structure

:::
and under multiple slip conditions

::::
likely

:::::::
because

::
of

::::::::::
short-range

:::::::::
interactions

::::::
related

::
to

::::::::::
dislocation

:::::::
reactions and

:::
also at high temperatures [10, 11, 12].

RC: 2.Is there small or finite deformation used in DDD simulation? For my knowledge, there is no pure DDD
program which can compute the finite deformation of crystal. The finite deformation with shear band can
be found from experiment in Figures. For this configuration, the spin rate of plastic deformation should
be considered. There is no big influence on AE signal, which is dominated by dislocations avalanche.
However, it has soma effect on plastic energy in micron pillar, which is analogy to earthquake.

AR: We thank the Referee for this interesting comment. Indeed, during the compression of the micropillars the
change of the shape of the pillar does influence the stress field inside the specimen that may have an effect on
the avalanche dynamics. The lattice rotation effect during compression may also play a role by changing
the Schmid factors of the slip systems. We agree that this effect is probably weak in our case since the
maximum deformation is not very high, the distribution of slip planes seem even along the height of the
micropillar and we don’t see noticeable changes in the statistical properties of AE events or strain burst during
the compression.

In the simulations we apply periodic boundary conditions (see also our response to comment #6 of the 3rd
Referee). In this case an infinite crystal is mimicked. As such, in this model the shape of the surface does not
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play a role and lattice rotation does not take place even at large deformation. As explained in the manuscript,
the reason for using this type of generic simulations is that we focus on the role of long-range interactions
that are believed to play the key role in the phenomena reported in this paper. If we intended to use a more
detailed 3D DDD simulation of micropillar compression, the effects mentioned by the Referee might be of
importance.

A new paragraph was added to Sec. ‘Discrete dislocation dynamics’ in the Methods that also fdeals with this
issue:

::::
With

:::
the

::::::::::
application

::
of

:::
the

:::::
PBCs

:::::::
surface

::::::
effects

:::
that

::::
may

:::
be

::::::::
important

:::
for

:::::
small

:::::
scale

:::::::
samples

:::
are

::::::::
neglected

::
in

:::
the

::::::::::
simulations.

:::::::
Indeed,

:::
in

:::::::::
nanopillars

::
it
::::
was

:::::
found

::::
that

:::::::::
exhaustion

:::::::::
hardening

::::
[13]

::
as

:::
well

:::
as

:::::::::
dislocation

::::::
source

:::::::::
truncation

::::
[14]

::::::::
represent

:::
key

:::::::
physics

::
in

:::
the

::::::
plastic

::::::::::
deformation

::::
that

::::
lead

::
to

::::::::::
size-effects.

:::::
These

:::::::::::::::
single-dislocation

::::::::
properties

:::
are

::::::::
important

::
at
::::::
scales

::::::::::
comparable

::
or

::::::
smaller

::::
than

::
the

:::::::
average

::::::::::
dislocation

:::::::
spacing,

::
in

::::
our

::::
case

:::::
being

::::::
around

::::::::::
ρ−0.5 ≈ 0.1

::::
µm.

:::
In

::::
our

::::::::::
experiments

:::
the

::::::::::
micropillars

:::
are

:::::
rather

:::::
large

:::::::
(8− 32

::::
µm)

::::::::
compared

::
to
::::::::

previous
:::::::
studies,

:::
and

::
at
::::

this
:::::
scale

::::::::
collective

:::::::::
dislocation

::::::::
dynamics

::
is

::::::::
expected

::
to

::::::::
dominate

::::::::
plasticity

:::
and

::::::::
boundary

::::::
effects

:::
can

:::
be

:::::::::
neglected.

::::
This

:::::::
explains

:::
our

:::::
choice

:::
for

:::
the

:::::
PBCs

:::
that

:::::::
allowed

::
us

::
to

::::::::::
concentrate

::
on

::::::::
collective

:::::::::
dislocation

::::::::::
phenomena.

::
It

:
is
::::
also

:::::
noted,

::::
that

::
in

::::::::::
experiments

::::::
plastic

::::::::::
deformation

:::::
leads

::
to

:::
the

:::::
shape

::::::
change

::
of

:::
the

::::::
sample

:::
and

::::
may

::::
cause

:::::
some

::::::
lattice

:::::::
rotation.

::::::
These

::::::
effects

:::
are

:::
not

:::::::
expected

:::
to

::::
have

:
a
:::::::::

significant
::::
role

::
in

:::
the

::::::::
observed

::::::::
dynamics

:::
and

:::
are

::::::::
neglected

::
in

:::
the

::::::::::
simulations.

Reviewer #3

RC: This very interesting manuscript proposes an analysis of plastic avalanches in compressed Zn micropil-
lars from a combined analysis of stress drops and AE. Although the characteristics of the underlying
dynamics revealed from this work (i.e. scaling laws, time correlations) are not new, this combination of
methods, which is new to my knowledge, allows to reconcile AE data of dislocation avalanches obtained
at bulk scales in one hand, and intermittency of plasticity observed directly from loading curves at µm- to
sub-µm scales. It also reveals an interesting 2-levels structure of brief instabilities (measured from AE)
inserted into a single stress drop, considered as a single avalanche in classical micropillar analyses. The
experimental work is nice and looks sound. For these reasons, I think that this work is worth publishing.
On the other hand, the authors argue, already from the title, about a very strong analogy between dislo-
cation avalanches and earthquakes. I am clearly less enthusiastic about this claim, for several reasons,
explained in more details below: the observed scaling laws (power law distributions of AE energies, time
correlations between AE events, productivity law) have been already reported in the literature; the time
correlations analyzed here cannot be compared directly to aftershock analyses in earthquake studies, as
there is no information about the location of events, or about spatio-temporal correlations; and, finally,
the “foreshock” rates are close to the “aftershock” rates, in striking contrast with earthquakes. For these
reasons, I would suggest to significantly understate this claim in the paper, and instead maybe focus more
on some others interesting points (some are listed below).

AR: We thank the Reviewer the careful assessment and positive evaluation of our work and for acknowledging the
main findings of our paper. We absolutely agree with most of the statements of the Reviewer, however there
are two points, where we would like to add a few comments:

• The Reviewer claims that the observed scaling laws were already reported in the literature. Indeed,
we have referenced these works performed on bulk samples in the original manuscript. However, the
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current set-up allowed us to measure the Omori and productivity laws to much higher precision, to
undoubtedly conclude about the power-law behaviour and to obtain the values of the scaling exponents.
We believe that these are significant advancements to prior experiments from the perspective of our
physical understanding of dislocation avalanches.

• The Reviewer has doubts about the analogy with earthquakes partly because of the lack of information
on the location or spatio-temporal correlations of the events. We agree with the Reviewer that this
information is crucial for the comparison. However, in the following we argue that we do have
information on such correlations. To start with, strain bursts proceed in discrete events localized in
distinct slip bands. This is clearly visible in Supplementary Video 1, where one may conclude by visual
inspection that during a stress drop deformation indeed takes place in a single slip band. Since our
experiments revealed that a stress drop is, in fact, a sequence of avalanches as measured by AE, we
conclude that these AE events originate from the same slip band. We considered this finding as a proof
for spatio-temporal correlations, and to be one supporting the analogy with earthquakes. This was the
reason for conducting the edge detection described in the Methods section where we analysed a single
event that confirmed the result of the visual inspection.

On the other hand, we agree with the Reviewer that this analysis should have been performed in a
more general and convincing way. So, we extended the manuscript with a detailed analysis on the
localization of the plastic deformation during stress drops. Please find details below, especially at our
answer to comment #11.

Regarding the second concern about the similarity between fore-shock and after-shock rates, and its
inconsistency with earthquakes, we would like to thank the Reviewer for these comments. In the
revised manuscript this discrepancy is clearly discussed, in particular, when it comes to the analogy
with earthquakes. See also our response to comment #4 below.

We especially thank the Reviewer for her/his numerous detailed and specific comments that we address below.

RC: 1. L25-27: this is not always the case, and depends on the material (see ref. 28).

AR: Indeed, the experiments of the referred papers were conducted on ice single crystals with HCP structure. We
now state explicitly the material in the specific sentence.

It was found that in bulk
:::
ice single crystals the recorded AE signal is burst-like and the energy associated

with individual bursts follows a scale-free distribution[15, 16].

RC: 2. L65-66, and more generally about the evolution of stress and strain during an “avalanche”. As shown
on Extended Data Fig 6, the characteristics of the loading device implies that an avalanche is character-
ized by both a stress drop ?? and a strain increment, which is classical for such type of experiment on
micropillars. Consequently, the stress drop is maybe not the best measure of the strain energy released
during the avalanche. An estimate of this strain energy should combine the evolution of both stress and
strain. If the slope of the descending parts of the curves of Extended data Fig 6 is constant, and is simply
a measure of the stiffness of the machine, then the released energy should scale as ∆σ2. In any case, on
figure 2, it might be more judicious to discuss the scaling between AE energy and this strain energy, not
the stress drop itself. On this figure 2, the authors report a scaling EAE ∼ [(∆σ)]1.2, which would mean
EAE ∼ (∆σ2)0.6. In other words, this would suggest that the AE energy scales with, but is not propor-
tional to, the released strain energy. This differs from what is generally assumed to interpret AE data in
the lab. This is reminiscent of the debate about seismic efficiency of earthquakes (e.g. [Kanamori and
Brodsky, 2004 [17]]). This point is essential for a comparison of dislocation avalanches as observed from
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AE, or directly from stress-strain curves in µm- to subµm-systems. It would therefore merit, in my opinion,
a more thorough investigation from this novel dataset (maybe complemented with DDD simulations ?).

AR: The issue raised by the Referee is indeed a central question both for earthquakes and also for acoustic emission
measurements. In the original manuscript, due to space limitations, we did not enter into this discussion in
detail, but we agree with the Referee, that an analysis on the energetics of the AE signals would make the
paper even more interesting.

We start by noticing that there are three relevant energy quantities one may look at. The first one we call
injected energy and is the work done by the compression device during an event:

Einj = F∆s ≈ σ0 + σ1
2

A∆s, (5)

where F̄ is the average force exerted by the device, ∆s is the displacement of the punch tip, σ0 and σ1 are
the stresses before and after the event and A stands for the cross-section of the sample. This expression is
equivalent to Eq. (3.14) in the referenced review article [17] where it is termed potential energy. If we assume
a quick event with a stress drop of ∆σ = σ0 − σ1, then

Einj ≈
A

k
(σ0 −∆σ/2)∆σ ∝ (σ0 −∆σ/2)∆σ, (6)

where k is the stiffness of the device. This scaling is different from the one suggested by the Referee (that is,
E ∝ (∆σ)2), which would hold if the stress drop magnitude was comparable with the applied stress itself.

This work Einj is not necessarily equal with the dissipated energy, since the energy stored as elastic energy
may change during an event. The second relevant energetic quantity is, therefore, the dissipated energy that
actually equals the change of the elastic stored energy of the system (in this sense, the external work initially
increases the elastic energy of the sample part of which then gets released due to plastic processes). Assuming
a v ∝ σ linear relationship between the local stress and the drag acting on dislocations, the change in the
elastic energy can be written in the form:

Edis ∝
N∑
i=1

t1∫
t0

v2i lidt, (7)

where t0 and t1 mark the beginning and the end of an event, respectively, and vi and li are the velocity and
length of the ith dislocation or dislocation segment, respectively. This formula is the analogue of Eq. (3.12)
of [17], that is termed radiated energy for earthquakes.

The dissipated energy may create, e.g., heat or elastic waves. With an acoustic transducer some part of the
energy released in the form of elastic waves can be detected (denoted by E in the manuscript). Here we arrive
at the issue of efficiency mentioned by the Referee. It is, of course, not known what portion of the dissipated
energy gets converted into elastic waves and what fraction of it can be measured at the surface. Here we
make the simplest and most straightforward assumption that this ratio does not depend on the energy of the
event, so, the measured AE energies are representative of the released energy: E ∝ Edis. We note that our
situation is somewhat simpler than earthquakes since here only one type of deformation is active contrary to
earthquakes where rupture and thermally activated processes may also play a role.

Concerning the relationship between Einj and Edis the natural assumption is again a linear dependency in the
average sense. This idea, however, can be tested by the DDD simulations as there we have direct access to
microstructural data, i.e., dislocation positions and velocities. It is evident from Fig. 2 below that Edis ∝ Einj
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holds, but scaling with (∆σ′)2 is not linear and yields a larger scatter for large events. In addition, events with
larger stresses (i.e., with brownish colour) dissipate more energy which is not accounted for if only (∆σ′)2 is
considered as variable.
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Figure 2: a, Relationship between the injected energy Einj (that is, external work) and the dissipated elastic
energy Edis for individual events in 2D DDD simulations. b, Identical plot with squared stress drop size as
variable. A clear deviation from the linear relationship is observed.

In the case of experiments only the injected energy Einj and the detected acoustic energy E can be measured.
In Fig. 3 we plot the two quantities against each other for individual events. As seen, in this case a linear
relationship between Einj and E is obtained that seem to match the assumptions mentioned above. It is noted,
that in the original manuscript the stress drop was used as a variable because during experiments only a weak
hardening is observed, so the stress σ does not vary much. The current re-analysis of the data, suggested by
the Referee, clearly shows that the variations of the stress do play some role, and the consideration of this
effect leads to a better understanding of the energetics of dislocation avalanches. We also note, that scaling
against (∆σ)2, similarly to the DDD simulations mentioned above, is not conclusive (see Fig. 3(b)).
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Figure 3: a, Relationship between the injected energy Einj (that is, external work) and the measured AE
energy E for individual events in microcompression experiments. b, Identical plot with squared stress drop
size as variable. A clear deviation from the linear relationship is observed.

Several modifications were made in the resubmitted material. Firstly, the corresponding paragraph on
experiments in the main text was modified as:
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The facts that (i) stress drops ∆σ and AE energiesE are detected in a correlated manner, (ii) both obey
a scale-free distribution and (iii) the exponents are relatively close to each other suggest that there is
a physical relation between them. To shed light on such a link, Fig. 2c provides a scatter plot of ∆σ
and E corresponding to the individual stress drops (given that at least one AE event was detected
during the stress drop) for d = 32 µ m pillars (for smaller pillar sizes see Extended Data Fig. 3). As
said above, several AE events may be detected during a single drop. In such cases the energies of the
corresponding AE events are added. As seen, there is a large scatter between ∆σ and E but, clearly,
larger stress drops tend to emit signals with larger energies also expressed by the Pearson correlation
found to be 0.5± 0.1. If one, however, bins the data with respect to the stress drop size a clear
power-law relation E ∝ ∆ση is obtained between the two quantities with η = 1.2± 0.2. This can be
rationalized by assumingP (E)dE = P (∆σ)d∆σ yielding the relation η = (τσ − 1)/(τE − 1) which
is fulfilled by the measured exponents within error margins. This means that although a one-to-one
correspondence between E and ∆σ does not exist, there is a close to linear relationship in the average
sense that allows one to obtain the distribution of the stress drops (that are proportional to the plastic
strain induced by the local deformation event) from the statistics of the AE events.

:::
The

::::
facts

::::
that

::
(i)

:::::
stress

:::::
drops

:::
∆σ

:::
and

:::
AE

:::::::
energies

::
E
:::
are

:::::::
detected

::
in
::
a
::::::::
correlated

:::::::
manner,

:::
(ii)

::::
both

::::
obey

:
a
::::::::
scale-free

::::::::::
distribution

:::
and

::::
(iii)

:::
the

:::::::::
exponents

:::
are

::::::::
relatively

::::
close

:::
to

::::
each

::::
other

:::::::
suggest

::::
that

::::
there

::
is

:
a
:::::::
physical

:::::::
relation

:::::::
between

:::::
them.

:::
To

::::
shed

:::::
light

::
on

::::
such

::
a
::::
link,

::::
Fig.

::
2c

::::::::
provides

:
a
::::::
scatter

::::
plot

::
of

:::
the

::::::::::::
injected energy

::::
Einj:::

and
:::
the

:::::::
detected

::::
AE

:::::
energy

::
E
::::::::::::
corresponding

::
to

:::
the

:::::::::
individual

:::::
stress

:::::
drops

:::::
(given

:::
that

::
at

::::
least

:::
one

:::
AE

:::::
event

::::
was

:::::::
detected

:::::
during

:::
the

:::::
stress

:::::
drop)

:::
for

::::::
d = 32

:::
µm

::::::
pillars

:::
(for

::::::
smaller

:::::
pillar

::::
sizes

:::
see

::::::::
Extended

:::::
Data

::::
Fig.

:::
3).

::::
The

:::::::
injected

::::::
energy

:::::
refers

:::
to

:::
the

:::::
work

::::
done

:::
by

:::
the

:::::::::::
compression

:::::
device

::::::
during

:
a
:::::
stress

:::::
drop

:::
and

::
is

::::::::::
proportional

::::
with

::::::::::::::::::::
Einj ∝ (σ −∆σ/2)∆σ

::::
with

::
σ

:::::
being

:::
the

::::::
applied

::::
stress

::
at
:::
the

:::::
onset

::
of

:::
the

:::::
event

::::
(see

:::::::::
‘Energetic

::::::::::::
considerations’

:::
in

:::::::
Methods

:::
for

::::::
details

:::
and

::::::::::
background

:::::::::
discussion).

:::
As

::::
said

::::::
above,

::::::
several

:::
AE

:::::
events

::::
may

:::
be

:::::::
detected

::::::
during

:
a
:::::
single

:::::
drop.

::
In

::::
such

:::::
cases

:::
the

:::::::
energies

::
of

:::
the

:::::::::::
corresponding

::::
AE

:::::
events

:::
are

::::::
added.

::
As

:::::
seen,

::::
there

::
is

:
a
:::::
large

:::::
scatter

:::::::
between

::::
∆σ

:::
and

::
E

:::
but,

::::::
clearly,

:::::
stress

:::::
drops

::::
with

::::::
larger

::::::
injected

::::::
energy

::::
Einj::::

tend
::
to

::::
emit

::::
AE

::::::
signals

::::
with

:::::
larger

:::::::
energies

:::
also

:::::::::
expressed

::
by

:::
the

:::::::
Pearson

:::::::::
correlation

::::::
found

::
to

::
be

:::::::::
0.5± 0.1.

::
If
::::
one,

::::::::
however,

::::
bins

:::
the

::::
data

::::
with

::::::
respect

::
to

:::
the

:::::::
injected

::::::
energy

::
a
::::
clear

:::::::::::::
close-to-linear

::::::::::
dependence

::::::::
E ∝ Einj::

is
::::::::
obtained

:::::::
between

:::
the

:::
two

:::::::::
quantities.

::::
This

::::::
means

:::
that

::::::::
although

:
a
::::::::::

one-to-one
:::::::::::::
correspondence

:::::::
between

::
E

::::
and

::::
Einj ::::

does
:::
not

::::
exist,

:::::
there

::
is

:
a
:::::
linear

::::::::::
relationship

::
in

:::
the

:::::::
average

::::
sense

::::
that

:::::
allows

::::
one

::
to

:::::
obtain

:::
the

::::::::::
distribution

::
of

:::
the

::::
local

::::::
energy

::::::
release

::::
(that

::
is

::::::::::
proportional

::
to

:::
the

::::::
plastic

:::::
strain

::::::::
increment

:::::::::
multiplied

::::
with

:::
the

::::
local

:::::
stress

:::::
during

::
a

::::
local

::::::::::
deformation

::::::
event)

::::
from

:::
the

:::::::
statistics

:::
of

:::
the

:::
AE

::::::
events.

Secondly, the corresponding paragraph on simulations in the main text was modified as:

It has been known that size distribution of dislocation avalanches exhibits a different exponent in
simulations compared to the real samples [18, 19], yet, the temporal clustering of the simulated AE
events shows very similar behaviour to experiments in terms of the correlation between stress jumps

::::::
injected

::::::::
energies and the AE energies (Fig. 4c), Omori law (Fig. 4d), and waiting time distribution

(Fig. 4e).

Thirdly, Figs. 2c, 4c and Extended Data Fig. 3 were replaced according to our answer above. The corre-
sponding captions were also adjusted. Finally, the discussion above is now included in the Methods as a new
subsection ‘Energetic considerations’.

RC: 3. L75-77 and Figures 1c to 1e: these key figures are too small, and so it is difficult for the reader to
appreciate this discussion. I might suggest to separate these figures from figure 1a. It might be also
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useful to represent as well the AE activity vs the strain (not time); see comment #2 above.

We agree with the Referee that Figures 1c-1e are crucial for the message of the paper. They would indeed
deserve to be separated, they were grouped with panels 1a and 1b only because Nature Communications
prefers the number of displayed items not to exceed 4 and they also belong together conceptually. In the
revised manuscript we rearranged the panels of Fig. 1 to increase the size of panels 1c-1e.

Concerning the second suggestion of the Referee we agree that it would be useful to use strain as a variable
instead of time. The problem is, that the sampling rate of the strain measurement (200 Hz) is significantly
lower than that of the AE measurements (2.5 MHz). Since the AE events indeed take place on a shorter
time-scale than the resolution of strain measurements (see Fig. 1e), one could only plot the AE signals on a
stress-strain curve using some interpolation which, in our opinion, could be misleading in the representation
of the measured data. We, therefore, kept time as a variable in Figs. 1c-1e, and refer the Referee to Extended
Data Fig. 7 for the stress-strain curves of the measurements. We also include below the stress-strain curve of
the same pillar investigated in Figs. 1c-1e.
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Figure 4: Stress-strain curve of the micropillar investigated in Fig. 1c-1e in the main text. The inset plots a
magnified view of a section of the main curve. As seen, stress drops are here seen as straight lines with a
slope characteristic to the spring constant of the device (shown also by the grey parallel curves for clarity).

RC: 4. Figure 3, and aftershock analysis. The results reported on figure 3 are a clear signature of time
correlations in dislocations dynamics. Such type of correlations were already characterized in another
hexagonal material at bulk scale [Weiss and Miguel, 2004 [20]]. However, correlation is distinct from
causality, i.e., in this context, from mechanical triggering. In case of earthquakes, the causal structure
can be inferred from seismic data using a specific methodology (see [Marsan and Lengliné, 2008 [21]]
or [Houdoux et al., 2021 [22]]). However, this requires an information about the location of the slip
events, which is not available here. It is therefore difficult to discuss these results in terms of “aftershock
triggering” stricto sensu. In addition, a comparison of figures 3a and 3c show a rather symmetric pattern,
i.e. a “foreshock rate” close to the “aftershock rate”. This is fundamentally different from earthquakes.
This might result from the ambiguity to define “mainshocks” from the present data. In conclusion, these
data reveal time correlations in dislocation dynamics, characterized by a power law decay, up to a time
scale of the order of the duration of stress drops, i.e. “avalanches” defined from the stress-strain curves.
Concerning this power law decay, another point should be scrutinized: owing to the loading apparatus
(and its intrinsic stiffness) as well as the finite sample size, the triggering of an avalanche implies a
stress drop during the avalanches (as observed here). Considering that, at the local level, the stress
controls the unpinning of dislocations as well as their velocity, this decaying stress must have an impact
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on the rate of dislocation activity during such a stress drop. In other words, there is a coupling between
dislocation avalanches and the dynamics of the global elastic system, and it would be useful to analyze the
potential impact of this coupling on the time correlations reported above. More generally, these results
reveal a two-levels structure of short bursts (measured from AE and correlated in time) embedded within
larger instabilities leading to system-size stress drops. There is a clear link between large AE rates and
these large instabilities, both AE bursts and large avalanches are power-law distributed, while AE bursts
are correlated in time, but not the large instabilities. All of this is potentially of great interest for our
understanding of dislocation dynamics in general, more particularly in µm- to sub-µm systems, and for
the interpretation of micropillar compression tests. In my opinion, this would deserve a longer discussion
in this manuscript.

AR: We sincerely thank the Referee for these suggestions that intend to help in deepening the discussion of
the paper to make it even more interesting. Indeed, spatial correlations are crucial in the comparison with
earthquakes. As the Referee says, an analysis analogous with [Marsan and Lengliné, 2008 [21]] is impossible
since the exact location of the origin of the AE signals is not possible to determine in such a small volume and
with a single transducer. However, we still believe that spatial correlations are present and that the analogy
with earthquakes is not solely based on the similarities in the fundamental empirical laws. As detailed in the
original manuscript, the cascade of correlated AE events comes from a single stress drop. These stress drops,
on the other hand, typically correspond to the appearance of one slip band on the surface of the pillar. This
statement was based on the visual inspection of Supplementary Video 1 [szk: maybe we can tone it down
a bit by stating that at the currently available resolution and frame rate of the sem image, this is the direct
conclusion that we can make. It is possible that not only one slip band is activated, but we can only see those
that succeed the resolution limit of the imaging.] and on the analysis of a single stress drop in Fig. 1b (the
corresponding discussion can be found in the section ‘Edge detection’ of the Supplementary Material). Since
the source of AE signals can be assumed to be plastic deformation, these two observations clearly suggest
that correlated AE events originate from a single slip band, in this sense they are spatially not random but
strongly correlated. As said above, an even more detailed analysis on the correlations is impossible with the
current experimental capabilities.

We, however, agree with the Referee that the second statement, that was based on visual inspection and
the analysis of a single event, should be supported by somewhat stronger arguments. In addition, spatial
correlations and their importance was not really discussed in the original manuscript.

Spurred by the Referee, we analysed the evolution of the micropillar surface to quantify the statement of ‘every
stress drop corresponds to the appearance of a single slip band’. The details of the analysis are summarized
below in our response to the Referee comment #9.

Regarding the asymmetry between the foreshock and aftershock rates we agree with the Referee, that although
there is a difference of a factor of approximately 2 between the two rates, but this is significantly smaller than
that seen for earthquakes. We also agree that the reason for this could be the ambiguity to define ‘mainshocks’
from the present data, as the measured AE energies may be the subject of larger error than the energies
measured for earthquakes. This issue is now discussed in detail in the revised manuscript. We also included
the missing reference [20] mentioned by the Referee:

As a further proof of equivalence, Fig. 3c plots the correspondent of the ‘inverse Omori law’ de-
scribing the power-law increase in the rate of foreshocks rfs before a main shock [23]. (Extended
Data Fig. 4 shows the corresponding figures for smaller pillars.)

:::::::::
Previously,

:
a
:::::::

similar
:::::::
analysis

::
of

:::
AE

::
on

:::::::::
hexagonal

:::
ice

:::
at

:::
the

::::
bulk

:::::
scale

::::
also

::::::
showed

:::::::::
increased

::::::::
triggering

:::::
after

::::
large

:::::::
events,

:::
but

:::
the
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::::::::
scale-free

::::::::::::
characteristics

::::::::
presented

::::
here

:::::
were

:::
not

:::::::
possible

::
to

::::::
obtain,

::::::
likely

:::::::
because

::
of

:::
the

::::::::
relatively

::::
high

::::
level

::
of

:::::
noise

::::
[20].

::
It

:
is
::::
also

::::::
noted,

:::
that

:::
the

::::::::
difference

:::::::
between

:::
the

:::::::::
foreshock

:::
and

:::::::::
aftershock

::::
rates

:
is
:::::::::::
significantly

::::::
smaller

:::::::::
compared

::
to

:::
that

::
of

:::::::::::
earthquakes.

::
It

::
is

:::::::::
speculated,

::::
that

:::
the

::::::::
difference

::
is

::::::
caused

::
by

:::
the

::::::::::
inambiguity

::
in
:::
the

::::::::::::
determination

::
of

:::
the

:::::
main

:::::
shock

::::
due

::
to

:::
the

::::
noise

:::::::
present

::
in

:::
the

:::
AE

::::::
energy

:::::::::::
measurement.

As of the last comment of the Referee regarding the physics of the subsequent triggering during an event
cluster that is seen as a single stress drop we argue as follows. The Referee is right that during stress drops
the driving force (that is, the applied stress itself) gets smaller that is expected to reduce the probability of
subsequent triggering. In particular, the stress drop cannot be larger than the actual stress itself, so, there is
definitely a hard barrier related to the stress. However, according to Fig. 2a the stress drops get smaller for
larger systems that indicate that the stress may not be the limiting factor for avalanche propagation. As shown
by the inset, the cut-off in force F0 is independent on the specimen height L = 3d, which then also holds for
the elongation increments x0 = F0/k, with k being the spring constant of the device. The effect of machine
stiffness on the avalanche cut-off was investigated by Csikor et al. [24], they found that the cut-off in strain
obeys scaling:

ε0 ∝
bE

L(Θ + Γ)
, (8)

where Θ and Γ are the strain hardening coefficient and the machine stiffness, respectively. In our case the
machine stiffness is Γ ≈ k/L, since the elastic deformation of the pillar is negligible compared to that of the
spring. Hence, the cut-off in force reads as

F0 = kx0 = kLε0 ∝ bE
k

Θ + k/L
. (9)

The finding that F0 does not depend on L suggests that Θ is significantly larger than k/L. But if we look at the
approximate values we see that k/L ≈ 100 MPa (for a 32 µm pillar) and the average slope of the stress-strain
curves (see Fig. 4 in this response above) is around 50 MPa. To overcome this apparent contradiction we
consider the origin of Θ in the scaling relation above. During a stress drop not only the stress decreases but
also the material gets harder (strain hardening), both processes act to cease the event. This is the reason the
sum of Θ and Γ appear above in Eq. (8). In Ref. [24] Θ was identified with the slope of the stress-strain
curve. We believe, however, that this value is a local quantity and may differ from the global slope. During
the compression of a pillar deformation proceeds in different shear bands. This can be envisaged as a weakest
link process, that is, always the shear band with the lowest yield stress gets activated. After activation strain
accumulates but the deformation stops and another shear band will get activated subsequently. This means
that the yield stress of the activated shear band increases, that is, strain hardening takes place. This hardening
coefficient of this local mechanism is nothing to do with the global coefficient, that also depends on the
number of shear bands and the distribution of the yield stresses of the shear bands. So, we argue, that the Θ in
Eq. (8) may be significantly larger than the global strain hardening coefficient. This could explain why F0 is
independent of the system size and suggests that the local hardening mechanism is dominant in the avalanche
cut-off over the stress decrease due to the applied spring. Whether local hardening is due to dislocation
accumulation or dislocation starvation through the surface is an open question that future TEM investigations
are expected to answer.

The following paragraph was added to the manuscript on the behaviour of the cut-off and the role of stress
relaxation during an event:
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::
As

::::
seen

:::
in

:::
Fig.

:::
2a

:::
the

:::::
stress

:::::
drop

:::
size

::::::::::
distribution

:::::::
exhibits

::
a

::::::
cut-off,

::::
that

::
is,

:::::::::
correlated

::::::::::
consecutive

::::::::
triggering

::::::
during

:
a
:::::
strain

:::::
burst

::
is

:::::::
limited.

::::
The

::::::::
behaviour

:::
of

:::
the

::::::
cut-off,

:::::
thus,

::::
may

::::
shed

::::
light

:::
on

:::
the

::::::
physics

::
of

:::
the

:::::::::
triggering

:::::::::::
mechanisms.

:::
As

::
it
::::
was

:::::::::
mentioned,

:::
the

:::::::
cut-off

::
in

:::::
stress

:::
σ0 ::::::::

decreases
::::
with

::::::::
increasing

:::::
pillar

::::::::
diameter

::
d,

:::
but

:::
the

:::::::
cut-off

::
in

:::::
force

:::::::::
F0 = d2σ0::

is
:::::::::::
independent

::
of

::
d.

::::::::::
According

::
to

:::::
Csikor

:::::
et al.

:::
the

::::::::
physical

:::::
origin

:::
of

:::
the

::::::
cut-off

::
is

:::::
either

::::::
elastic

::::::::
coupling

::
w

:::
the

:::::::::::
compression

::::::
device

::::::
(during

:::
an

:::::
event

:::
the

::::::
applied

::::::
stress

:::::
drops

::::
that

::::::
reduces

::::
the

::::::
driving

:::::
force

::
of

::::
the

:::::
event)

:::
or

:::
the

:::::
strain

::::::::
hardening

::
of

:::
the

:::::::
material

::::::
(during

:::
an

::::
event

::::::
plastic

::::::::::
deformation

::::::
makes

::
the

:::::::
material

::::::
harder

::
so

:::
the

::::::
driving

::::
force

:::::
drops

::
in
::

a
:::::::
relative

:::::::::
sense)[24].

::::::
From

:::
the

::::::::::
comparison

::
of

:::
the

:::::::::
behaviour

::
of

::::
the

::::::
cut-off

::::
with

:::
the

:::::::::
predictions

::
of

::::::
Csikor

:::::
et al.

:::
we

::::::::
conclude

::::
that

::
it
::
is

:::
not

::::
the

:::::::
machine

::::::::
stiffness

:::::
rather

:::
the

:::::
local

:::::
strain

::::::::
hardening

::
in

:::
the

::::::::
activated

:::
slip

::::
band

::
is

::::::::::
responsible

::
for

::::::::
stopping

:::
the

::::::::::
consecutive

::::::::
triggering

:::::
taking

:::::
place

:::::
during

::
a

:::::
stress

::::
drop

:::
(see

::::::::
Methods

:::
for

:
a
:::::::
detailed

::::::::::
discussion).

In addition, Methods was extended with a subsection that contains the extended discussion on the subject.

RC: 5. Figures 3e and 3f. These figures suggest that AE events are correlated in applied strain, not time. A
similar problem was recently explored for the deformation of granular media [Houdoux et al., 2021 [22]].
This distinction is not just semantic; it might be important in terms of underlying physics (in others words,
does time really matter here ?).

AR: We again thank the Referee for this very interesting comment and for drawing our attention to the paper
of Houdoux et al. As we argued in the main text the waiting time distributions in Figs. 3e and 3f can be
split into two parts: the power law regime of small waiting times with exponent 1.2 corresponds to AE
signals originating from the same plastic event (and they are correlated) whereas the Poisson distribution of
larger waiting times correspond to uncorrelated signals coming from different plastic events. As the platen
velocity is decreased, the rate of plastic events (stress drops) decreases, too, which leads to the proportional
increase of the waiting times. So, in this sense this is true that strain matters, but here we are talking about the
uncorrelated, that is, independent events, so, this is not related to any kind of relaxation or triggering.

As far as correlated events are concerned where subsequent triggering is assumed to take place one should
inspect the power-law part of the recurrence time distributions. Here, however, the curves overlap both before
and after re-scaling because of the exponent being close to 1. So from the present data is seems not possible
to decide whether time or strain matters here. We included the following brief discussion on this matter in the
revised manuscript at the end of Sec. ‘Aftershock and foreshock statistics’.

:::::::
Recently,

:::::::::
Houdoux

:::::
et al.

::::::::::
investigated

::::
the

::::::
plastic

::::::::
response

::
of

::::::::
granular

:::::::
systems

::::
that

::::
also

:::::::
showed

:::::::::
remarkable

:::::::
analogy

::::
with

::::::::::
earthquakes

::::
[25].

:::::
They

::::::::
concluded

::::
that

::
in

:::
the

::::::::
triggering

::
of

::::::::::
subsequent

:::::
events

:
it
::
is

:::
not

:::
the

::::
time

:::
but

:::::
rather

:::
the

:::::
strain

:::
that

:::::::
matters.

::
In

::::
our

::::
case,

::::::::
however,

::::::
because

:::
the

::::::::
exponent

:::::
1− γ

::
is

:::::
rather

::::
close

::
to

::::
one,

:::
one

::::::
cannot

::::::
decide

:::::::
whether

:::
time

:::::
(Fig.

:::
3e)

::
or

:::::
strain

::::
(Fig.

:::
3f)

::::::
matters

::
in

:::
the

::::::::
triggering

::::::::::
mechanism.

RC: 6. Modelling: The DDD simulations are run using periodic boundary conditions. However, in µm to
sub-µm pillars, finite size effects are likely playing an important role, changing the nature of dislocation
sources, of nucleation mechanisms, etc. A comment on this would be welcome.

AR: Indeed, in nanopillars it was found that exhaustion hardening as well as dislocation source truncation
represent key physics in the plastic deformation that lead to size-effects. These single-dislocation properties
are important at scales comparable or smaller than the average dislocation spacing, in our case being around
ρ−0.5 ≈ 0.1 µm. In our experiments the micropillars are rather large (8 − 32 µm) compared to previous
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studies, and at this scale collective dislocation dynamics is expected to dominate plasticity and boundary
effects can be neglected. This explains our choice for the PBCs that allowed us to concentrate on collective
dislocation phenomena.

The following paragraph was added to Sec. ‘Discrete dislocation dynamics’ in the Methods:

::::
With

:::
the

::::::::::
application

::
of

:::
the

:::::
PBCs

:::::::
surface

::::::
effects

:::
that

::::
may

:::
be

::::::::
important

:::
for

:::::
small

:::::
scale

:::::::
samples

:::
are

::::::::
neglected

::
in

:::
the

::::::::::
simulations.

:::::::
Indeed,

:::
in

:::::::::
nanopillars

::
it
::::
was

:::::
found

::::
that

:::::::::
exhaustion

:::::::::
hardening

::::
[13]

::
as

:::
well

:::
as

:::::::::
dislocation

::::::
source

:::::::::
truncation

::::
[14]

::::::::
represent

:::
key

:::::::
physics

::
in

:::
the

::::::
plastic

::::::::::
deformation

::::
that

::::
lead

::
to

::::::::::
size-effects.

:::::
These

:::::::::::::::
single-dislocation

::::::::
properties

:::
are

::::::::
important

::
at
::::::
scales

::::::::::
comparable

::
or

::::::
smaller

::::
than

::
the

:::::::
average

::::::::::
dislocation

:::::::
spacing,

::
in

::::
our

::::
case

:::::
being

::::::
around

::::::::::
ρ−0.5 ≈ 0.1

::::
µm.

:::
In

::::
our

::::::::::
experiments

:::
the

::::::::::
micropillars

:::
are

:::::
rather

:::::
large

:::::::
(8− 32

::::
µm)

::::::::
compared

::
to
::::::::

previous
:::::::
studies,

:::
and

::
at
::::

this
:::::
scale

::::::::
collective

:::::::::
dislocation

::::::::
dynamics

::
is

::::::::
expected

::
to

::::::::
dominate

::::::::
plasticity

:::
and

::::::::
boundary

::::::
effects

:::
can

:::
be

:::::::::
neglected.

::::
This

:::::::
explains

:::
our

:::::
choice

:::
for

:::
the

:::::
PBCs

:::
that

:::::::
allowed

::
us

::
to

::::::::::
concentrate

::
on

::::::::
collective

:::::::::
dislocation

::::::::::
phenomena.

::
It

:
is
::::
also

:::::
noted,

::::
that

::
in

::::::::::
experiments

::::::
plastic

::::::::::
deformation

:::::
leads

::
to

:::
the

:::::
shape

::::::
change

::
of

:::
the

::::::
sample

:::
and

::::
may

::::
cause

:::::
some

::::::
lattice

:::::::
rotation.

::::::
These

::::::
effects

:::
are

:::
not

:::::::
expected

:::
to

::::
have

:
a
:::::::::

significant
::::
role

::
in

:::
the

::::::::
observed

::::::::
dynamics

:::
and

:::
are

::::::::
neglected

::
in

:::
the

::::::::::
simulations.

RC: 7. L204-205: OK for HCP materials. This might be quite different for FCC or BCC materials, for which
short-range mechanisms are expected to play a significant role.

AR: We referred here to the current situation of Zn micropillars, but we agree with the Referee that in materials
with different crystal structure this behaviour may differ. We clarified the referred sentence as:

We thus conclude, that the complex dynamic behaviour observed in
::
the experiments

:::::::
reported

::
in

:::
this

::::
paper is the result of the spatio-temporal correlations of the dislocations due to their long-range elastic
interactions and the lack of short-range mechanisms, such as dislocation reactions.

For the discussion on differences between HCP and FCC/BCC materials see the following comment.

RC: 8. L211-212: “and most likely crystalline metals/solids in general”. I disagree on this statement. FCC
and BCC metals do not exhibit such scale-free dynamics in general [Weiss et al., 2021 [26]; Zhang et al.,
2017 [11]]

AR: We again agree with the Referee that this is a somewhat misleading formulation. We emphasize that we
did mention in the original manuscript that multiple slip (and high temperature) leads to different critical
behaviour. In the resubmitted material we removed the criticised misleading comment, explicitly stated the
influence of crystal structure and made a reference to the paper mentioned by the Referee. The performed
modifications are as follows:

The experiments and simulations reported here prove this long-standing hypothesis and reinforce that
intermittency and scale-invariance characterizing plastic deformation of HCP single crystals (and, most
likely, crystalline metals/solids in general) are related to the self-organized critical (SOC) behaviour of
dislocations. In addition, we showed that plastic events, similarly to earthquakes, do not only exhibit
spatial but also temporal clustering with long-range correlations, however, the involved length and
timescales are profoundly different, as summarized in Extended Data Table 2. This phenomenon also
raises analogy with many other physical systems exhibiting crackling noise [9]. It is known, however,
that SOC behaviour is not ubiquitous in crystal plasticity, for instance, it is suppressed

:
in

::::::::
materials

::::
with

::::
FCC

:::
and

:::::
BCC

::::::
crystal

:::::::
structure

:::
and under multiple slip conditions

::::
likely

:::::::
because

::
of

::::::::::
short-range
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:::::::::
interactions

::::::
related

::
to

::::::::::
dislocation

:::::::
reactions and

:::
also at high temperatures [10, 11, 12].

RC: 9. L214: spatial correlations were not analyzed here.

AR: Please see our response below for comment #11.

RC: 10. L302: Could the authors give the corresponding applied strain-rate ?

AR: The platen velocity during the compression tests was (apart from the analysis focusing on the waiting time
statistics) constant (vp = 10 nm/s), therefore the strain rates for the three different sized micropillars were
between ε̇ = 1× 10−4 − 4× 10−4 1/s.

RC: 11. Section on “Edge detection”. This section describes a nice example showing the activation of a single
slip band associated to a single stress drop (see also Fig 1). It is however not clear whether the authors
performed such image analysis at a regular periodicity ? or just for few examples of stress drops.

AR: As we mentioned above in our response to Referee comment #4, the edge detection was performed for one
stress drop, and we made our conclusion that stress drops correspond to the appearance of a single slip band
based on the visual inspection of Supplementary Video 1.

We agree, however, that this conjecture is crucial for the comparison with earthquakes (as spatial correlations
are inherent properties of earthquake clusters), therefore, a quantitative analysis is required that supports this
finding. We have now, therefore, analysed the shape change of the micropillars for every plastic event during
the course of a compression experiment using the SEM images. The analysis is based on the edge detection
summarized in the Supplementary Material. The aim is to give an estimation on how much is the plastic
deformation occurring between two consecutive SEM images is localised, that is, taking place in a single slip
band.

To this end, we started from the raw edge profile xraw(z, t) obtained from the edge detection. This curve
contains outliers due to the noise present in the backscattered electron images of the SEM. To reduce this
noise we applied a median based smoothing algorithm: If the distance of a point from the median of its upper
and lower neighbours (7 – 7 pixels) was greater than 2 µm, than it was replaced by the median. Otherwise the
original value was kept. The resulting curve is denoted by x(z, t). This method efficiently reduced the noise
as seen in the updated Extended Data Fig. 8 (curves with colours from yellow to blue). Next, the difference
between consecutive images were computed as ∆xraw(z, t) = x(z, t+ ∆t)− x(z, t), where ∆t is the time
needed to record an SEM image (∼ 0.25 s in our case). An exemplary such differential curve is seen in
Extended Data Fig. 8 (pink curve on the right-hand-side).

This curve was still rather noisy to determine how localized the deformation was. We, therefore, calculated
the moving average with a window size of 15 pixels and then applied a moving median smoothing with a
window size of 61 pixels. Finally, we made the curves monotonous, since slip in the opposite direction was
not observed in the experiments. Three representative exemplary so obtained ∆x(z, t) curves can be seen
below in the bottom row of Fig. 5.

The obtained profiles usually exhibit a single slip band, but sometimes more than one step in the profile is
seen. To quantify to what extent is the deformation localized we use the method of Ref. [27]. Namely, we
first note, that ∆x(z, t) is defined on an equidistant grid of the individual pixels of the SEM image. Let
the discretized profile be denoted as ∆xi (for simplicity we omit the reference to time t). The local strain
increment is then ∆εpl

i = ∆xi+1 −∆xi. We now select an arbitrary point with index k along the height of
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the pillar and consider the typical distance of the plastic strain increments from this point as:

dk =

∑
i ∆εpl

i |k − i|∆z∑
i ∆εpl

i

, (10)

where ∆z is the pixel size of the SEM image. Then the minimum dmin = minkdk is determined. For a
homogeneous distribution of the plastic strain (i.e., ∆x(z) is a linear function) dmin equals L/4, where L is
the height of the micropillar. On the other hand, for a fully localized strain distribution (i.e., ∆x(z) is a step
function) dmin = 0 is obtained. The localization parameter is, therefore, defined as

η = 1− 4

L
dmin. (11)

Consequently, η = 0 signals a homogeneous deformation, whereas η = 1 is characteristic of deformation
fully localized in a single slip band.

Figure 5 summarizes the analysis performed on those consecutive images, where the event size defined as
∆x(L)−∆x(0) (that is, the displacement between the top and bottom of the pillar) was larger than 0.02 µm.
As seen the localization η is typically between 0.5 and 1 and its average is 〈η〉 = 0.74. This high value of η
clearly shows that plastic strain increments are quite localized. The fact that the values are smaller than 1 are
likely due to the numerical noise present in the edge detection and that between two consecutive SEM images
(that takes around 0.25 s) more than one events can take place.

So, based on this analysis we conclude that the plastic strain increments are highly localized, typically
concentrating in a single slip band. Since the AE events are observed during the accumulation of plastic
strain, it is natural to assume that a cascade of events correlated in time originate from the same (typically
one, sometimes few) slip band. This means these events are not only correlated in time, but also in space.
More details on the spatial correlations are not possible to obtain with the present experimental methods due
to the small volume of the specimen.

Based on this discussion the following paragraph was added to the main text of the manuscript:

:::::
These

:::::
results

::::::
unveil

::
an

:::::::::
interesting

::::::::
two-level

:::::::
structure

::
of

::::::
plastic

:::::::
activity:

:::::::::::
accumulation

::
of
::::::
plastic

:::::
strain

:
is
::::::::::::
characterized

::
by

:::
the

::::::::::
intermittent

:::::::::
appearance

:::
of

::::::::::
uncorrelated

::::
slip

:::::
bands.

::::::
These

:::::
strain

:::::
bursts

::::::
induce

::::
stress

::::::
drops

:::
due

::
to

:::
the

::::::::
stiffness

::
of

:::
the

:::::::::::
compression

::::::
device.

::::
But

:::
AE

::::::::::::
measurements

::::::
reveal

:::
that

:::::
these

::::
strain

::::::
bursts

:::::::::
themselves

:::
are

:::::::::::
characterized

:::
by

:
a
::::::::
sequence

::
of

:::::
local

:::::
events

::::
with

::::::::
complex

::::::::::::
spatiotemporal

::::::::
dynamics.

:::::::
Firstly,

::::::
Omori

::::
law

::::
and

:::
the

:::::::
waiting

::::
time

:::::::::::
distributions

:::::
report

::::::
about

::::::::
scale-free

::::::::
temporal

::::::::::
correlations.

::::::::
Secondly,

:::::
since

:::::
strain

:::::::::
increments

::::::
during

:::::
stress

:::::
drops

:::
are

::::::::
localized

::
in

::::::
distinct

::::
slip

:::::
bands

:::
(see

:::::::::::::
Supplementary

:::::
video

::
1)

:::
and

::::::
plastic

::::::
activity

::::
was

:::::
found

::
to

::
be

::::::::::
responsible

::
for

::::
AE,

:::
one

:::
can

::::::::
conclude

:::
that

:::
the

::::::::
correlated

:::
AE

::::::
events

:::::::
originate

:::::
from

:
a
:::::
single

::::
slip

::::
band,

::::
that

::
is,

::::
they

:::
are

:::
not

::::
only

:::::::::
temporally

:::
but

:::
also

::::::::
spatially

:::::::::
correlated.

:::
To

:::::::
quantify

:::
this

::::::::::
observation

:::
the

:::::
strain

:::::::::
evolution

:::::::
between

:::::::::
subsequent

:::::
SEM

::::::
images

:::::
during

:::
the

::::::
in situ

::::::::::
compression

::::
was

::::::::
analyzed

::
in

:::
the

:::::::
Methods

::::
(see

::::::
section

::::::
‘Strain

:::::::::::
localization’)

:::
and

:::
we

:::::::::
concluded

::::
that

:::::::::::
deformation

::::::
during

:
a
::::::

single
:::::
stress

:::::
drop

::
is

::::::
indeed

::::::
highly

::::::::
localized

::::
and

::
is

:::::::
typically

:::::::::::
concentrated

::
in

:::
one

::
or

:::::::::
sometimes

::::
few

::::::::
individual

::::
slip

:::::
bands.

In addition the detailed discussion of this response was added to Methods as a separate subsection ‘Strain
localization’. Figure 5 was also added to methods as Extended Data Fig. 10. Finally a new Supplementary
Video 4 was also added that demonstrates how the edge detection algorithm works.

RC: 12. Extended figure 13: it would nice to show the evolution of the stress as well here.
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Figure 5: Top row: Localization parameter η as a function of time t and event size ∆x(L) −∆x(0). The
color scale refers to the event size in the left panel. The right panel plots the distribution of the localization
parameter η. Bottom row: Three exemplary ∆xraw(z, t) (light gray) and the corresponding ∆x(z, t) (blue)
profiles obtained using the method described in the text. The datapoints corresponding to the curves are
circled with the same colour as the frame of the figures.

AR: The image, now called Extended Data Fig. 15, has been modified in the revised material and the evolution of
the stress is now also shown along the energy dissipation rate.

RC: Refs.:
Houdoux, D., A. Amon, D. Marsan, J. Weiss, and J. Crassous (2021), Micro-slips in an experimental
granular shear band replicate the spatiotemporal characteristics of natural earthquakes, Communica-
tions Earth & Environment, 2(1), 1-11.
Kanamori, H., and E. E. Brodsky (2004), The physics of earthquakes, Reports on Progress in Physics,
67(8), 1429.
Marsan, D., and O. Lengliné (2008), Extending earthquakes’ reach through cascading, Science, 319,
1076-1079.
Weiss, J., and M.-C. Miguel (2004), Dislocation avalanche correlations, Mat. Sci. Eng. A, 387-389(292-
296).
Weiss, J., P. Zhang, O. U. Salman, G. Liu, and L. Truskinovsky (2021), Fluctuations in crystalline plastic-
ity, Comptes Rendus. Physique, 22(S3), 1-37.
Zhang, P., O. G. Salman, J. Y. Zhang, G. Liu, J. Weiss, L. Truskinovsky, and J. Sun (2017), Taming
intermittent plasticity at small length scales, Acta Materiala, 128, 351-364.
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AR: We thank the Reviewer for raising our attention to these papers. They are now cited at the corresponding
parts of the resubmitted paper.
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