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Nomenclature

Notations
G Elastic constant: µ/[2π(1−ν)]

L System size
M Dislocation mobility
N Total number of dislocations in 2D DDD simulations
P Plastic potential
vd Drift velocity
vm Mean velocity

ρ Total (or statistically stored) dislocation density
κ Geometrically necessary dislocation density
αi j Components of the Nye dislocation density tensor
σ Stress
ε Strain
εpl Plastic strain
τ Shear stress
τind Shear stress of an individual straight edge dislocation
τext Externally applied shear stress
τmf Mean field stress
τb Back-stress
τd Diffusion stress
τy Yield stress
γ Shear strain
µ Shear modulus
ν Poisson number

Abbreviations
2D Two-dimensional
3D Three-dimensional
AE Acoustic emission
CA Cellular automaton

i



Nomenclature

CDD Continuum dislocation dynamics
CTD Continuous time dynamics
DDD Discrete dislocation dynamics
EBSD Electron backscatter diffraction
ED Extremal dynamics
FCC Face-centered-cubic
FEM Finite element method
FIB Focused ion beam
GND Geometrically necessary dislocation
HR-EBSD High-resolution electron backscatter diffraction
IPF Inverse pole figure
MFD mean-field depinning
ML Machine learning
PBC Periodic boundary condition
PLC Portevin–Le Chatelier
RD Random dynamics
SCPM Stochastic continuum plasticity model
SEM Scanning electron microscope
SSD Statistically stored dislocation
STEM Scanning transmission electron microscopy
XRD x-ray diffraction
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2 Recent scientific work

2.1 Introduction

Already more than eight decades have passed since it became known that a certain line-like
crystal defect is responsible for the plastic deformation of crystalline materials, the so-called
dislocation (Fig. 2.1) [1–3]. The mechanism, first recognized simultaneously by Orován, Taylor
and Polányi, proved successful in explaining numerous fundamental issues related to plastic-
ity, yet, a vast amount of questions, most notably those related to the collective dynamics of
dislocations, are still to be answered. One of the most known such problems is the pattern for-
mation of dislocations. As well-known, upon deformation dislocations arrange into structures
with properties depending on the type and extent of deformation. Although these patterns play
a fundamental role in the mechanical properties, an in-depth physics-based theory of pattern
formation is still elusive. The main reasons for the lack of such a theory are as follows:

Figure 2.1: Schematics of an edge dislocation moving due to externally applied shear stress.

• Dislocation lines induce long range (1/r-type) stress fields in the material, so, the interac-
tion of distant dislocation pairs cannot be neglected. Consequently, most of the classical
thermodynamical concepts, since they assume short-range interparticle interactions, can-
not be applied.

• The motion of dislocations is non-conservative due to the strong phonon drag. The role
of thermal noise at low temperatures (that is, below approx. one third of the melting
temperature) is negligible.
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• Strong geometrical constrains apply for the motion of dislocation lines, since at low tem-
peratures they can only glide in a certain plane (called glide plane). As a result, the system
cannot reach its ground state, rather, it gets trapped in a meta-stable configuration. This
means, that dislocation systems at low temperatures are far from equilibrium.

However, in the engineering practice it is essential to employ models that predict plastic
deformation to certain precision. To fulfil this demand, several phenomenological models have
been proposed that do not address the difficulties mentioned above thoroughly and usually pro-
vide constitutive relations between the stress, strain, strain rate and dislocation densities [4–8].
These models give satisfactory results under various specific conditions and sufficiently large
sample sizes. In materials science currently the most widespread such model is the ‘Crystal
Plasticity Finite Element’ method [9–11] which couples phenomenological plasticity models
with an anisotropic elastic description. The model obtained proved capable of, e.g., modelling
texture evolution in copper [12] or plasticity of nickel-based superalloys [13].

In summary, the phenomenological theories in many cases seem to be capable of describ-
ing the processes involving relevant dislocation motion. However, some of the breakthrough
deformation experiments conducted around the millennium changed this view fundamentally.
On the one hand, it turned out that if a characteristic scale of either the deformation volume or
the sample itself (e.g., size of an indentor tip, size of the specimen, grain size or size of disper-
soids) decreases to 1 µm or below, the mechanical properties start to differ considerably from
the predictions of classical models [14, 15]. This phenomenon in materials science is referred
to as size effect. On the other hand, it also became clear that size effects are accompanied by
stochastic fluctuations. The first indication for this was delivered by acoustic emission (AE)
measurements performed on ice single crystals, where it was found that the size distribution of
the individual events of the burst-like AE signal follows a scale-free distribution [16, 17]. This
suggested that plastic deformation is not a smooth process as phenomenological viscoplastic
theories may suggest, rather deformation is, in fact, the accumulation of numerous independent
scale-free distributed local plastic events. Subsequently, the spatial distribution of these events
was also mapped and it was found that they originate from a fractal-like subvlume of the sample
with dimension ∼2.5 [18].

The next milestone following the AE results described above were the deformation exper-
iments performed on micron-scale cylindrical samples, called micropillars. With the devel-
opment of scanning electron microscopy (SEM) technology it became possible to fabricate
microscopic samples with nm precision with a focused ion beam (FIB), and their subsequent
compression while obtaining the stress-strain relationship to high precision. The latter can be
performed using a nanoindenter equipped with a flat punch diamond tip. The experiments were
initially performed on Ni single crystal samples by Dimiduk and co-workers [19, 20]. Figure 2.2
presents SEM images obtained after the deformation for various micropillar sizes. It is evident
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that with decreasing diameter deformation becomes more and more inhomogeneous as it gets
localized in distinct slip bands. These bands, in fact, form due to the local plastic events which
are also responsible for the emission of acoustic signals discussed in the previous paragraph.

Figure 2.2: SEM images of deformed Ni single crystalline micropillars of various diameters. It is seen that for
small samples deformation is localized in distinct slip bands and with increasing diameter deforma-
tion gets more homogeneous [20]. [Note that the sample in panel (c) is the undeformed initial state of
the one seen in panel (d).]

The measured stress-strain curves of the micropillars are plotted in Fig. 2.3(a). In addition
to the strong size effect (smaller samples are harder) it is visible, that for small sizes step-like
features appear. These steps also correspond to the plastic events, that is, to the sudden ap-
pearance of individual slip bands. These events are, thus, also called strain bursts or dislocation

avalanches. The stochasticity here means that micropillars prepared from the same sample with
the same geometry exhibit different stress-strain responses: both the width of these steps as well
as the strengths corresponding to their onset can be considered random variables. This remark-
able observation is shown explicitly in Fig. 2.3(b). Note, that the scatter in the ‘yield stress’
is around 50% for pillars with a relatively large diameter of ∼10 µm. For smaller samples the
effect is even stronger.
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(a) (b)

Figure 2.3: Stress-strain curves obtained during the compression of micropillars depicted in Fig. 2.2. The red
curve corresponds to a bulk sample and the various colours denote micropillars with different di-
ameters. (a): Curves corresponding to various diameters show a strong size effect. (b): Curves of
micropillars with nearly equal diameters show the stochasticity of the response [20].

The statistical analysis of this random process mostly focused on the size distribution of the
strain bursts. It turned out that, similarly to the distribution of AE events, they can be also
characterized with a scale-free distribution [21, 22]. The practical relevance of this finding
is that these random bursts prevent the predictable deformation of micron-scale objects. And
from the theoretical point of view one can conclude that crystal plasticity is closely related to
many other physical systems being far from equilibrium such as tectonic motion of the Earth’s
crust [23], migration of domain walls in ferromagnets due to external magnetic field [24] or
the propagation of either liquid fronts in porous materials [25] or crack fronts in heterogeneous
materials [26].

These stochastic features of plastic deformation immediately raised a focused interest of
the community due to the fact that understanding micron-scale deformation had become a key
issue with the rapid development of nanotechnology. The fact that phenomenological plasticity
theories were not capable of describing these phenomena related to the fundamental properties
of dislocations served as a driving force for the developments of statistical physics descriptions
of dislocations. This was also assisted by the rapid increase in computational power that now
lets us to simulate the dynamics of a large number of interacting dislocations. Yet, dislocation
based modelling of a samples larger than few µm is still elusive due to the huge dislocation
content and long-range interactions. So, the aim of the community is to develop physics-based
mesoscopic models that may serve as a link between the properties of individual dislocations
and experimentally observed macroscopic properties.

This scientific summary describes the recent research activities of the Author in this field.
During this period, special emphasis was placed on the following aspects:
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tal. For events exceeding the noise threshold,
the displacement magnitude was recorded and
sorted into bins for each sample as well as for
the collective set of samples. A plot of the
number of events at a given displacement mag-
nitude, n(x), versus magnitude x (in nm) for
events isolated from a single sample (Fig. 2)
reveals that a linear regime exists in which the
probability of observing a displacement event
of a given magnitude decreases as the event
size increases. Also shown in Fig. 2 are the
displacements for all of the samples analyzed
collectively. Both data sets demonstrate power-
law scaling. The data were fit to a power-law
expression n(x) 0 Cx–a, producing a measured
value of a 0 È1.5 where C is a constant. This
scale-free flow was observed over a range of

displacements from È0.5 nm to more than
È150 nm per event—more than two orders of
magnitude. Values for a derived from log-log
plots are known to underestimate this parame-
ter. Using alternative approaches as suggested
by Newman (25), we estimated a power-law
slope of 1.60 T 0.02 by a bootstrap method
(29). Note that the value of 1.6 is identical to
that found through acoustic emission experi-
ments (13) and from theory (19). Further, the
scaling relationship is independent of sample
size over the range examined as well as the
gradually increasing stress over the range of the
test (i.e., there is no work-hardening effect for
single slip-plane flow).

Closer inspection of a typical sequence of
events (Fig. 3) shows several important

features of the data. First, the individual events
take place at a rate that is much faster than the
programmed displacement rate of the test.
This demonstrates that dissipation is much
faster than the rate of change of the driving
force. Second, the largest displacement events
typically occur after an increment of the
remote stress. Note that the magnitude of a
stress increment is a vanishingly small per-
centage of the total applied stress. This
observation of Blarge[ events (displacement
shocks) after a small change of driving force
indicates that the system is near critical. Third,
these large events are frequently followed by a
succession of additional displacement events
of much smaller magnitude (aftershocks) that
occur in the absence of further detectable re-
mote stress rise; this suggests self-organization
back to a critical state. Fourth, a post mortem
examination of the deformed samples by
transmission electron microscopy (TEM)
(Fig. 4) shows a substructure containing many
dislocations that is characteristic of those
seen after similar deformation of large Ni
crystals (28, 30, 31). Finally, the displace-
ment-versus-time plots show intervals having
a small positive slope that indicates addi-
tional displacements not accounted for within
the detected bursts. These extra displace-
ments occur even under conditions of no
increase in the applied load, consistent with
these samples exhibiting creep at or near
criticality.

Our data and analysis explicitly show that
crystalline glide in metals exhibits the char-
acteristic attributes of self-organized critical-
ity under the appropriate control of the
driving force (in this case an applied dis-
placement rate or load). These results support
an emerging view that a statistical framework
that creates a coarse-grained description of
dislocation response is needed to bridge the
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Figure 2.4: The size distribution of the strain bursts measured during the compression of the micropillars seen
in Fig. 2.2. The open symbols represent data collected during the compression of a single micropillar
with diameter of ∼20 µm, whereas full symbols stand for data summed over several such samples
[21].

• The theoretical models of dislocation systems should contain as few free parameters as
possible, yet, they should preserve the fundamental physical properties of dislocations
described above.

• When possible, predictions of the mesoscopic models should be compared with lower
scale discrete dislocation models.

• When possible, predictions should be also validated by experiments.

• To help validating theoretical results new experimental methodologies should be devel-
oped for the characterization of the dislocation microstructure and its dynamics on the
micrometer scale.

The thesis is organised according to the methods used. The first section will focus on results
obtained by the numerical analysis of discrete dislocation dynamics and a stochastic plasticity
model. These, on the one hand, aim at the statistical description of the stochastic properties
and, on the other hand, identify the anomalous scaling properties that stem from the universal
scale-free nature of dislocation dynamics.

Results related to the continuum description of dislocation dynamics are presented in Sec. 2.3.
This model considers the evolution of plastic deformation in terms of smooth dislocation den-
sity fields. After summarizing the reformulation of the theory into a variational framework
results related to dislocation pattern formation will be presented. Finally, generalization of the
theory for curved dislocations will be outlined that is a key step towards modeling realistic
dislocation arrangements.
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The last section focuses on experimental results. Firstly, statistical properties of micropillar
compression will be presented and compared to predictions of numerical modelling. Secondly,
the method of high-resolution electron backscatter diffraction (HR-EBSD) will be introduced
which is capable of determining the dislocation structure close to the material surface. As
shown, the applications of the method range from measuring the internal stress distribution
to understanding dislocation interaction mechanisms during small-scale plastic deformation.
Finally, results and prospects of the application of AE in micromechanics are discussed.

2.2 Stochastic properties of dislocation systems

2.2.1 Introduction

In order to understand the stochastic features of plasticity it is necessary to investigate this
behaviour using physical models. The main reason for this is that during experiments the in-
formation one can gather is rather limited (mostly global properties, like stress or strain, or
information from the sample surface) and one cannot access microscopic information like the
precise position and speed of individual dislocations. In addition, for small samples (with vol-
ume of few µm3) measurement errors may also play an important role. Possible sources of error
include: (i) During FIB milling Ga3+ ions get deposited at the surface making them harder to
penetrate by dislocations, (ii) The elastic stiffness of the testing device has a strong influence on
the avalanche dynamics and (iii) The geometry of the pillar is usually not regular but exhibits
tapering [27].

Molecular dynamics simulations may seem adequate to study the collective behaviour of
dislocations, where dislocation appear as line-like defects in the simulated crystal structure. In-
deed, they have been used extensively to understand the specific features of nanoscale plasticity
summarized above. However, limitations in computational power only constrains their use for a
volume smaller than a few µm3 and duration shorter than a few ns or for shock loading [28–31].
One, thus, cannot model the evolution of the system on atomic level but needs to use tools on
higher scales. Since the elastic properties of dislocations in most materials depend only indi-
rectly on the inter-atomic potentials one can substitute the crystal lattice between dislocations
with an elastic continuum. Models obtained with this approach, thus, formulate equations of
motion for individual dislocation lines and are called discrete dislocation dynamics (DDD) [32].

The model to be investigated is one of the simplest DDD systems that still incorporates the
most important physical properties of dislocations summarized in the Introduction. The system
consists of straight edge dislocations parallel with the z axis, and their slip plane is parallel with
the xz plane (single slip). Since the system is translationally invariant along the z axis it can be
considered two-dimensional (2D) and it is sufficient to track the motion of dislocations in the
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xy plane. In this set-up the Burgers vector points in the x direction, so, reads as bbb = s(b,0),
where s ∈ {+1,−1} is the sign of the dislocation, that can be understood as some kind of
charge. Figure 2.5(a) shows an example of such a 2D dislocation configuration. The colour
of dislocations represents their sign and the background colour refers to the local shear stress
within the embedding elastic medium.

(a) (b)

Figure 2.5: (a): 2D system of edge dislocations. (b): Shear stress field of individual dislocations with periodic
boundary conditions.

Because of the strong dissipation due to phonon drag the motion of dislocations is assumed
to be overdamped, that is, the force acting on a dislocation segment of unit length is proportional
with its velocity. If the system consists of N dislocations and rrri = (xi,yi) denotes the position
of the ith dislocation then the equation of motion reads as

ẋi = Msib

[
N

∑
j=1; j 6=i

s jτind(rrri− rrr j)+ τext

]
; ẏi = 0. (i = 1, . . . ,N) (2.1)

Here M is the dislocation mobility, τext is the externally applied shear stress and τind is the shear
stress field generated by individual dislocations. For the latter the solution corresponding to
isotropic continua is used [33]:

τind(rrr) =
µb

2π(1−ν)

cos(ϕ)cos(2ϕ)

r
= Gb

cos(ϕ)cos(2ϕ)

r
= Gb

x(x2− y2)

(x2 + y2)2 , (2.2)

where µ and ν denotes the shear modulus and the Poisson number, respectively, and notation
G was introduced for a combination of these elastic constants. Dislocations are arranged in
a square-shaped simulation area and periodic boundary conditions (PBC) are applied. The
emerging image dislocations alter the stress field of Eq. (2.2), which can be obtained using a
Fourier method [see Fig. 2.5(b)] [34]. Further details about the implementation can be found in
[A].
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One of the main advantages of the model system introduced is that it preserves the 1/r-
type long-range dislocation interactions. This means that apart from the average dislocation
spacing (being equal to ρ−0.5, where ρ is the total dislocation density) no additional length
scales appear in the model. One may, thus, introduce dimensionless variables that represent this
scaling property by measuring length, stress, strain and time in units summarized in Table 2.1.

Quantity length stress strain time
Unit ρ−0.5 Gbρ0.5 bρ0.5 (

Gb2Mρ
)−1

Table 2.1: Units of the dimensionless quantities used in the simulations.

It is important to note that the studied system is a strong simplification of realistic dislo-
cation networks found in crystals as it cannot account for dislocation multiplication, forest
dislocations, the role of curvature, cross-slip, and dislocation reactions (such as the formation
of Lomer-Cottrell locks).1 Yet, it was successfully applied to describe Andrade-creep [17, 38],
size distribution of dislocation avalanches [39–41], subgrain formation at elevated tempera-
tures [42, 43], distribution of internal stresses [44, 45] and several statistical properties of the
microplastic regime [46].

2.2.2 Plastic yielding in the sub-micron regime [A, D, F]

The fluctuations observed in the micron and submicron regimes make the stress-strain response
random in several aspects. The step-like curves become a sequence of close to horizontal strain
bursts connected by close to vertical stress increments (see Fig. 2.3). Both the bursts and the
stress increments can be considered random variables that can be characterized with power-law
[21, 22] and Weibull distributions [47], respectively. As a result, the stress corresponding to
a given strain differs from sample to sample. The same is true for the yield stress, which for
bulk materials is identified with the stress measured at 0.2% plastic strain. For micropillars this
quantity is also stochastic and loses its universal nature being characteristic to the specific mate-
rial only. In the literature, therefore, several new definitions of the yield stress were proposed at
this scale, such as the stress at a given strain being larger than 0.2% [20], the stress at the onset
of the first large strain burst [48] and the concept of ‘Laue yield stress’ was also introduced
which is related to lattice rotations measured during in situ Laue-diffraction experiments [49].
The variety of the proposed methods raises the question what kind of physical process yielding
corresponds to and whether a general definition of the yield stress exists that is not dependent
on arbitrary parameters and the properties of the experimental device.

1 It is noted that various extensions of this 2D model were proposed to account for these phenomena [35–37],
but as these introduce various phenomenological length scales and we here focus on the role of the long-range
interactions, we rather remain at the simplest version described above.
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2.2 Stochastic properties of dislocation systems

The fundamental hypothesis of the work described in the following was that at the micron
level the yield stress can only be defined in a probabilistic sense for a set of samples with iden-
tical macroscopic parameters (size, crystal orientation, dislocation density, etc.) [A]. We, thus,
performed 2D DDD simulations on a large ensemble. In every case, the system consisted of
64 positive and 64 negative sign dislocations initially arranged randomly in the simulation cell
with uniform distribution. Firstly, the system was let to relax into a meta-stable state at zero
stress, then the stress was increased with a constant small rate and the plastic strain γ was com-
puted from the dislocation displacements as γ = ∑i si∆xi. Thin lines of Fig. 2.6(a) correspond
to a few representative stress-strain curves obtained and indeed show the stochastic nature of
the response. However, with averaging these curves (in this case, over 5000 realizations) the
fluctuations disappear and one arrives at a smooth curve (thick red curve) typical for a bulk
sample.

Figure 2.6: 2D DDD simulations with 128 dislocations. (a): Few representative stress-strain curves obtained
from individual realizations (thin) and the average over an ensemble of 5000 realizations (thick).
Inset: The average curve on a double logarithmic plot. The thick horizontal black line denotes the
average yield stress. (b): Plastic deformation rate as a function of the applied stress. (c): Standard
deviation of the plastic strain as a function of the applied stress [A].

Based on the average stress-strain curve one may split the plastic response into two regimes.
For small stresses plastic strain increases as a power-law with an exponent ∼0.85, this can be
identified with the microplastic regime. At larger loads, the curve deviates from the power-law
and larger strains are measured. Based on this observation an average yield stress of τc ≈ 0.17
can be introduced that separates the two domains.

Figures 2.6(b) and 2.6(c) plot the average plastic deformation rate and the standard deviation
of the plastic strain values of different realizations, respectively, as a function of the applied
load. It is evident that the characteristic stress τc marks a sharp transition for these quantities,
too.

The analysis of the velocity distribution of individual dislocations yields additional informa-
tion about the dynamics of the system. Figure 2.7(a) shows the P(v) distribution for various
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external stress levels. In every case the distributions exhibit an inverse cubic decay, that is, for
large velocities v

P(v) = Av−λ , (2.3)

where λ ≈ 3 and the pre-factor A depends on τext.2 Figure 2.7(b) plots this A(τext) function and
it is clear that, again, a well-defined shoulder is seen at τc.

Figure 2.7: Velocity distribution of dislocations in 2D DDD simulations. (a): Distribution of velocities P(v) for
various external stresses τext. The arrow indicates the increase of τext and the blue dashed line is the
distribution corresponding to τext = τc. (b): The pre-factor of the inverse cubic tail A as a function
of the external load. (c): Above τc distribution P(v) can be decomposed into the contribution of the
avalanches (dashed green) and systems in a quiescent state (continuous blue) [A].

In individual realizations the deformation process is a sequence of two alternating states:
there are irreversible deformation avalanches (strain bursts) with quasi-reversible quiescent
states in-between (for a detailed analysis the reader the referred to [F]). In Fig. 2.7(c) the ve-
locity distribution was determined independently for systems in either avalanche or quiescent
state. It is seen that the appearance of the shoulder in P(v) [Fig. 2.7(a)] and, therefore, to the
yielding phenomenon is due to the rapidly increasing number of dislocation avalanches above
τc [A].

In summary, the threshold stress τc was found to separate two regimes with different dynamic
behaviour, thus it can be identified with an average yield stress. This result is not specific to 2D
systems as similar behaviour was found in more complex 3D DDD simulations and micropillar
experiments as well (see also Sec. 2.4.2) [D].

2 The theoretical background of the origin of the exponent is described in [A].
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2.2 Stochastic properties of dislocation systems

2.2.3 Scale-free dynamics in discrete dislocation systems [C, E, S]

As it was mentioned in the previous section 2D DDD simulations usually start with a random
initial configuration that is first relaxed at zero stress. In this section, first, we investigate this
relaxation process in more detail. As a tool we employ the velocity distribution of disloca-
tions P(v) introduced above. Obviously, dislocations move quickly during the initial, close-to-
random state and slow down gradually until they stop when the system reaches equilibrium, so,
the velocity distribution also depends on time t. Interestingly, according to Fig. 2.8(a) the P(v, t)

distributions can be collapsed on a master curve using the scaling relation

P(v, t) = tα f (tαv). (2.4)

The exponent α was found to be α = 0.85±0.02 and the scaling function f can be well approx-
imated by the form f (x)≈ A/(Bx3 +1) (note, that the inverse cubic tail is again recovered).
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Figure 2.8: Dynamics during relaxation from a random configuration. (a): The scaled velocity distributions of
dislocations P(v, t) given by Eq. (2.4) with α = 0.85 at system size N = 2048, and the approximated
fitted scaling function (see text). (b): The moments 〈|v(t)|m〉 for different exponents m (identified by
colours) and dislocation numbers N. The solid, dashed, and dotted lines correspond to N = 128, 512,
and 2048, respectively [C].

In order to investigate this scaling behavior in more detail, the mth moment 〈|v(t)|m〉 of the
absolute velocity was also determined for different m values. According to Eq. (2.4)

〈|v(t)|m〉=
∫
|v|mP(v, t)dv =Cmt−mα , (2.5)

where Cm is a constant. (Because of the asymptotic properties of the scaling function f , the
integral is finite only for −1 < m < 2.) Figure 2.8(b) shows the measured 〈|v(t)|m〉 curves for
different m values and system sizes. The fitted exponents are in agreement with Eq. (2.5). (With
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the same simulation setup the scaling regime and the value of α has been already reported in
[50].)

As seen in Fig. 2.8(b) the scaling region is bounded from both sides. It starts at a fixed t0 ≈
0.4 and lasts till a cut-off time t1 increasing with linear system size L =

√
N as obtained from

fitting an exponential cutoff. This is in accordance to what is usually found in systems with long-
range interactions. To analyse this behaviour in more detail, additional simulation scenarios
were studied, namely, perturbation by an externally added dislocation and creep response to
applied stress. Both of these yielded equivalent velocity scaling, albeit with different exponents
[C].

In summary, power-law relaxation of dislocation systems was observed in different sce-
narios. This effect may be attributed to the quenched random positions of the slip axes, the
complex nature of the interactions and their long-rangeness. Remarkably, the scaling of the
time-dependent velocity distribution goes with different exponents depending on the physical
setup. Scaling is cut off due to the finite size, so the system does not possess any inherent
time scale. The dislocation system is, therefore, found to behave like a critical one in all cases
considered, strongly resembling glassy systems [C].

As it was explained in the Introduction in detail, the strain fluctuations observed in micron-
scale plasticity are in many aspects analogous to other physical systems exhibiting criticality.
In particular, several researchers have advanced the idea that the dislocations in a crystal de-
forming under stress might be envisaged as a driven non-equilibrium system, where power-law
distributed avalanches arise from dynamic critical behavior associated with a non-equilibrium
phase transition at a critical value τext = τc of the externally applied stress, analogous to the de-
pinning transition of elastic interfaces in random media [51]. This idea applies in a straightfor-
ward manner to single dislocations interacting with immobile impurities which provide a text-
book example of one-dimensional elastic manifolds undergoing a depinning transition [52, 53,
S]. In generalization of this observation, several authors have argued that the mean-field limit
of the depinning transition (mean-field depinning, MFD) might correctly describe the dynamics
of stress-driven many-dislocation systems even when other defects are absent [41, 46, 54–57].

To unambiguously determine the nature of criticality associated with the strain bursts and the
yielding transition we analysed 2D DDD simulations with continuous time dynamics (CTD)
described above as well as two other cellular automaton (CA) based DDD models one with
extremal dynamics (ED) and another with random dynamics (RD) (for details see [E]). In each
case a quasistatic stress-controlled loading protocol was implemented. For each model, we con-
sider the avalanche size distribution P(s) at different levels of the external stress below the yield
stress (s being the total plastic slip defined as s = ∑i si∆xi, where ∆xi is the dislacement of the
ith dislocation during the avalanche). For s > 1 (i.e., slip events larger than that corresponding
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2.2 Stochastic properties of dislocation systems

Model τ β σ0
CTD 0.97±0.03 0.36±0.04 0.07±0.01

CA with ED 1.00±0.03 0.36±0.02 0.116±0.004
CA with RD 1.02±0.01 0.44±0.01 0.122±0.002

Table 2.2: Parameters of Eqs. (2.6) and (2.7) obtained by fitting to the numerically obtained avalanche distribu-
tions [E].

to a single dislocation moving one average dislocation spacing), these can be well characterized
by a power law with a cut-off,

P(s) ∝ s−τ f (s/s0). (2.6)

To estimate τ and s0, a fitting procedure was utilized that fits Eq. (2.6) simultaneously using a
maximum likelihood estimation to the avalanche distributions obtained at different stress levels
and system sizes. The cutoff was found to follow

s0(σext,N) ∝ Nβ exp(σext/σ0). (2.7)

Table 2.2 presents the parameters obtained by fitting Eqs. (2.6) and (2.7) to the avalanche size
distributions. Figs. 2.9(a-c) show the P(s) distributions for the three models plotted as functions
of s/s0. The validity of Eq. (2.7) is demonstrated by the collapse of all distributions in the cutoff
region. Since Eq. (2.6) holds only for s > 1, the curves follow the master curve only as long as
s/s0 > 1/s0, thus over longer range as the applied stress and/or the system size increase. Below
this regime the behavior is governed by the single-dislocation dynamics and therefore differs
between the three models.

The observations summarized by Eqs. (2.6), (2.7) and Table 2.2 exhibit several interesting
features:

(i) The power law exponent τ has the value τ ≈ 1.0, clearly different from the MFD value
τ = 1.5. According to Fig. 2.9(d), the integrated distribution (where avalanches with all
stress values are considered together) exhibits a larger exponent τint ≈ 1.3, in line with
a subsequent reanalysis of experimental micropillar compression data [58]. Moreover,
the inset of Fig. 2.9(d) shows that in the CTD model, the avalanche size scales with the
duration as s ∝ T γ , with γ ≈ 1.32 clearly different from the MFD value of 2.

(ii) According to Eq. (2.7), the cutoff s0 increases with system size even at very small applied
stress like s0 ∝ Nβ with β ≈ 0.4.

(iii) The cutoff s0 does not diverge at a certain external stress, rather it exhibits an exponential
stress dependence.
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Figure 2.9: (color online) (a-c): Stress-resolved distributions of avalanche sizes for the various DDD models at
different applied stresses and system sizes. The distributions are plotted as functions of s′ := s/s0,
with s0 obeying Eq. (2.7). (a): CTD model, (b): CA model with ED, (c): CA model with RD. (d):
Aggregate avalanche size distributions Pint integrated over σext for system sizes N = 512 (CDT
model) and N = 4096 (CA models). Inset: Scaling of the avalanche size s with the duration T in
the CTD model, for three different system sizes N [E].

The fundamental difference between the present and depinning behaviour is highlighted in
Fig. 2.10, where the average avalanche size is compared for the CA DDD model with ED and
a simple depinning model. In the latter an elastic line with 1/r-type self-interaction is driven
through a random pinning field.

To conclude, it was established that the statistics of slip avalanches in simple 2D DDD mod-
els is inconsistent with a depinning transition. Fundamental differences between the behavior of
dislocation systems and the interface pinning/depinning scenario are manifested by the behav-
ior of the cut-off of the avalanche size distribution which, rather than diverging at some critical
stress τc, scales exponentially with stress but diverges with system size at every stress. In addi-
tion, the avalanche exponent τ ≈ 1.0 is inconsistent with MFD. These scale-free properties add
to the slow relaxation described in the previous section and mean that single slip dislocation
systems are, in fact, always in a critical state regardless of the applied stress. It is noted, that
short-range interactions, such as point-defects, junctions, grain boundaries etc., are absent in
this model and they may change the critical behaviour of the system, see, e.g, [59–61].
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2.2 Stochastic properties of dislocation systems

Pinning Jamming

Figure 2.10: Differences between pinning and the present jamming scenario. Pinning is induced by quenched
disorder which stops the motion of driven elastic manifolds for applied forces fext below a critical
value fc (top left). With fext approaching fc from below, the manifold moves ahead in avalanches
with an average avalanche size 〈s〉 which in MFD diverges as 〈s〉 ∝ ( fc(L)− fext)

−1 (1d elastic
manifold with elastic interactions decaying as 1/r, bottom left). fc depends on the system size L
due to finite size scaling, fc(L) = fc(∞)+aL−1. In a dislocation system without quenched disorder,
dislocation motion may stop due to formation of jammed configurations (top right). The behavior
of 〈s〉 we observe in this case is fundamentally different from the depinning scenario, with 〈s〉 =
A(N)eσext/σ0 , where A(N) grows with the number of dislocations N (bottom right) [E].

2.2.4 Statistics of internal disorder [I, J]

In Sec. 2.2.2 the average stress-strain curve of 2D dislocation systems was analyzed. Here the
distribution behind the average is investigated and its dependence on the system size. Figure
2.11 plots the cumulative distribution Φγ of applied stress values τ at a given value of plastic
strain γ for different realizations of the dislocation system. The three panels correspond to
different strain values. One can observe that (i) the average of the distributions increase with
the strain (as was seen earlier on the average stress-strain curves in Sec. 2.2.2), (ii) fluctuations
of the applied stresses decrease with increasing system size at all three studied strain values and
(iii) the curves corresponding to different system sizes intersect each other in a single point,
hereafter denoted by 〈τ〉(γ). The last observation suggests that in the thermodynamic limit (i.e.,
L→∞) the curves tend to a stepfunction at 〈τ〉(γ). In addition, it also hints at a scaling property
of the curves. Indeed, according to the inset plots of Fig. 2.11 functions Φγ obey the following
scaling law:

Φγ(τ) =
1
2

[
1+ erf

(
τ−〈τ〉(γ)

cL−θ

)]
, (2.8)

where fitting yields for the exponent θ = 0.8±0.05. Finally it is noted that the usage of the erf
function implies that the stress values follow a normal distribution.
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Figure 2.11: Cumulative stress distributions Φγ at different strain levels γ , DDD model. Scaling collapse can
be obtained by multiplying the external stress with a power of the system size [Eq. (2.8)]. The so
collapsed curves can be fitted by an appropriate normal distribution (dashed lines). (a): γ = 0.05,
(b): γ = 0.1, (c): γ = 0.2 [I].

To rationalize these findings a simple plasticity model based on order statistics was proposed.
Firstly, it was assumed that the material can be decomposed into local units, each character-
ized by a yield threshold accounting for the inhomogeneity of the underlying microstructure
(e.g., dislocation patterns). This non-trivial assumption implies that the distribution of the stress
at the onset of the first plastic event, must follow a weakest link distribution. In accordance with
Derlet and Maass [62], the distribution of the yield thresholds is assumed to be asymptotically
scale-free characterized with exponent β . In this model the stress-strain curve is assumed to
be perfectly step-like, with each step corresponding to a random strain burst followed by a ran-
dom stress increment. The former is modelled as a sequence of independent random variables
whereas the stress values corresponding to the onset of subsequent events are assumed to orig-
inate from the weakest link sequence. After each event the material gets harder, because the
subsequent events take place at the second, third, etc. weakest spot. This sequence is deter-
mined by the shape parameter β , and thus the exponent β emerges as a central parameter that
also influences the power-law exponent of the plastic stress-strain relation, that is, the amount
of plasticity in the microplastic regime [I]. The origin of β ≈ 1.4 for DDD systems was not
addressed, it may be influenced by the internal structure of dislocation arrangements, like slip
systems, patterns, etc. It is noted, however, that a similar analysis of the average stress-strain
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curves performed earlier on 3D DDD simulations and micropillar compression experiments
yielded β ≈ 1.4 in both cases [A,D], hinting at some generality of the exponent β .

In order to account for fluctuations in the plastic response on a higher scale model stochastic
continuum plasticity models (SCPMs) were introduced [54, 63–67]. In these models the internal
disorder is represented by a local yield stress that is considered a spatially fluctuating random
variable. Wherever the local stress at a given cell exceeds the local threshold plastic strain
is accumulated in that cell giving rise to the anisotropic redistribution of the internal stress
within the material. The form of the corresponding elastic stress kernel can be obtained using
an Eshelby-type solution of the inclusion problem [68]. In these models the most important
input is the distribution of the local yield thresholds that represents the statistical details of the
microstructure. This means that the simple theoretical model outlined above that is based on the
subsequent activation of the weakest links delivered a method how to calibrate the parameters
of the SCPM based on lower-scale DDD simulations [I]. The proposed methodology does not
only represent a bridge between micro- and mesoscales, but also gives insight into the nature of
the stochastic processes characterizing plasticity.

To understand the role and importance of the yield stress distribution its effect on strain local-
isation was investigated in materials exhibiting shear softening [J]. A most prominent example
of this type of behaviour are metallic glasses – a class of materials with potentially outstanding
mechanical properties (for recent overviews of the mechanical behavior of metallic glasses, see
[69, 70]) but whose application is hindered by a propensity to fail shortly after yield by catas-
trophic shear band formation. In order to model this phenomenon, an SCPM was implemented
with Weibull-distributed yield stresses with different shape parameters β . It is important to
note, that larger β implies a smaller scatter of local yield stresses, i.e., a lower degree of mi-
crostructural disorder in the material. As seen in Fig. 2.12 larger disorder (β = 1) leads to an
extended plastic regime and an increased yield strength whereas at small disorder (β = 4) the
elastic regime is immediately followed by the failure of the material.

Figure 2.13 illustrates the changes in the strain patterns that occur during the softening
regime. At the peak stress before the onset of softening, deformation is macroscopically ho-
mogeneous but exhibits mesoscale patterns in the form of numerous diffuse shear bands which
follow the planes of maximum shear stress, here aligned with the x and y directions. These
patterns are more pronounced with increasing degree of disorder. Note that the peak stress is
reached later in the more disordered sample (top left graph in Fig. 2.13), hence the overall strain
is bigger. During the softening regime we observe a qualitative change in the patterns as most
of the additional strain accruing during the softening regime is localized in a single shear band
which also contains the location where microcrack nucleation takes place. The localisation pro-
cess was quantitatively analysed and a local criterion was also established for the propagation
of the formed embryonic microcracks. In general it was shown that increased microstructural

23



2 Recent scientific work

t
e
x
t , 

e
x
te

rn
al

 s
tr

e
ss

 [
t

0
c ]

g
tot

, total strain [ t0
c
/m]

b=4

b=1

L

32
64

128
256
512

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5

Figure 2.12: Stress–total strain curves for two different yield-stress distributions (Weibull exponents β = 1 and
β = 4) and different system sizes L. For details see [J].

heterogeneity in a one-phase material delays strain localization and leads to an increase of the
plastic regime in the macroscopic stress–strain curves [J].

Figure 2.13: Strain patters at the highest external stress just before the onset of softening (left) and at the end of
the simulation (right); β = 1 (top) and β = 4 (bottom). For details see [J].

2.2.5 Numerical methods [P, Q]

It was already seen in this chapter how important role is played by DDD simulations in materials
science research. They are not only important because of their capacity in modelling various
deformation phenomena but also because they may be used to validate higher scale plasticity
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2.2 Stochastic properties of dislocation systems

models that are indispensable for technological applications. Being of central importance, the
numerical efficiency of the simulations is also a crucial issue. Two significant improvements
will be discussed in this section, one related to the integration scheme the other to the boundary
conditions.

Due to the 1/r-type interactions one concludes that the differential equation system that
describes the dynamics of dislocations or dislocation segments [Eq. (2.1) for 2D DDD] is stiff.
In such cases explicit methods are inefficient, because the achievable time-step is limited by
the shortest timescale in the system, which is determined by the closest dislocation dipole.
This typically leads to a very slow propagation of the simulations even when the system is
stationary. Nonetheless, most of the simulators are based on explicit methods [35, 71–73]. This
issue can be solved by implicit schemes [72]. Sills et al. showed that with the help of the simple
implicit trapezoidal method and the Newton-Raphson non-linear solver, in certain scenarios a
speedup is achievable compared to the default Heun-method of ParaDiS (a 3D DDD simulation
implementation) if a sparse matrix was used. This was achieved by taking into account only
short range elastic interactions in the Jacobian, defined with a fixed limit on the distance [72].
Gardner et al. applied diagonally implicit Runge-Kutta methods and concluded that with high
number of dislocation segments the gain in the stepsize compared to explicit methods was not
large enough to compensate for the increase in the time needed to calculate one step [74]. Both
of these studies were done using ParaDiS or DDLab (which is the serial version of ParaDiS
written in MATLAB).

Motivated by these studies we introduced a novel implicit method for our 2D DDD simu-
lations with adaptive stepsize control [P]. A weighted trapezoidal scheme was employed with
specific weight factors in order to decrease oscillations around equilibrium and resulting numer-
ical noise. A cut-off parameter rc was also introduced in the Jacobain matrix with the following
properties:

• At rc = ∞ (that is, without using the cut-off functions) the numerical noise can be de-
creased down to floating point precision and the simulation timestep at equilibrium can
practically diverge. These optimal properties are somewhat flawed by an increased com-
putational cost of a single timestep because the Jacobian matrix is dense due to the long-
range nature of interactions. In fact, the complexity of computing a single timestep is
larger than that of the explicit methods [being O(N3) instead of O(N2)], so for large sys-
tems the implicit method with rc =∞ only close to equilibrium may be more efficient than
traditional explicit methods, because here the gain in the timestep can be large enough to
compensate for the slower calculation of a single timestep.

• At finite cut-off rc an in between method is obtained: On the one hand, it makes the
Jacobian sparse thus decreasing the complexity of a timestep to O(N2), thus, it becomes
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efficient for large system sizes, too. On the other hand, it still allows the stepsize to be sig-
nificantly larger than that of explicit schemes. It, in fact, acts similarly to the annihilation
distance of explicit methods: dipoles with distance smaller than rc are treated implicitly
(and thus not limiting the timestep) whereas those with distance larger than rc are com-
puted explicitly and do limit the timestep even at equilibrium. The advantage is, that the
small dipoles here do not have to be annihilated, and their dynamics are still solved with
high precision. It was found that the runtime of the new method was approximately 4
orders of magnitude lower than that of the explicit method with a realistic annihilation
distance.

The results indicated that when activity was high in the system a smaller value of rc was
the most efficient and as activity ceased an increasing value of rc showed better performance.
Future work will aim at developing an algorithm that dynamically modifies the value of rc based
on the dynamic properties of the system. Such a method could further improve the efficiency
of this scheme. In addition, significant increase in computational speed can be expected from
porting the source code to GPU [P].

In another work the handling of boundary conditions were investigated [Q]. In all of the
problems considered so far in this chapter PBCs were employed. Realistic boundary condi-
tions, however, either prescribe stress or displacement (or their combination). For large systems
the type of the boundary is not expected to play a significant role but as soon as size effects
are to be investigated and the system size is reduced to the micron scale, PBCs are no longer
applicable. To implement realistic boundary conditions a certain elastostatic problem needs
to be solved at every timestep of the simulation. This is typically done using the finite ele-
ment method (FEM). This versatile and flexible tool allows one to study various geometries and
boundary conditions with high numerical stability. Despite the advantages of the FEM, in some
cases different methods may suit the investigated problem better and may, e.g., exhibit faster
runtime compared to FEM. It was shown, for instance, by Wei et al. that a particular spectral
method has superior time complexity compared to FEM when modelling 3D DDD in a cylin-
drical micropillar geometry [75]. This method is based on the series expansion of the analytical
elastic solution and the boundary conditions are prescribed in terms of Fourier coefficients of
the desired boundary values.

Our aim was to develop a spectral method to efficiently handle the boundary problem for 2D
systems, so we followed the route proposed by Wei et al. The introduced method is able to solve
Dirichlet, Neumann and mixed boundary value problems as well. Since, the solution is a linear
combination of basis functions which satisfy the Navier–Cauchy equations exactly, in principle,
it also fulfils the elastic equations exactly in the volume. However, the boundary conditions
are only met approximately. The basis we use is finite, therefore, the possible solutions one
can reproduce with this method are from a subspace of all solutions of the Navier—Cauchy
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equation. Thus, we had to find the approximate solution in this subspace that is the closest to
the genuine solution in some sense. The proposed requirement is that the first finite number of
Fourier coefficients of the Fourier series of the approximate solution on the boundary should be
identical to the Fourier coefficients of the boundary condition.

Firstly, our method was tested on analytically solvable problems such as pure shear. The
method reproduced the analytical solution and showed remarkable fast exponential convergence
with the increment of the basis size which is superior to the power-law convergence of FEM.
Secondly, the method was applied to cases where the simulation cell contained a dislocation. It
was found that if a dislocation is closer to the boundary than a certain distance (which decreases
at higher orders of computation) numerical errors appear due to the analytically diverging stress
fields. Based on this observation the time complexity that is needed to achieve a certain pre-
cision was assessed. As it was discussed in detail in [Q], the solution of the PDE leads to a
ccc = MMM−1 fff type multiplication, where vector fff can be obtained from the prescribed boundary
values, matrix MMM is characteristic to the type of boundaries and vector ccc characterizes the so-
lution function. In a typical application the matrix MMM is unchanged during a simulation even if
the boundary values change (but remains of the same type, for instance Dirichlet), hence, it is
enough to evaluate and invert the matrix once, while the vector fff should be calculated at every
time step. Naturally, the subtasks that should be done at every time step will be the ones that de-
termine the computational efficiency of the method. After investigating the computational time
of these subtasks we concluded that the computational complexity of our method is O

(
N3/2

dis

)
,

that is, O
(
L3) where Ndis and L are the total number of dislocations considered and the charac-

teristic linear system size, respectively. Thus, contrary to FEM, the computational complexity
of our numerical method is more favourable than the calculation of dislocation-dislocation in-
teractions in DDD simulations [being O(N2

dis) or, equivalently, O(L4)]. Consequently, taking
the boundary conditions into account will have a lower computational cost compared to other
tasks, therefore, this component of the simulation will not limit the dislocation number (or sys-
tem size) we are able to investigate in reasonable time. This will allow us to examine larger
systems and gain better statistics (of, for example, dislocation avalanches) [Q].

2.3 Continuum theory of dislocations

2.3.1 Introduction

Plastic deformation of crystalline materials is largely controlled by the motion of dislocations,
that are line-type topological lattice defects. Since the typical dislocation density in deformed
metals is in the order of at least ρ ≈ 1014 m−2, the average spacing between dislocation lines
is less than 100 nm. This means that already micron sized samples contain a vast amount
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of strongly interacting dislocations. As a consequence, to model the plastic deformation of
crystalline materials in terms of dislocations one has to handle the problem with statistical
physics methods. However, there are two caveats for the direct application of methods from
statistical physics to dislocation systems: (i) dislocation motion is strongly dissipative, and (ii)
dislocations are flexible lines, inhibiting their treatment as point-particles.

The development of a statistical continuum theory of dislocations was initially motivated
by the occurrence of size-effects [76] in the plastic response of samples with characteristic di-
mensions on the order of 10 µm or less. Attempts to incorporate internal length scales into
phenomenological continuum theories by considering so-called strain-gradients [77–80], did
not yield a satisfying solution for general loading cases. Another key issue to be addressed
is the ubiquitously observed dislocation pattern formation during plastic deformation. Since
the early 1960s several theoretical and numerical attempts have been suggested, initially based
on analogies with other physical problems like spinodal decomposition [81], internal energy
minimization [82], or chemical reaction-diffusion systems [83, 84]. Since, however, they are
not directly linked to the specific properties of individual dislocations they are fundamentally
phenomenological approaches. Dislocation patterning was also an important motivation for
the development of the discrete dislocation dynamics (DDD) method addressed in the previous
section of this thesis [85–88]. But due to the long range dislocation-dislocation interaction the
simulations are computationally extremely expensive and the study of dislocation patterning
with DDD is still limited to specific problems like irregular clusters or veins [87–89]. Recently,
El-Azab and coworkers [90, 91] used a continuum formulation based on vector dislocation den-
sities in large-scale numerical simulations, which seem to feature the evolution of dislocation
patterns. However, this pseudo-continuum variant of DDD is a numerical rather than a theoret-
ical model of dislocation patterning.

The two caveats for developing a statistical continuum theory of dislocations named in the
first paragraph were approached largely independently from each other. The consequences of
the dissipative nature of dislocation motion has been thoroughly explored in strongly simplified
quasi two-dimensional systems of straight parallel edge dislocations, where dislocations are
treated as signed point particles moving in a plane (see Sec. 2.2.1). By a systematic coarse-
graining of the evolution equations of individual dislocations [92–97] a continuum theory was
developed, that was successfully compared to DDD simulations [94, 98, 99]. In Sec. 2.3.2 it
will be shown how the theory can be formulated as a phase field theory whereas Sec. 2.3.3 will
focus on the application of the continuum theory to describe and understand pattern formation
of dislocations.

The second caveat, that is the fact that dislocations are moving flexible lines entails the ques-
tion, what are suitable continuum variables allowing for a closed system of conservation laws
for dislocation systems. This has been answered in a primarily kinematic theory of curved dis-
locations, which was developed by Hochrainer et al. [100–104]. The kinematics were initially
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derived in a higher dimensional space, containing the line direction as independent variable. A
multipole expansion of the theory leads to a formulation in terms of alignment tensors, which, in
the case of only planar dislocations on parallel glide planes, is equivalent to a Fourier expansion.
The resulting conservation laws may be used to derive ‘kinetic’ theories from a thermodynamic
potential with standard methods from irreversible thermodynamics. This yields forms of driv-
ing forces [105], naturally generalizing those found in the quasi-two-dimensional theory. The
phase field approach of Sec. 2.3.2, however, provides a straightforward toolbox to generalize
the 2D theory to 3D to arrive at a physics-based dynamic continuum theory of dislocations.
These attempts will be summarized in Sec. 2.3.4 along with the activities that aim at compar-
ing the predictions of the continuum model with experimental data obtained from micropillar
compression.

2.3.2 Variational formalism [B, G, H]

In this and the subsequent subsections the 2D dislocation system introduced in Sec. 2.2.1 is
considered. Since the number of dislocations is conserved, the evolution of the system on the
level of the densities of dislocations with different sign (ρ+ and ρ−) is described by balance
equations that ensure conservation of the total number of dislocations of both type:

∂tρ±+∂x[ρ±v±] = f (ρ+,ρ−), (2.9)

where v+ and v− are the average velocities of the positive and negative dislocations in the slip
plane (in our case being parallel with the x axis). By adding and subtracting the two equations
one obtains

∂tρ +∂x[ρvd +κvm] = 0, (2.10)

∂tκ +∂x[ρvm +κvd] = 0, (2.11)

and the plastic strain rate according to Orowan’s law reads as

γ̇ = b(ρvm +κvd), (2.12)

where ρ = ρ++ ρ− is the statistically stored dislocation (SSD) density, κ = ρ+− ρ− is the
geometrically necessary dislocation (GND) density, and vm = (v+− v−)/2 and vd = (v+ +

v−)/2 are the ‘mean’ and ‘difference’ or ‘drift’ velocities, respectively.
Equations (2.10,2.11) together with (2.12) represent the kinematics of straight parallel edge

dislocations. When constructing dynamic equations the question is how velocities vm and vd

depend on the microstructure represented by the densities ρ and κ . Previously Groma et al.

performed the systematic coarse graining of the equation of motion of individual dislocations
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to derive dynamic evolution equations for ρ and κ [94, 95, 98]. In this theory the velocities vm

and vd can be expressed as

vm = Mbχ(τ∗), (2.13)

vd = Mb
(

κ

ρ
[τ∗−χ(τ∗)]+ τ

d
)
, (2.14)

where a non-trivial mobility function χ was introduced as

χ(τ∗) =

{
0, if |τ∗|5 τy,

τ∗− sτy, if |τ∗|> τy.
(2.15)

Here stress terms were introduced that can be calculated from ρ and κ and their spatial deriva-
tives [H]. The term τ∗ is the sum of the ‘mean-field’ stress τmf and the “back-stress” τb:

τ
∗ = τ

mf + τ
b. (2.16)

The mean-field stress is the resolved shear stress in the glide plane due to the long-range stresses
of the GNDs and the surface tractions and displacements. The back-stress τb and the ‘diffusion
stress’ τd read as

τ
b = −Gb

D
ρ

∂xκ, (2.17)

τ
d = −GbA∂xρ, (2.18)

where G = µ

2π(1−ν) is an elastic constant (µ and ν are the shear modulus and Poisson’s ratio,
respectively), D and A are dimensionless constants, and τy = αµb

√
ρ is the local yield stress

with α being the dimensionless Taylor coefficient in accordance with the Taylor hardening law.
Equations (2.13,2.14) together with Eqs. (2.10,2.11) form a closed set of evolution equations

that were found to provide analogous results as lower-scale DDD simulations [98]. These evo-
lution equations were obtained by a systematic coarse graining of the discrete microstructure.
The same equations, however, can be also derived using general thermodynamics principles. In
the following this procedure and its main conceptual steps will be reviewed, since this method-
ology can be more easily generalized to the 3D case. Note, that the term thermodynamic refers
to the general conceptual framework being adopted from irreversible thermodynamics, but does
not by any means refer to the role of temperature.

We start by noticing that due to the dissipative nature of the motion of dislocations (force
action on a dislocation is proportional to the dislocation velocity) the total elastic energy of the
dislocation system cannot increase during the evolution of the system. Accordingly, there exists
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a scalar quantity (state variable) for the discrete dislocation system that cannot increase as the
system evolves.

For this governing functional the term ‘plastic potential’ and notation P were introduced in
[B] and the main idea was found to be applicable to determine the stress field of dislocations
under different conditions, such as in an anharmonic medium or in the presence of solute atoms
[B]. For the evolution of the 2D discrete dislocation system the potential reads as:

P[ρ,κ] = Pmf +Pcorr[ρ,κ] = Pmf +
∫

Gb2
[

Aρ ln
(

ρ

ρ0

)
+

D
2

κ2

ρ

]
dxdy. (2.19)

Here Pmf is the mean-field elastic energy of the system whereas Pcorr is a correction due to
short-range spatial correlations present in the dislocation positions.

Following a standard phase-field formalism to derive the evolution equations, first one needs
to compute the chemical potentials as

µρ =
δP
δρ

, (2.20)

µκ =
δP
δκ

, (2.21)

then the stress terms of Eqs. (2.16, 2.18) follow as

τ
∗ = −1

b
∂xµκ , (2.22)

τ
d = −1

b
∂xµρ . (2.23)

It was shown that the mobility law of Eqs. (2.13, 2.14) and the corresponding evolution equa-
tions do satisfy the condition Ṗ 5 0 regardless of the actual form of the plastic potential P [G].

This observation opens new perspectives in modelling dislocation systems, since in this for-
malism the plastic potential P solely determines the dynamics. The form of Eq. (2.19) can be, in
fact, considered as a first order correction to Pmf in ρ and κ that satisfies the simplest symmetry
requirements. For further extension of the theory to more complex situations one does not need
to repeat the microscopic derivation (which in many cases turned out to be mathematically im-
possible), one can extend the plastic potential P based on physical arguments. Extension of the
theory to 3D was performed along these lines (see Sec. 2.3.4). A similar method was followed
to account for the distribution of GND dislocations next to an impenetrable boundary [H]. This
study was motivated by the fact, that structural materials do contain such boundaries to increase
hardness, these include grain boundaries, phase boundaries, etc.

Let us consider a channel with surfaces perpendicular to the dislocation glide direction em-
bedded into an infinite medium with the same elastic constants. This setup mimics a grain with
boundaries impenetrable by dislocations. After randomly placing dislocations with the same
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Burgers vectors into the channel [Fig. 2.14(a)] and allowing the system to relax, a DDD simu-
lation shows that the system does not remain homogeneous and boundary layers develop at the
surfaces [Fig. 2.14(b)]. It is mentioned that due to the anisotropy of the dislocation-dislocation
interaction, walls are naturally formed with an average distance proportional to the dislocation
spacing. The dislocation density obtained by averaging 5000 different realizations is plotted in
Fig. 2.14(c).

(a) (b)
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Figure 2.14: (a): Random initial configuration of dislocations with the same sign in a channel. The boundaries
in the x direction are impenetrable, and periodic boundary condition is used in the y direction. The
total number of dislocations is 512. (b): Relaxed dislocation configuration. (c): Dislocation den-
sity profiles (relative to the initial density ρ0), averaged in the direction perpendicular to the slip
direction, developing between two impenetrable walls obtained by DDD simulation (circles) and the
numerical solution of the phase field model proposed (full line) [G].

The continuum theory outlined above cannot account for the features of the boundary layer,
as it was developed for the |κ| � ρ , that is, small GND density case. In the case of same sign
dislocations this condition clearly does not hold. One needs to extend the plastic potential of
Eq. (2.19). In this spirit, a term proportional with the square of the gradient of the dislocation
density was added to P as well as a surface energy term that was necessary to solve unambigu-
ously the resulting fourth-order differential equation. Both of these terms contained a single
dimensionless parameter only, since their actual form was dictated by dimensional and symme-
try considerations. The density profile of the relaxed case yielded by the phase field simulations
matched quantitatively the DDD results [Fig. 2.14(c)] which proves that the addition of higher
order terms is necessary to account for boundary effects in the continuum model [G].

2.3.3 Pattern formation [H, M, O]

Shortly after the first images of dislocations were seen in TEM it was realized that the dislo-
cation distribution in a deformed crystalline material is practically never homogeneous. De-
pending on the slip geometry, the mode of loading and the temperature, rather different pattern
morphologies (e.g., cell [106], labyrinth [107], vein [108] or wall [109] structures) emerge.
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There are, however, two important features common to all these patterns: It is almost always
observed that the characteristic wavelength Λ of the patterns is proportional to the dislocation
spacing, Λ ∝ 1/

√
ρ where ρ is the total dislocation density, and inversely proportional to the

stress at which the patterns have formed. These relationships are commonly referred to as ‘law
of similitude’ (for a general overview see [110]).

As mentioned in the Introduction of this section, several phenomenological models were pro-
posed to address pattern formation. Since all of them contain length parameters as inputs (that
are characteristic to the evolving pattern) they obviously fail to satisfy the law of similitude. On
the other hand, the continuum theory summarized in Sec. 2.3.2 does not contain any unphysical
length parameters and, as such, it meets the criterion of similitude. The crucial question then
follows: whether the continuum theory predicts the formation of patterns and if so, whether it
coincides with the patterns forming in lower-scale DDD models. This subsection is concerned
with this issue.
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Figure 2.15: The function λ (kkk) at A = 1, D = 1 and β = −1. The function is positive within the region marked
by the contour line λ+(kkk) = 0 [H].

Firstly, the linear stability analysis of the continuum evolution Eqs. (2.10,2.11) were per-
formed. One can easily see that the trivial homogeneous solution ρ = ρ0, κ = 0 and τmf = τ0

satisfies the evolution equations, where ρ0 and τ0 are constants representing the initial disloca-
tion density and the external shear stress, respectively. Nontrivial behaviour can happen only in
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the flowing regime, i.e., if |τ0| > αµb
√

ρ0, so, only this case is considered. By adding small
perturbations to the dislocation densities and the Airy stress function χ in the form

ρ(rrr, t) = ρ +δρ(rrr, t)

κ(rrr, t) = δκ(rrr, t) (2.24)

χ(rrr, t) = τ0xy+δ χ(rrr, t)

and after substituting these into the evolution equations and keeping only the leading terms in
the perturbations one arrives at [H] δρ

δκ

δ χ

=

 δρ0

δκ0

δ χ0

exp
(

λ

t0
t + i
√

ρ0kkkrrr
)
, (2.25)

where the sign of λ determines whether the perturbation characterized by the wave vector kkk

grows with time. The mathematical analysis yields a λ (kkk) function plotted in Fig. 2.15. Re-
markably, an unstable region with λ > 0 appears with a certain maximum along the x axis. This
means that lengthscale selection takes place, i.e., the fluctuation that grows fastest exhibits a
well-defined wavelength. In Fig. 2.15 a particular set of parameters A, D and β (the first two of
which are dimensionless parameters of the gradient stress terms, and the latter is related to the
strain rate) were used, but the result is general, for the corresponding discussion see [H].

As said above the linear stability analysis can only provide information on the instability
of the trivial solution, but it cannot predict how the initially unstable mode will evolve at later
stages. For that the solution of the dynamic evolution equations is necessary. To this end,
two different solutions of the equations were implemented where transport of dislocations that
controls dislocation density evolution is described in two very different manners. Namely, (i)
a hydrodynamic formulation is considered where transport equations are continuous in space
and time, assuming that the dislocation velocity depends linearly on the local driving stress,
and (ii) a stochastic cellular automaton implementation is developed that assumes spatially and
temporally discrete transport of discrete ‘packets’ of dislocation density that move according to
an extremal dynamics [M]. The latter is in fact a more detailed version of the SCPM described
in Sec. 2.2.4 that also accounts for the development of local dislocation densities.

Figure 2.16 plots the evolution of the pattern when a Gaussian white noise as initial perturba-
tion is used. First, embryonic patterns start growing locally and then, in a first ‘synchronization’
stage, organize in the y direction to form parallel walls. In a second ‘growth’ stage the amplitude
of these wall-like dislocation density modulations increases while the once-established pattern
remains in place. If, on the other hand, simulations start from a localized dislocation density
‘blob’ then an interesting scenario occurs: The blob causes positive and negative dislocations
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Figure 2.16: Spatiotemporal evolution of dislocation density patterns [total density ρ(rrr, t) and GND density
κ(rrr, t)] in two dimensions for small Gaussian white noise superimposed on a homogeneous density
distribution as initial condition; for parameters see [M].

to pile up from both sides. The long-range stresses of the double pile-up then lead to growth
of a double wall similar to a kink band in the y direction. Finally, the double wall serves as
the nucleus for a nonlinear wave which spreads the pattern in the y direction [M]. Despite the
differences, we find that the emergent patterns in both scenarios and both models are mutually
consistent and in agreement with the prediction of the linear stability analysis of the continuum
model mentioned earlier.

However, in lower-scale 2D DDD simulations such periodic patterns have not been seen so
far. Since the continuum model described above was obtained by coarse graining the discrete
equations, this issue needed to be addressed. In Sec. 2.2.4 the distribution of the yield thresholds
were found to follow a weakest link distribution and, accordingly, the local local yield stresses
were Weibull-distributed with a shape parameter β ≈ 1.4. In the continuum and SCPM models
above, however, the yield stresses were either deterministic (continuum case) or were drawn
from a sharp distribution with a relatively small standard deviation. In order to understand the
role of the stochastic yield stress in the pattern formation the yield thresholds in the SCPM
were configured with the Weibull distribution obtained directly from the DDD simulations. The
emergent pattern evolution is shown in Fig. 2.17. As seen, the formation of dipolar dislocation
walls is apparent in both discrete and continuum versions, but these walls are not periodic in the
x direction [O]. The analogy between discrete and continuum cases was also proven in terms of
the spatial correlation functions. Our results, thus, shed new light on the role of the back stress
as well as the stochastic local yield threshold in dislocation patterning of bulk single crystals
and provide a successful multiscale description of the dynamics in single-slip edge dislocation
systems [O].
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Figure 2.17: Dislocation pattern evolution in discrete and stochastic continuum simulations. Top row: Disloca-
tion configurations obtained with DDD at different plastic strain values γ . Middle and bottom rows:
Density of total and GND densities (ρ and κ , respectively) obtained by SCPM simulations at differ-
ent plastic strain values γ [O].

2.3.4 Modelling in 3D [T, U]

The continuum theory detailed above was developed for parallel straight edge dislocations, a
system that is essentially 2D. Real dislocation structures, however, consist of curved disloca-
tions on various slip planes giving rise to a much more complex dynamics. It was, therefore, a
long-standing issue if a similar procedure as for 2D (rigorous coarse graining or a phase field
approach) can be established for curved dislocation systems. As a first step towards a physics-
based 3D theory we carried out the generalization of the phase field formalism for curved dis-
locations for a single-active-slip system. To this end, the kinematic framework developed by
Hochrainer and co-workers was adopted [100–104]. In order to be able to treat dislocations of
different orientation in the same volume element, the problem was extended into 2+1 dimen-
sions, where the dislocation line direction is introduced as an independent variable at each point.
In the glide plane, the line direction was represented by the angle ϕ that the local dislocation
line direction forms with the x axis, given by, e.g., the Burgers vector. So, the problem was
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‘expanded’ to the (x,y,ϕ) = (rrr,ϕ) space. To further reduce the complexity a first order Fourier
expansion was applied for the total density, dislocation velocity and curvature density as

ρ
′(rrr,ϕ) ≈ ρ(rrr)+2cosϕκ1(rrr)+2sinϕκ2(rrr), (2.26)

v′(rrr,ϕ) ≈ vm(rrr)+ cosϕvd
1(rrr)+ sinϕvd

2(rrr), (2.27)

q′(rrr,ϕ) ≈ q(rrr)+ cosϕQ2(rrr)− sinϕQ1(rrr). (2.28)

respectively [U]. With this approximation the kinematic theory took an analogous form to 2D
Eqs. (2.10, 2.11), but now with two GND density components κ1 and κ2 (edge and screw com-
ponents, respectively), two corresponding drift velocity components vd

1 and vd
2 and quantities

related to curvature q, Q1 and Q2. This analogy made it possible to generalize the phase-field
formalism of the 2D case with specific mobility functions that guarantee the decrease of the
plastic potential during evolution, i.e., Ṗ ≤ 0. As such, the dynamics in the theory is dictated
solely by the scalar functional P, the exact form of which can be determined by generalising the
2D theory and using symmetry and other physical arguments [U].

Apart from curvature, another important aspect of the full 3D theory is to account for sev-
eral slip systems. Formally, it appears relatively straightforward to generalize the theory for
multiple slip. In this case, however, local dislocation-dislocation interactions, like formation of
junctions and dislocation annihilation, cannot be neglected. Moreover, cross slip and at higher
temperature climb may play an important role, too. These phenomena need to be incorporated
into the proposed theory as source and sink terms. Promising ways how to incorporate some
of these phenomena in continuum dislocation theories were recently proposed by El-Azab et

al. [90, 91, 111] and Schulz et al. [112, 113]. These extensions proved successful in describing
various technologically important situations, such as torsion of microwires [114].

The mentioned reaction terms contain fitting parameters that are usually fitted with the help
of 3D DDD simulations that are computationally limited to rather small volumes and achiev-
able strains. It is, therefore, necessary to test the continuum dislocation dynamics (CDD) model
predictions against experimental evidence. Such a unique opportunity is provided by micropil-
lar compression experiments, where using complementary high-resolution electron backscatter
diffraction (HR-EBSD) the internal dislocation microstructure can be directly characterized in
terms of some of the components of the Nye dislocation density tensor, as seen in Fig. 2.18
(for details see Sec. 2.4.3). We, therefore, investigated the dislocation microstructure evolu-
tion in FCC metallic microsamples. Single crystalline copper micropillars with a 〈110〉 crystal
orientation (multiple-slip to favour dislocation reactions during deformation) and varying sizes
between 1 to 10 µm were analysed under compression loading. The analysis was paralleled
by 3D CDD simulations that consider dislocation dynamics, interactions, and reactions of the
individual slip systems and providing direct access to these quantities (see Fig. 2.18).
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αxz, exp. αyz, exp. αzz, exp. αxz, sim. αyz, sim. αzz, sim.

Figure 2.18: First 3 panels: The experimentally accessible components of the tensor ααα of the 10 µm pillar de-
formed in situ at 9.3 % strain. Second 3 panels: The corresponding components obtained by CDD
simulations. Note that in the cross-section of the pillars are in all cases a = 10 µm, however the as-
pect ratios are different. In addition, values in the experimental figures are 10 times larger than that
shown by the scale [T].

It was shown, that the plastic deformation of the material is mainly caused by dislocation
activities on the four slip systems with the highest Schmid factor. Here, the loss of dislocation
density over the surface leads to observable deformation patterns and surface steps. An interest-
ing finding is the increasing amount of GND density in the system during loading. It has been
observed for all micropillars considered and is located dominantly on the slip systems that are
not mainly responsible for the production of plastic slip. The stabilization of the GND density
on these inactive slip systems can be explained by the lower Schmid factor and the associated
lower driving force on the dislocations on these systems. However, the presented results indi-
cate that the obstruction for dislocation motion caused by dislocation network formation may
play a significant role for this finding.

In the considered size regime, the dislocation network formation is emphasized with increas-
ing micropillar size for small loading states. This indicates a transition from a dislocation star-
vation regime to a regime dominated by dislocation accumulation forming a cellular structure.
This is accompanied by longer travel distance of dislocations to the surface as well as the lower
dislocation velocities that can be observed for larger micropillars enforcing the probability of
network formation and yielding a contribution to plastic hardening [T].

2.4 Experimental investigations

2.4.1 Introduction

As it was mentioned in the Introduction of the thesis, most of the research presented here was
motivated be the pioneering micropillar compression experiments of Dimiduk and co-workers
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[19–21]. This influential series of papers layed down the foundations of a new sub-field of
materials science that can be termed micro- and nanomechanics. Our research group at the
Department of Materials Physics decided to construct a microdeformation stage that can be
placed inside an SEM chamber in order to perform such in situ deformation experiments. The
reasons for this decision are as follows:

• A new dual-beam SEM device was installed in 2010 at the host institution that made
microsample fabrication possible and had a relatively large vacuum chamber that could
host the microdeformation stage.

• The required know-how was available at the Department, since micro- and nanoindenta-
tion experiments had for long been carried out.

• At the time (around 2015) the commercially available devices did not meet our expec-
tations: they utilized stress control, had a quite low data acquisition rate and were not
flexible in the sense that they were capable of performing only one type of experiments.

• Last but not least, developing a new device is financially much more advantageous than
buying a new one.

The device constructed is capable of performing compression tests at room temperature in
high vacuum mode inside the SEM chamber to allow in situ monitoring of the deformation
process and slip activity on the samples’ surface by secondary and backscattered electrons. The
deformation stage sketched in Fig. 2.19 is equipped with an xy stage that allows the user to
position the micropillar precisely under the indentor tip and a piezoelectric fine z stage that
performs the compression. The fine z stage in fact moves a spring that is connected to the
flat punch tip and its elongation is measured using a capacitive displacement sensor in order
to obtain the acting force. Since the range of the fine z stage is small (30 µm) a conventional
coarse z stage was also installed that is only used to navigate the tip to the vicinity of the
sample. The device is constructed without any load or strain feedback loop integrated and
during measurements the fine z stage (called platen) is moved with a constant velocity. The
precision of the measured indentation depth and load is ∼1 nm and ∼1 µN, respectively. The
sampling rate is 200 Hz, while the spring constant can be set to either 1 mN/µm or 10 mN/µm.
For a detailed description of the device, the reader is referred to [K].

The first part of this section will be concerned with deformation phenomena of micropil-
lars based on stress-strain curves and the SEM images recorded during and after deformation.
In particular, the statistical fluctuations characteristic of this scale will be analysed followed
by investigating twinning in Mg micropillars. In Sec. 2.4.3 we utilize a novel experimental
methodology of HR-EBSD that is able to characterize the dislocation structure from electron
diffraction measurements. This method will be used to evaluate dislocation structures found in
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Figure 2.19: Sketch of the microdeformation stage with an unproportionally large micropillar for clarity.

bulk and microscopic single crystalline Cu samples as well as in W around a crack tip. Finally,
Sec. 2.4.4 concludes the thesis with summarizing recent results obtained by coupling micropil-
lar compression experiments with the detection of acoustic emission (AE).

2.4.2 Deformation properties of micropillars [D, V]

As it was mentioned already in Sec. 2.2.2, due to the large strain fluctuations emerging at
small scales the stress–strain curves of micron- and submicron-scale specimens are of random
character in several aspects. The step-like curves consist of plateaux corresponding to strain
bursts, and stress increments connecting these plateaux. Consequently, the yield stress of the
micropillars can only be defined in a probabilistic way over an ensemble of specimens with
the same parameters (size, dislocation density, etc.) as it was also concluded earlier using 2D
and 3D DDD simulations [A]. To test the numerical findings experimentally, compression tests
were carried out on a large number of pure Cu single-crystalline micropillars with a diameter of
d = 3 µm. These pillars exhibited the same crystallographic orientation and a close-to-identical
geometry so they in principle only differed in the inherent initial realization of the dislocation
structure [see Fig. 2.20(a)].

Since the in situ deformation stage described in Sec. 2.4.1 had not yet been ready, the uniaxial
compression tests were carried out ex situ with a UMIS II. Csiro nanoindenter using a flat-punch
diamond tip. The pillars were large enough to enable the indenter to be properly positioned
using an optical microscope. The compression tests were performed under load control with a
rate of 0.01 mN/s. For exemplary stress-strain curves see Fig. 2.20(b), and for additional details
of the experiments, see [D].
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Figure 2.20: (a): SEM backscattered electron images of 24 micropillars before compression. This type of imag-
ing leads to different contrast for different elements, making the amorphous Pt cap clearly visible.
(b): Exemplary nominal stress (σ )–plastic strain (εpl) curves measured for three different cylindrical
micropillars. (c): Cumulative distribution function of the measured applied stress values. The differ-
ent curves correspond to various plastic strain levels εpl where the stress levels were measured. The
solid lines are fitted Weibull distributions. (d): The same distribution on a Weibull plot [D].

According to the statistical analysis of the ensemble of stress-strain curves a threshold stress
level σth could be defined. This point exhibits features that are characteristic of yielding. First,
there is a microplastic regime below σth where there is some plastic strain accumulating, but
plastic strain starts to increase rapidly only above this threshold stress σth. This microplastic
regime is characterized by a power-law as εpl ∝ σβ , with β ≈ 1.1−1.2. Second, the variance of
the plastic strain also increases faster above σth, suggesting that the system enters a statistically
different regime above σth.

The cumulative distribution functions Φε,pl of the stress values measured at different plastic
strains εpl are seen in Fig. 2.20(c). The data can be fitted well by a general Weibull distribution:

Φεpl(σ) =

 1− exp

(
−
[σ −σ0(εpl)]

k

δσ(εpl)k

)
, if σ > σ0(εpl),

0, otherwise.

(2.29)

Here k is the Weibull exponent, and σ0 and δσ set the minimum stress and the scale (σ0 is
the lower bound of the support of the distribution function). Parameters σ0 and δσ depend on
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εpl, but k = 3.5 was taken identical for all the curves. The fit is not only satisfactory on the
linear scales but, as seen in Fig. 2.20(d), the Weibull plot of the data also yields a straight line,
showing that the asymptotic properties of the distributions are identical.

So, we could conclude that the stress values corresponding to a given plastic strain followed
weakest-link statistics of Weibull type. This suggested that plasticity of micron- or submicron-
scale pillars was influenced by a weakest-element mechanism and that a dislocation system can
be envisaged approximately as a set of independent subregions of the system, and the global
yield stress corresponds to that of the weakest element. This conjecture served as the main
motivation for the theoretical investigations presented in Sec. 2.2.4. It is noted, that identical
conclusions were drawn based on 2D and 3D DDD simulations [D].

Fig. 3. The twin evolution and growth dynamics of the tested micropillars at the distinctive points during the compression test.

K. Máthis, M. Knapek, F. Šiška et al. Materials and Design 203 (2021) 109563

5

Figure 2.21: The twin evolution and growth dynamics in one of the tested micropillars during compression [V].
For the corresponding video see https://youtu.be/Q5YwLzyvnao

In a subsequent, more recent study, the formation and propagation of twins was studied in
microsamples having HCP lattice structure in collaboration with colleagues at Charles Uni-
versity, Prague. In particular, single-crystalline rectangular Mg micropillars (dimensions of
10× 10× 30 µm3) having the orientation that favored twinning were fabricated. The pillars
were tested in compression using the high-precision nano-testing device introduced above with
concurrent scanning electron microscopy imaging. All the experiments were performed at our
Micromechanical Laboratory at the Eötvös Loránd University. The course of a typical exper-
iment is shown in Fig. 2.21. As seen, the twinned regions exhibited different contrast making
them easy to recognize in the SEM figures. Deformation proceeded intermittently as twinned
regions appeared abruptly accompanied by a stress drop. These nucleated twinned regions then
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started to grow, but after reaching a certain critical width their growth stopped and the nucle-
ation of new twins took place. This process was repeated until the twins formed across the
entire micropillar height, from its top to its base. Finally, the thickening and coalescence of all
the twins took place until the whole volume of the micropillar was twinned. The experimental
data were supplemented by finite element method (FEM) calculations. It was shown experi-
mentally and also supported by FEM calculations that the critical thickness was around 3 µm
for the studied micropillars. These observations can be effectively explained in terms of the
FEM data, especially by means of the shear stress intensity and distribution. Using a line-by-
line analysis of the SEM images together with a detailed examination of the compression curves
(stress drops) allowed us also to effectively monitor twinning dynamics and to estimate the twin
lateral growth rate in Mg micropillars that was found to be in the order of 10−5− 10−4 m/s.
These findings related to twinning at the micrometer scale will be relevant in the development
of modern micro−/nano-electromechanical devices (MEMS/ NEMS), since at small scales, as
already stated many times before, the deformation behavior becomes less predictable, and this
proved to be true for twinning as well.

2.4.3 Assessing internal dislocation structure with HR-EBSD [L, N, R]

All the stochastic properties of plastic flow this thesis is concerned about are related to the
fluctuations of the internal dislocation microstructure. Therefore, to measure and analyse the
distribution of dislocations in the material (i.e., dislocation patterns) and its statistical properties
is indispensable to understand the emergent behaviour. In this chapter the novel method of the
high-resolution electron backscatter diffraction (HR-EBSD) is utilized.

The main steps of the method are shown in Fig. 2.22. This technique is based on the so-called
Kikuchi patterns that are formed by the diffraction of electrons that get backscattered from the
crystal lattice. The patterns are recorded on a square grid. From the pattern the structure and
orientation of the crystal can be determined, this procedure corresponds to the standard EBSD
method. Here the individual patterns are compared to a reference pattern using a sophisticated
cross-correlation analysis to obtain the shift, rotation and distortion of the Kikuchi pattern. From
these information one can determine the components of the distortion and the stress tensors
within the volume illuminated by the electrons [115, 116]. Based on these information HR-
EBSD can characterize the distribution of GNDs in terms of three independent components
of the Nye dislocation density tensor. The measurements can be performed on a grid of as
small as sub- 100 nm step size, however information is only gathered from the first few tens
of nanometers below the surface [117]. Consequently, the careful preparation of the sample
surface is of utmost importance for HR-EBSD.
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Figure 2.22: Sketch of the HR-EBSD method. The blue arrows show the flow of the process. First, diffraction
patterns are recorded on a square grid, then a cross-correlation analysis yields the values βi j of the
distortion tensor. One can then obtain, e.g., statistical information about the sample [118].

HR-EBSD had traditionally been used to determine the GND density in the specimen.
Wilkinson and co-workers, however, realized that the distribution of the stresses in a poly-
crystalline sample exhibits a power-law tail [119] similarly to that of the Bragg peaks obtained
by XRD on a single crystal [120]. The latter is related to the fact that the distribution of internal
stresses σ in a dislocated crystal decays as 1/|σ |3 with a pre-factor proportional with the total
dislocation density [121]. Motivated by these results, in our first investigation with HR-EBSD
statistical properties of the dislocation structure developing in an FCC single crystal were in-
vestigated [L]. In particular, Cu single crystals of rotated Goss orientation (011)[011] were cut
by electrical discharge machining into cuboid shapes and deformed by channel die compression
up to the strain levels of 6% and 10%. The compression was performed parallel to the [110]
plane normal, while the sample elongated along the [110] direction, and it was held fixed by the
channel walls along the [100] direction. Before deformation, HR-EBSD and x-ray diffraction
(XRD) analyses, the samples were electropolished. This type of deformation leads to multiple
slip and a cellular pattern already at 6% strain as seen in Fig. 2.23(a). The average cell size was
about 2-3 µm.

The question we intended to answer was whether the stress distribution in a single crystal
measured by HR-EBSD decays with an inverse cubic tail and if so whether its pre-factor is
proportional with the density of dislocations. To determine the latter, complementary XRD
measurements were conducted. Further details of the experiments can be found in [L]. The
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a) b)

Figure 2.23: (a): Band contrast map obtained on the sample deformed up to 6% strain. (b): The σ13 stress com-
ponent map obtained by HR-EBSD on the same sample. The stress levels indicated are relative
values to the stress level at the centre of the scanned area [L].

results yielded positive answers to both of the questions. This means that the total dislocation
density could be quantified from a single HR-EBSD map, and the obtained values showed good
correlation with those from XRD. It was also found that the ratio of the GND and stored dislo-
cation densities are not constant with increasing strain suggesting that there are two ‘separate’
length scales in the system. These findings opened new perspectives in the applicability of
HR-EBSD in the statistical description of heterogeneous dislocation structures [L].

The method of HR-EBSD can also be used to characterize the spatial distribution of the dis-
locations within the sample from the components of the Nye dislocation density tensor. In our
next paper we aimed at investigating the dislocation distribution in deformed single crystalline
copper micropillars [N]. To this end, identical micropillars (6× 6× 18 µm3 in size) were fab-
ricated by FIB and compressed at room temperature. The deformation process was stopped at
different strain levels (≈1%, 4% and 10%) to study the evolution of the GND network. HR-
EBSD is only capable of performing measurements on the surface of the sample. To allow for
the reconstruction of the whole 3D structure serial slicing was applied, that is, after every HR-
EBSD measurement the top ∼100 nm layer of the sample was removed by FIB and every time
the diffraction measurement was repeated. This so-called 3D HR-EBSD measurement made it
possible to create and compare 3D maps of the deformed volumes (see Fig. 2.24). An interme-
diate behaviour was found at the studied sample size between bulk and nanoscale plasticity: A
well-developed dislocation cell structure was built up upon deformation but with significantly
lower GND density than in bulk. This explained the simultaneous observation of strain hard-
ening and size effect at this scale. To validate the HR-EBSD measurements complementary
scanning transmission electron microscopy (STEM) and TEM images were captured on the
10% pillar to visualize the actual dislocation structure that verified the presence of the cell walls
obtained by HR-EBSD [N].
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Figure 2.24: 3D models of GND density values for the three micropillars (top row: 0.7%, middle row: 4.3%,
bottom row: 10%) rotated around for inspection. First view in each row was made as we look di-
rectly on the outer surface of the pillar (first slice). The flat punch tip – Pt cap interface is located
at the top of each model. Black arrows in the 0.7% deformed pillar mark the FIB milling artefact.
White square indicates the reference pattern replacement artefact. Absolute values of angles of the
active slip systems can be easily identified. Inverse pole figures (IPFs) on the right side show the ori-
entation distribution viewed from the compression direction, plotted for one slice from the middle of
each pillar [N].

Finally, HR-EBSD was utilized to characterize the shape of the plastic zone in terms of
GNDs in a W single crystal in 3 dimensions [R]. Cantilevers of similar size with a notch were
fabricated by FIB and were deformed inside a scanning electron microscope at different temper-
atures (21 ◦C, 100 ◦C and 200 ◦C) just above the micro-scale brittle-to-ductile transition. This
was followed by an in-depth HR-EBSD analysis of various planes. The obtained Nye tensor
components are shown in Fig. 2.25. The value of αsq =

√
α2

13 +α2
23 +α2

33 was used to estimate
the total GND content. As seen, at all three temperatures the plastic zone was found to be larger
close to the free surface than inside the specimen, similar to macro-scale tension tests [122].
However, at higher temperature, the 3D shape of the plastic zone changes from being localized
in front of the crack tip to a butterfly-like distribution, shielding more efficiently the crack tip
and inhibiting crack propagation. The analysis of the distribution of the Nye tensor components
was used to differentiate between the types of GNDs nucleated in the sample. Based on the
αi3 components, the Burgers vector directions can be identified. A sketch in the bottom row
of Fig. 2.25 reflects only the collective sign of the projected Burgers vector around the crack
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Figure 2.25: Distribution of α13, α23, α33 and αsq components at three different temperatures close to the surface
and in the middle of the cantilever. Bottom row represents a sketch of the GND configuration based
on the αi3 component analysis and Burgers vector directionality. Arrows indicate the typical Burgers
vector direction based on the component analysis. Dislocations coloured in magenta correspond to
increased edge type GNDs at higher temperatures due to increased pile-ups in the system [R].

tip. Earlier studies had already investigated BCC systems, where dislocations emitted from a
crack tip were described and crack tip deformation had been presented [123, 124] and modelled
[125]. In these works the excess dislocations around the crack tip were assumed to be emitted
from the crack on various slip planes. After studying the Burgers vector configuration based
on the Nye-tensor components, however, we concluded that the GND configuration is not as
simple as it was expected earlier. The observations of Fig. 2.25, i.e., that Burgers vectors have
a direction perpendicular to the line connecting the dislocations and the crack-tip indicate that
the detected GNDs are not mainly emitted from the crack tip. Rather, it was suggested that they
are formed by secondary dislocation sources that are being created by increased dislocation
interactions due to large local stresses, pinning, and junction formation. These results, to our
knowledge, represent the first analysis based on HR-EBSD measurement that aims at studying
the directionality of bbb and show the strong capacities in these measurements in describing and
understanding dislocation structures and their evolution [R].
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2.4.4 Acoustic emission [K, X]
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Figure 2.26: Compression experiment of Zn micropillars oriented for basal slip. (a): An exemplary measured
stress vs. time curve as well as the rate of the detected individual AE bursts. The light blue vertical
lines mark the stress drops larger than 1 MPa. (b): Zoomed stress-time curve of the region shaded
by grey in panel (a). The coloured data points along the stress curve represent the individual AE sig-
nals and their energy and the red curve shows the cumulative number of these signals. (c): Zoomed
stress-time curve of the region shaded by grey in panel (b) and the detected AE waveform of the
same interval. The inset shows the magnified view of a single event and coloured data points corre-
spond to individual signals detected by thresholding the AE signal [X].

In spite of the focused research of the community detailed above, a general framework to
describe stochastic behaviour is still elusive, partly because experimental results are not robust
enough (they are rather sensitive to sample geometry, strain rate, machine stiffness, etc.). Thus,
development of new experimental methodologies for microdeformation may help clarifying the
open issues regarding stochastic plastic response and the corresponding critical behaviour. The
results related to HR-EBSD technique described in the previous section also pointed in this
direction. Our research group made another step towards extending our experimental capabil-
ities by investigating acoustic signals during microdeformation. The microdeformation stage
described in Sec. 2.4.1 was designed and developed not only to be able to record stress-strain
characteristics of microsamples but also to record the released acoustic emission (AE) signal
at the same time in situ [K]. A piesoelectric AE sensor is placed under the sample, as seen
in Fig. 2.19. To my knowledge, such a simultaneous measurement had not been performed
before and made it possible to study strain bursts in more detail since the time resolution of
AE is orders of magnitude better than that of a force sensor. Indeed, compression experiments
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performed on single crystalline Zn micropillars yielded a strong correlation between the stress
drops – resulting from the elongation of the indentor spring after the sudden collective disloca-
tion rearrangement in the sample – and AE bursts (see Fig. 2.26). Through these results it was
not only confirmed that the AE signals originate directly from dislocation avalanches, but also
the temporal analysis of the AE signal proved that dislocation avalanches obey the ubiquitous
fundamental scaling laws of earthquakes [X]. The results (currently being under review) not
only shed light on the universal behaviour of collective dislocation phenomena but are also of
high technological importance, since they allows one to relate to properties of AE signals to
those of the microscopic deformation event. This information is crucial for the assessment of
AE experiments performed on bulk samples.
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I summarize below the most important results of the scientic work presented in Chapter 2. The
relevant publications are referenced at each thesis point and detailed in my publication list in
Chapter 5.

1. Plastic yielding at the micrometer scale. I applied DDD simulations and microcompres-
sion experiments to investigate the stochastic nature of yielding of micron-scale objects.
I conceived the idea of defining the yield stress at this scale over an ensemble of statis-
tically equivalent realizations via the average stress-strain curve. The particular related
findings are as follows:

a) 2D and 3D DDD simulations were employed to show that a yield stress can be
defined in an average sense that separates two statistically different regimes: a mi-
croplastic part with a limited amount of activity and a flowing part with a significant
plastic strain rate due to dislocation avalanches.

b) The same analysis was extended to an ensemble of single crystalline Cu micropillars
with identical parameters (initial average dislocation density, crystal orientation and
geometry). The same features as with DDD simulations were recovered hinting at
the general nature of the average yield point.

c) An in-depth analysis of the accumulation of plastic strain in 2D DDD simulations
showed that during avalanches irreversible structural changes take place. Plastic
deformation also happens between these events, but these are quasi-reversible.

Related publications: [A, D, F]

2. Universality class of plastic deformation. With the help of 2D DDD simulations I studied
the avalanche behaviour of dislocation systems. I identified a universality class that is
related to the critical behaviour of dislocations which is characterized by the absence of
length and timescales that would limit the spatial extent of avalanches. This behaviour
is inconsistent with the depinning scenario that was envisaged earlier to provide a gen-
eral description for plasticity. The particular findings that lead to this conclusion are as
follows:
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a) The relaxation of initially random dislocation structures as well as those subject to
some external perturbation were found to exhibit slow, scale-free relaxation charac-
terized by self-similarity in the velocity distribution of dislocations.

b) The avalanche size distributions during quasi-static loading follow a scale-free dis-
tribution with a cut-off. The latter has been shown to be proportional with the system
size at every stress level, that is, in the thermodynamic limit the avalanche size dis-
tribution is always scale-free.

c) The reason for this glassy behaviour is the long-range interaction between a large
number of dislocations. As soon as the dynamics of a single dislocation line is
considered, mean-field depinning is recovered, as shown by molecular dynamics
simulations of a dislocation line traveling in a random alloy.

Related publications: [C, E, S].

3. Statistics of internal disorder in dislocation systems. The stochastic properties of crys-
tal plasticity are due to the randomness in the dislocation microstructure. I, therefore,
pursued to determine the distribution of local yield thresholds using 2D DDD simula-
tions and, based on this result, developed a mesoscopic stochastic plasticity model. The
particular related findings are as follows:

a) The local yield threshold distribution was found to be characterized by a power-law
distribution that lead to Weibull-type order statistics for stress values at the onset of
subsequent avalanches. The mesoscopic model based on this observation and the
lower-scale DDD models were compared in terms of stress-strain curves and their
fluctuations that demonstrated the success of scale linking.

b) A similar mesoscopic stochastic plasticity model was applied to study the deforma-
tion of shear softening materials (such as amorphous materials) and the role of the
yield threshold distribution. It was shown that increased microstructural heterogene-
ity delays strain localization (that is, shear band formation and subsequent rupture)
and leads to an increase of the plastic regime in the macroscopic stress–strain curves.

Related publications: [I, J].

4. Development of novel efficient numerical tools for dislocation dynamics. Discrete dis-
location dynamics simulations play an essential role in the particular field both from the
modelling and theoretical perspectives. Two new methodological developments were per-
formed that aim at increasing the numerical efficiency of these numerical tools. Firstly,
a complex implicit scheme was proposed for the numerical solution of the equations of
motion that lead to a significant (several magnitudes in some cases) speed up in the sim-
ulations. Secondly, a new spectral method was developed for satisfying various elastic

52



3 Thesis statements

boundary conditions in 2D simulations. This method was shown to exhibit better compu-
tational efficiency than the FEM.

Related publications: [P, Q].

5. Pattern formation of dislocations. It is an ubiquitous feature of crystalline materials that
upon plastic deformation dislocations accumulate and arrange into various patterns. Us-
ing theoretical approaches and numerical simulations I investigated this phenomenon and
obtained the following results:

a) I was involved in deriving a continuum density-based plasticity theory and its re-
formulation into a phase field model that gives a mesoscale representation of a 2D
system of straight dislocations. The model was generalized to account for the distri-
bution of geometrically necessary dislocations close to an impenetrable boundary.

b) By the linear stability analysis of the governing partial differential equations it was
shown, that the homogeneous solution is unstable and that the theory predicts the
formation of dipolar walls with a certain wavelength.

c) A stochastic extension of the continuum model was performed that yields identical
patterning characteristics as lower-scale discrete dislocation dynamics simulations.

d) The continuum model was generalized to curved dislocations in single slip based
on the phase field formalism. For the first time, physics-based dynamical evolution
equations were proposed for this scenario.

Related publications: [B, G, H, M, O, U].

6. Characterizing the dislocation network with HR-EBSD measurements. High-resolution
electron backscatter diffraction (HR-EBSD) is a novel non-destructive method giving ac-
cess to the internal stresses and the GND distribution on the surface of a crystalline sam-
ple. This method was utilized at our laboratory and with its help the following results
were obtained:

a) The distribution of internal stresses in a deformed bulk Cu single crystal was deter-
mined and compared with numerical dislocation dynamics simulations. The fact that
the tail of the distribution was found to decay as an inverse cubic function in both
cases allowed us to use HR-EBSD to measure not only the geometrically necessary
but also the statistically stored density of dislocations.

b) The distribution of geometrically necessary dislocations was investigated in mi-
crosamples. In case of copper, an embryonic cellular structure was found that can
be considered a transition state between bulk and nanoscale behaviour. The analy-
sis of the components of the Nye dislocation density tensor lead to the conclusion
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that most of the dislocations are found in inactive slip systems and were formed by
reactions during deformation.

c) Similar behaviour was observed in tungsten cantilevers in front of a crack, namely,
the dislocation structure that develops and shields the stress field around the crack
tip was found to be built of dislocations that were not emitted from the crack tip,
rather they were formed by dislocation reactions.

Related publications: [L, N, R, T].

7. Utilizing acoustic emission in micromechanical experiments.

Acoustic emission (AE) experiments were used extensively for bulk samples to investi-
gate the stochastic features of plasticity. We developed an experimental set-up that, for
the first time, allowed us to record AE signals of a microsample together with its stress-
strain characteristics in situ in a scanning electron microscope. With this measurement
the dislocation avalanche behaviour in Zn micropillars was investigated. It was found that
these events analogous to earthquakes as the ubiquitous scaling-laws (that is, Gutenberg-
Richter law, Omori law, productivity law) were found to hold in micropillars, too.

Related publications: [K, X].
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In this chapter I summarize the plans for my research in the next approx. 5 years. These topics
are, in fact, the direct continuation of the work presented in the scientific part of this thesis. The
proposed research activities will be mostly funded by the National Research, Development,
and Innovation Office of Hungary through the 4-year grant OTKA-FK-138975 that started in
September 2021.

The planned research continues to aim at providing a deeper understanding of the plastic
behaviour of materials at the micron scale. The planned experimental and theoretical/numerical
topics are grouped in four distinct, though related topics, as follows.

1. Experimental investigations of the stochastic features of plasticity

(1.1) AE measurements for various materials and deformation mechanisms. As it was
described in Sec. 2.4.4, the novel methodology of detecting AE signals during micro-
compression developed at our laboratory has opened new perspectives in the experimen-
tal investigation of collective dislocation dynamics. In the near future we will inves-
tigate how the AE signals and their statistics depend on the material and deformation
mechanism. Firstly, twinning (a typically strong source of AE signals) will be studied
during the compression of single crystalline Mg. Depending on the orientation one can
tune the proportion of twinning and dislocation glide on basal slip (two distinct defor-
mation mechanisms) in the total deformation [V]. In collaboration with Kristián Máthis
(Charles University, Czech Republic) we will investigate the differences in type (wave-
form and spectrum) and statistics (distribution of size and duration) of the AE signals
corresponding to the two distinct processes. Secondly, we will conduct similar micro-
compression experiments on other crystalline materials that exhibit pronounced twinning
due to small stacking fault energy. In particular, we will investigate pure Ag single and

polycrystals since it is known that in FCC the nature of criticality changes profoundly
compared to HCP crystals [60, 126] and a CoCrFeNi high entropy alloy (HEA) that pos-
sesses improved mechanical properties, such as high hardness combined with ductility
[127]. Thirdly, samples showing plastic instabilities of the Portevin–Le Chatelier (PLC)

effect [128] will be examined. In such cases strain bursts can be observed even for bulk
samples and it is known that AE signals can be detected for micropillars [see Fig. 4.1(a)]
[K]. Here we will focus on how sample size influences this instability and the AE signals
and whether one can classify the type of PLC instability based on the AE measurements.
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a) b)

c)

Figure 4.1: Preliminary experimental and numerical results. (a): Stress-time curve of a compressed Al-3Mg
micropillar exhibiting the PLC effect. According to the inset the numerous AE events detected are
in perfect correlation with the stress drops. (b): Distribution of GND densities on a bulk Cu single
crystal deformed to 11% strain obtained using HR-EBSD. (c): An extended deformation mode deter-
mined from the dislocation velocities v at the onset of a plastic event in 2D DDD simulations. Note,
that its spatial extension practically reaches the system size.

(1.2) Effect of irradiation. To further explore how the microstructural features of the
crystal affect the stochastic response we will examine the role of point defects. Numerical
simulations suggest that such a quenched disorder suppresses glassy behaviour [59, 61]
characteristic of pure dislocation systems [E, 129]. A multi-energy proton irradiation
scheme will be applied to Zn single crystals that was used successfully for metallic glasses
[130]. Micropillar testing will be then carried out on irradiated micropillars coupled with
AE measurements. In accordance with numerical predictions, suppression of the large
strain bursts and a pronounced microplastic response is expected.

(1.3) AE for bulk materials. Bulk materials with HCP structure emit a large number of
burst-like AE signals with scale-free energy distribution [17, 18, 126]. Temporal cluster-
ing similarly to that expressed by Omori-law for earthquakes has been investigated, but
due to the huge number of signals only weak clustering was found [131, 132]. In order
to assess whether our findings on temporal correlation on micropillars also apply for bulk
materials we will conduct compression experiments on sub-mm size Zn single crystal
samples directly placed on an AE sensor to reduce the reflections of the acoustic waves in
the sample. This will reduce the length of the burst-like signals and allow for an analysis
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with significantly better time resolution. These results are expected to answer whether
the boundary conditions play any role in the observed scale-free phenomena.

2. Micromechanical behaviour of materials

(2.1) Dislocation microstructure of deformed micropillars. As mentioned before, mi-
crostructure of crytalline materials plays a fundamental role in the properties of the ob-
served stochastic behaviour [60, 126, 133]. Within this objective we will investigate in
detail the microstructure of single crystalline micropillars that were compressed in points
(1.1) and (1.2). The in-depth post mortem HR-EBSD and TEM investigations will clarify
the type of dislocations and their geometrical properties that develop upon compression.
According to our hypothesis, in HCP the microstructure mainly consists of straight edge
dislocations or dislocation dipoles on the basal plane and the number of forest disloca-
tions, and thus the role of reactions, is negligible. This would explain why single slip
DDD simulations yield similar scaling properties [E, 129] than Zn micropillars [X]. The
point defects created by irradiation and dislocation reactions in FCC samples are expected
to drastically change this picture.

(2.2) The role of dislocation reactions - bending experiments. In FCC samples oriented
for multiple slip the size of strain bursts, as well as the number of AE bursts are sig-
nificantly reduced (see, e.g., [132, N]). This well-known fact is believed to be due to
dislocation reactions and the corresponding reduction in the distance travelled by disloca-
tions [134]. Indeed, recent compression experiments on Cu single crystalline micropillars
revealed that even at the µm scale a large number of geometrically necessary dislocations
(GNDs) develop on inactive slip systems due to dislocation reactions that lead to the de-
velopment of a cellular dislocation microstructure and strain hardening [T]. During the
next years we will continue our collaboration with Katrin Schulz (Karlsruhe Institute of
Technology, Germany) and Szilvia Kalácska (EMPA Thun, Switzerland) and investigate
the microstructural evolution during bending experiments of single crystals (such as Cu,
Zn, HEAs) with diameters 5−10 µm. During bending a large GND content accumulates
in the central region of the sample which makes such experiments especially suitable for
studying reactions.

3. Utilizing machine learning for micromechanics

In recent years machine learning (ML) has become a promising tool to unveil the most
important microstructural features that determine plastic response from a large amount of
data [135–140]. Recently, the method has been successfully applied for instrumented in-
dentation experiments for the prediction of mechanical properties [141]. At our laboratory
we will utilize ML algorithms to assess the local stress distribution from HR-EBSD mea-
surements. To this end, we will perform a large number (∼10,000) of nanoindentation
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experiments on the surface of a pre-deformed Cu sample. Preliminary results showed,
that a fractal-like dislocation pattern develops even close to the surface [see Fig. 4.1(b)].
The indentation hardness and other features of the indentation curve (such as the first
pop-in stress) are known to be of stochastic character [142], presumably due to the fluc-
tuations in the microstructure. We will utilize a supervised learning algorithm – Random
Forest regression – trained over a set of HR-EBSD data (local GND density and stresses
as well as the components of the Nye dislocation density tensor) and the corresponding
nanoindentation curves. The results will yield which features of the local microstructure
influence local hardness and are expected to allow us to predict the distribution of local
strength directly from HR-EBSD measurements. Since the research group of the PI does
not have experience with ML, that part of this objective will be carried out in collabora-
tion with Katrin Schulz (Karlsruhe Institute of Technology, Germany), an expert of this
field [136, 143].

4. Numerical modelling of the local stochastic processes of the yielding transition

(4.1) Identifying collective modes in crystalline plastic deformation. Using conceptually
simple 2D DDD simulations it was found that dislocation systems exhibit glassy features
in the form of large avalanches that may span the entire system even at small applied
stresses [E] signalling an extended critical behaviour that was confirmed in more com-
plex 3D DDD simulations as well [129]. The 2D system was also sufficient to describe
the AE signals and their temporal correlations [X]. In order to identify collective modes
that are triggered during avalanches we will apply linear stability analysis of the equations
of motion of 2D DDD systems. Preliminary results revealed long-range dynamical corre-
lations between dislocations that is expected to explain the scale-free behaviour observed
before [Fig. 4.1(c) shows an exemplary deformation mode spanning the whole simula-
tion area]. We will quantify the spatial extension of these modes and investigate their
response to an external stress especially close to the onset of a plastic event. We will also
study how quenched disorder (such as vacancies or solute atoms) and a finite threshold
in the mobility law (corresponding to, e.g., Peierls stress) localizes the eigenmodes and,
according to our hypothesis, lead to smaller strain bursts. The effect of irradiation stud-
ied under objective (1.2) will make it possible to directly compare our predictions with
experimental data.

(4.2) Local yield stress distributions and weakest link theory. Plastic instabilities appear-
ing in the form of strain bursts are due to the disorder in the microstructure that can be
formulated using the concept of local yield thresholds (see the Background section). This
idea has been also applied to amorphous materials where a methodology has been devel-
oped to measure this distribution using molecular dynamics simulations [144]. We will
establish a similar technique for 2D DDD simulations, that is, local regions of the whole
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simulation area will be tested with varying region sizes. This study is expected not only
to answer what the local yield stress distribution is, but also to identify the scale that
corresponds to a representative volume element. It is expected that with an increasing
strength of quenched disorder the local yield threshold represents a smaller and smaller
region that makes application of weakest link arguments [D, I] straightforward.

(4.3) Developing stochastic mesoscopic models for plasticity. As a next step stochastic
elastoplastic models will be constructed where the local yield threshold is the main input
[145]. Here we will aim at developing models that yield identical results to experiments
performed under objective (1.1). (i) For single crystals correlations in the yield threshold
between adjacent cells will be introduced to account for long-range dynamic correlations.
(ii) For PLC materials aging will be introduced to every cell similarly to the model used
for describing plastic instabilities during the compression of snow [146]. We will focus
on understanding the relation between local strain bursts and the AE signals measured in
the experiments.
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6 Brief summary of a scientific talk

In my scientific talk I will give a concise overview of my research activities after carried out
obtaining my PhD degree. I will start with a quick introduction on the background and the most
important findings that motivated my work. The rest of the talk will be split into three parts
according to the sections of Chapter 2.

Firstly, my results related to the investigations of the avalanche behaviour in dislocation
systems will be presented. After describing the simulation methods I will show how can one
define a yield stress in the statistical sense for micron and submicron scale specimens. This
yield stress separates two dynamically different regimes based on which it was suggested that
a dynamical phase transition takes place at yielding. I will show that the in-depth analysis of
the distribution of dislocation avalanche sizes that the picture of a phase transition cannot hold,
because the system is characterized by scale-free dynamics and behaves as one being always in
a critical state.

Secondly, the continuum theory of dislocations and its variational formulation will be pre-
sented. This theory is able to describe properly dislocation fluxes and the corresponding plastic
deformation in 2D dislocation systems. It will be shown how the theory predicts pattern forma-
tion and these predictions will be compared with lower scale discrete simulations. Finally, the
generalization of the theory to 3D will be outlined.

In the last part of my presentation our recent experimental findings will be discussed. I will
briefly introduce the method of high-resolution electron backscatter diffraction (HR-EBSD)
and present the results we obtained using this novel technique. The emphasis will be placed on
the microsamples and the determination of the internal dislocation structure. I will conclude
with introducing the coupling of acoustic emission and microcompression experiments and
show how experiments using this new methodology reveal temporal clustering of dislocation
avalanches that are analogous to earthquakes.
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Semester Subject code Subject name Course type

2007/08/1 fg1n2K04 Physics (mechanics and thermodynamics) tutorial

2007/08/2 fggn8201g Physics (electromagnetism and optics) tutorial
2007/08/2 fg1n2K05 Physics (electromagnetism and optics) tutorial
2007/08/2 ff1n2s01:2 Mechanics tutorial
2007/08/2 ff1n2s03 Electromagnetism tutorial

2008/09/1 ff1n2o02 Criterion class in Physics tutorial
2008/09/1 ff1n2o02 Criterion class in Physics tutorial
2008/09/1 fg1n2K04 Physics (mechanics and thermodynamics) tutorial
2008/09/1 ff1n2s01:2 Mechanics tutorial
2008/09/1 ff1n2s01:2 Mechanics tutorial
2008/09/1 fg1n2K04 Physics (mechanics and thermodynamics) tutorial

2008/09/2 ff1n2s03 Electromagnetism tutorial
2008/09/2 ff1n2s03 Electromagnetism tutorial

2011/12/2 ff1c4s12 Classical physics (laboratory) laboratory course
2011/12/2 ff1n1s02 Mechanics of continuous phases exp. demonstration
2011/12/2 ff1c1s02e Mechanics of continuous phases - advanced exp. demonstration

2012/13/1 ff1c2s01e Mechanics tutorial
2012/13/1 ff1c2s01e Mechanics tutorial
2012/13/1 fffn111 Mechanics exp. demonstration

2012/13/2 ff1c4s12 Classical physics (laboratory) laboratory course
2012/13/2 ff1n1s02 Mechanics of continuous phases exp. demonstration
2012/13/2 ff1c1s02e Mechanics of continuous phases - advanced exp. demonstration
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Semester Subject code Subject name Course type

2013/14/1 ff1n2s01 Mechanics tutorial
2013/14/1 ff1c1s01e Mechanics exp. demonstration
2013/14/1 f3fn1af1 Applied physics I. lecture
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2014/15/2 ff1c1s04 Thermodynamics exp. demonstration
2014/15/2 ff5t2s03 Electromagnetism tutorial

2015/16/1 ff1c1s01e Mechanics exp. demonstration
2015/16/1 ff1c2s01e Mechanics tutorial
2015/16/1 ff1c2s01e Mechanics tutorial
2015/16/1 f3fn1af1 Applied physics I. lecture

2015/16/2 ff1c1s04 Thermodynamics lecture
2015/16/2 ff1c1s02 Mechanics of continuous phases exp. demonstration
2015/16/2 ff1c2s03e Electromagnetism (advanced) tutorial
2015/16/2 ff1c2s03e Electromagnetism (advanced) tutorial

2016/17/1 ff1c1s01e Mechanics exp. demonstration
2016/17/1 ff1c2s01e Mechanics tutorial
2016/17/1 ff1c2s01e Mechanics tutorial
2016/17/1 f3fn1af1 Applied physics I. lecture

2016/17/2 ff1c1s04 Thermodynamics lecture
2016/17/2 ff5t1s57 New devices and technologies lecture
2016/17/2 ff5t2s03b Electromagnetism tutorial

2017/18/1 mechf17ea Mechanics lecture
2017/18/1 mechaf17ga Mechanics tutorial

2017/18/2 termof17ea Thermodynamics lecture
2017/18/2 ff5t1s57 New devices and technologies lecture

2018/19/1 mechf17ea Mechanics lecture
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Semester Subject code Subject name Course type

2018/19/2 termof17ea Thermodynamics lecture
2018/19/2 ff5t1s57 New devices and technologies lecture

2019/20/1 mechf19ea Mechanics lecture
2019/20/1 mechaf19ga Mechanics tutorial

2019/20/2 hotanef19va Thermodynamics and Continuum Mechanics - Adv. lecture
2019/20/2 ff5t1s57 New devices and technologies lecture

2020/21/1 mechf19ea Mechanics lecture
2020/21/1 mechaf19ga Mechanics tutorial

2020/21/2 hotanef19va Thermodynamics and Continuum Mechanics - Adv. lecture
2020/21/2 ujeszkf19eo New devices and technologies lecture

2021/22/1 mechf19ea Mechanics lecture

7.2 Supervision of PhD students

In the following, students who did or are currently doing their PhD research under my supervi-
sion are listed. All the activities took place at the Eötvös Loránd University, Budapest, Hungary.

• 2012–2018: Dániel Tüzes, title of the thesis: Stochastic Properties of Dislocation Motion

and Rearrangement (co-supervised with Prof. István Groma)

• 2013–2016: Ádám Hegyi, topic: Statistical properties of deformation avalanches (he
obtained his pre-degree certificate but did not submit a thesis)

• 2017–: Dávid Ugi, topic: Experimental investigation of dislocation avalanches

• 2018–: Gábor Péterffy, topic: Dynamical correlations in dislcoation systems

• 2020–: Dénes Berta, topic: The role of curvature and internal disorder in dislocation

systems

• 2021–: Tabish Aftab, topic: Stress fluctuations in heterogeneous materials

7.3 Supervision of undergraduate students

In the following, students who finished their diploma research under my supervision are listed.
All the activities took place at the Eötvös Loránd University, Budapest, Hungary.
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7 Teaching activities

• 2015: Péter István Zöld, Physics Teacher MA, Alakemlékező ötvözetek/Shape Memory

Alloys

• 2016: Gábor Péterffy, Physics BSc, Hatékony implicit numerikus séma kidolgozása és al-

kalmazása diszkrét diszlokáció dinamikai szimulációkban/Development and Application

of an Efficient Implicit Scheme in Discrete Dislocation Dynamics Simulations

• 2016: Beáta Herke, Physics BSc, A papírsatu fizikája/Physics of the Paper Vice

• 2017: Dávid Ugi: Materians Science MSc, Egykristályok mikromechanikai tulajdonsá-

gainak kísérleti vizsgálata/Experimental Investigation of the Micromechanic Properties

of Single Crystals

• 2017: Roland Kovács, Physics Teacher MA, Mozgások számítógépes elemzése a Tracker

program segítségével/Computer Analysis of Motions with Tracker

• 2018: Gábor Péterffy, Physicist MSc, A besugárzás képlékeny alakváltozásra gyakorolt

hatásának modellezése a mikronos mérettartományban/Modelling of the Impact of Irra-

diation on the Plastic Deformation at the Micron Scale

• 2018: Dénes Berta, Physics BSc, Hatékony numerikus módszer a határfeltételek figyelem-

bevételére rugalmas anyagban/Efficient Numerical Scheme for Handling Boundary Con-

ditions in an Elastic Medium

• 2019: Janka Molnár, Physics BSc, Dinamikai korrelációk és deformációs lavi-

nák/Dynamical Correlations and Deformation Avalanches

• 2020: Dénes Berta, Physicist MSc, Local Yield Stress in 2D Dislocation Systems

• 2020: Ecsedi Grácia Antónia, Physics Teacher MA, Napelemes eszközök használatának

előnyei a középiskolában/Advantages of Using Devices with Solar Panels in Secondary

Schools

• 2021: Dániel Godó, Physics BSc, Deformált Cu egykristályok mikroszerkezeti inho-

mogenitásának vizsgálata indentációs és EBSD mérések alapján/Investigation of the Mi-

crostructural Inhomogeneity of Deformed Cu single crystals using indentation and EBSD

measurements

• 2021: Gergő Bence Mamuzsics, Physics BSc, Cu egykristályok hajlítása során kialakuló

diszlokációs mikroszerkezet kísérleti vizsgálata/Experimental Investigation of the Dislo-

cation Microstructure Developing in During Bending of Cu Single Crystals
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7.4 Participation of my students at OTDK conferences

• 2015: Gergely Dálya And Kornél Kapás, A deformáció hatása a réz egykristály felületén

kialakuló fraktál dimenziójára/The Effect of Deformation on the Dimension of the Fractal

Developing on the Surface of Cu Single Crystals

• 2017: Gábor Péterffy, Hatékony implicit numerikus séma kidolgozása és alkalmazása

diszkrét diszlokáció dinamikai szimulációkban/Development and Application of an Effi-

cient Implicit Scheme in Discrete Dislocation Dynamics Simulations, 3rd place

• 2017: Dávid Ugi, Zn egykristály mikromechanikai tulajdonságainak vizsgálata/Microme-

chanical Properties of Zn Single Crystals, 2nd place

• 2019: Dénes Berta, Hatékony numerikus módszer a határfeltételek figyelembevételére

rugalmas anyagban/Efficient Numerical Scheme for Handling Boundary Conditions in

an Elastic Medium, 3rd place, special award

7.5 Tutoring

Since 2013 are I am involved in selecting and tutoring the students participating at the Interna-
tional Young Physicists’ Tournament (IYPT). Five times I also travelled with the team to the
international event where I took part as a Team Leader.
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8.1 Description of the selected lecture course

The lecture course I selected for my habilitation talk is Mechanics (subject code: mechf19ea,
2×90 minutes per week). I have been the lecturer of this course for 5 years now, and the number
of attending students was between 50 and 100 every year. The course is primarily meant for
first year Physics BSc and Physics Teacher MA students, and this is their first physics-related
course at the university, which also adds to its importance. I note that there exists a parallel
advanced course for mechanics that is meant for Physics BSc students with extraordinary skills.
Consequently, in this course the emphasis is not put on complicated analytical derivations rather
we focus on the proper foundations of the physical quantities and concepts (such as energy,
moment of inertia, etc.).

As well-known, mechanics is concerned with describing the motion of objects and to un-
derstand its causes. During this lecture classical mechanics is covered, that is, the route paved
by Newton is followed and we consider force as a central quantity in the theoretical descrip-
tion. During the course of the semester, firstly, kinematics are presented together with a brief
introduction of the necessary mathematical formulations, such as derivatives and vector calcu-
lus. This is followed by stating the Newton’s laws, that is, the fundamental dynamic equations
of a point-like object. Conservative forces are then introduced together with the concept of
work, kinetic and potential energies. Afterwards, the behaviour of a system of particles will
be discussed followed by an in-depth analysis of harmonic oscillators. The semester then con-
tinues with demonstrating how the Newtonian equations change in an accelerating reference
frame. The final lectures deal with the theory of gravitation, perhaps the most influential result
obtained using Newtonian mechanics and then the semester concludes with the mechanics of
solid bodies.

As mentioned above, the aim of this course is not only to present mechanics as a physical
theory in a scientifically concise manner but also, being their first physics-related lecture, to
increase the motivation and involvement of the students and to develop a solid understanding
of the main physical concepts that their latter courses can build upon. To this end, lectures are
complemented by demonstrative experiments that are performed on the stage during the lec-
tures. The lecturer must also take in to account, that the background knowledge of participating
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8 Outline of a lecture course

students exhibits a large variance, so, explanations and mathematical derivations should be pre-
sented in a way that assumes as little prior knowledge as possible. To assist the students in their
studies, the lecture follows the notations and logic of the textbook referenced below.

Textbook: A. Hudson and R. Nelson: University Physics (chapters I-XVI), Harcourt College
Publishers (1987).

8.2 Lecture course topics

In a semester on average 25 lectures take place. The topics covered are as follows.

1. Kinematics of point-like objects I.

Scope of physics and its methodologies; experiment with a Mikola-tube; SI metric sys-
tem; measurement errors; limits of physical theories; space-time in Newtonian mechan-
ics; linear motion: displacement function, coordinate system, displacement ‘vector’, trav-
elled distance

2. Kinematics of point-like objects II.

Average velocity ‘vector’; basics of differentiation; definition of instantaneous velocity

3. Kinematics of point-like objects III.

Linear motion: average acceleration, instantaneous acceleration, the role of the sign of
acceleration; linear motion with constant acceleration; free fall

4. Kinematics of point-like objects IV.

Description of planar and 3D motions with different coordinate systems; meaning of
dimension; displacement vector; path; velocity; geometric interpretation of the velocity;
acceleration; general description of the linear uniform motion; projectile motion

5. Circular motion

Polar coordinates; quantities describing uniform circular motion (radius, angular rota-
tion, angular velocity, period, frequency), centripetal acceleration, non-uniform circular
motion; tangential acceleration; general non-linear motions

6. Dynamics of point-like objects I.

Historical overview of the development of the concepts dynamics; concept of interaction;
Newton’s First Law; inertial reference frame; definition of mass/inertia; concept of force
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8.2 Lecture course topics

7. Dynamics of point-like objects II.

Newton’s Second Law; Newton’s Third Law; concept of superposition; steps of the so-
lution of a dynamics problem; force laws: force of gravity, force of a spring, constraint
forces

8. Dynamics of point-like objects III.

Equations of motion in the presence of constraint forces; motion on a slope; centripetal
force; conical pendulum; static and dynamic friction; motion of a ball in a viscous fluid

9. Dynamics of point-like objects IV.

Solution of the equations of motion in the presence of viscous drag; differential equation;
the role of free parameters; determination of the velocity and displacement using integral
calculus

10. Work and energy

Work during linear motion; work of a varying force; work for a curved path; kinetic
energy; theorem of work for a linear motion with uniform acceleration; theorem of work
for a general motion; power

11. Conservative forces

Conservative and non-conservative forces; potential energy; conservation of mechanical
energy; energy diagram; determination of the force from the potential energy; concept of
gradient

12. Rocket motion

Momentum; conservation of momentum for two particles; impulse; rocket propulsion

13. Mechanics of systems of particles

Elastic and inelastic collisions; planar elastic collisions; centre of mass; theorem for the
centre of mass; conservation of momentum for a system of particles; description of colli-
sions in a reference frame attached to the centre of mass; momentum and kinetic energy
of a system of particles

14. Harmonic oscillator I.

Harmonic oscillator; equation of motion as a differential equation; amplitude; angular
frequency; phase; free parameters; initial conditions; relation of circular and harmonic
motion; energetics of harmonic motion; harmonic motion in gravitational field; motion of
a pendulum
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8 Outline of a lecture course

15. Harmonic oscillator II.

Damping due to friction; damped oscillator; equation of motion and its solution; the un-
derdamped and the overdamped case; oscillator damped with dynamic friction; equation
of motion and its solution

16. Harmonic oscillator III.

Driven oscillator; resonance; resonance curve; phase shift; superposition of oscillators
with the same frequency; superposition of oscillators with different frequencies

17. Non-inertial reference frames I.

Description of motion in a non-inertial reference frame; reference frames with parallel
axes; fictitious forces; rotating reference frames; angular velocity vector

18. Non-inertial reference frames II.

Centrifugal force; Coriolis force and its effect on moving objects near the Earth; Foucault
pendulum; Eötvös balance; phenomena on the rotating Earth

19. Gravitation I.

Kepler’s laws of planetary motion; mathematical properties of an ellipse; central force
fields; angular momentum and its conservation

20. Gravitation II.

Areal velocity; Newton’s law of universal gravitation; The Cavendish experiment; work
of the gravitational field

21. Gravitation III.

Potential energy; conservation of mechanical energy during planetary motion; energetics
of planetary motion; escape velocities

22. Mechanics of rigid bodies I.

Torque; line of action; torque as a vector; centre of gravity; types of equilibrium

23. Mechanics of rigid bodies II.

Conditions of equilibrium of a rigid body; kinematics of rotational motion; uniform and
non-uniform rotational motion; rolling motion; kinetic energy for a rotational motion
around a fixed axis; moment of inertia; Parallel axis theorem

24. Mechanics of rigid bodies III.

Angular momentum of a system of particles; theorem for the angular momentum; an-
gular momentum of a rigid body rotating around a fixed axis; fundamental dynamical
equation of rotational motion; conservation of angular momentum; angular momentum
of a symmetric rotating body
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8.3 Outline of three lectures

25. Mechanics of rigid bodies IV.

Work and work theorem for rotating motion; physical pendulum; general motion of a
rigid body; planar motion of a rigid body; gyroscope; torque-free and torque-induced
precession

8.3 Outline of three lectures

I present here the outline of lectures 18, 20 and 25. Each lecture is 2×45 minutes long. During
the lectures demonstrative experiments are shown to increase the motivation of the students and
to support the physical argumentation. In the descriptions below the experiments to be carried
out are explicitly mentioned.

Lecture 18: Non-inertial reference frames II.

During the preceding lecture it was calculated how the acceleration of an object can be de-
termined from the coordinates measured in a rotating reference frame. We assumed that the
angular velocity ω is constant and we concluded that

maaa = FFFe−mωωω× (ωωω× rrr)+2mvvv×ωωω. (8.1)

Here FFFe, m and ωωω stand for the net force, the mass of the object and the angular velocity vector
of the rotating frame, respectively. The position vector rrr is the one measured in the rotating
frame and vvv and aaa are its first and second derivatives, respectively (so they correspond to the
velocity and acceleration as measured in the rotating frame).

This lecture is concerned about analysing the virtual force components appearing in Eq. (8.1)
and to discuss phenomena related to them.

Centrifugal force The first virtual force component in Eq. (8.1) is called centrifugal force.
Firstly, I show using a vector identity, that

FFFcf =−mωωω× (ωωω× rrr) = mω
2
ρρρ, (8.2)

where ρρρ is a vector perpendicular to the axis of rotation and points from the axis to the object
considered.

To demonstrate the effect of this force we perform a few experiments:

1. A track is being rotated with a constant angular velocity with a small trolley on it. a) We
first let the trolley roll freely and observe that it does not remain in equilibrium, rather
accelerates in radial direction away from the axis of rotation. b) When a spring scale is
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8 Outline of a lecture course

attached to the trolley one observes that it remains in equilibrium, although non-zero net
force is measured with the scale. We also check the effect of the angular velocity in both
cases.

2. Coloured water is poured in a glass that is then rotated around its symmetry axis. The
shape of the water surface changes with the angular velocity and takes a paraboloid-like
shape.

3. A model of Earth consisting of thin bent plates that form a sphere is investigated. With
increasing angular velocity the shape of the sphere changes and gets elongated in the
radial direction and contracts along the axis of rotation. This experiment is to demonstrate
why the Earth has a geoid shape.

4. A chain is rotated using an electric motor up to a rather high angular velocity. Then the
chain is detached from the motor and let to move freely. One observes that due to the
large centrifugal forces the chain behaves like a rigid wheel and rolls freely to a quite
long distance.

5. A piece of paper having a circular shape is rotated quickly around its symmetry axis. Due
to the centrifugal forces it becomes so rigid, that it can be used as a saw to cut a small
peace of wood.

After discussing the experiments and the role of the centrifugal force a short calculation is
presented to approximate the difference in the gravitational acceleration that one measures at
the poles of the Earth and at the Equator.

Coriolis force First we ask the question whether the Earth is rotating or the world around
us. One could decide based on the centrifugal force, but its effect is rather small, and one needs
to perform measurements at distant locations. Then we show an experiment that demonstrates
that when a frame around a pendulum is rotated, the pendulum keeps oscillating in the same
plane. Based on this observation we introduce the famous experiment of Foucault. Due to the
large space needed by the Foucault pendulum, the experiment is set up at one of the staircases
of the university and the students follow the experiment live on a screen from the lecture hall.

To explain the observed behaviour the second virtual force component in Eq. (8.1) is con-
sidered:

FFFCo = 2mvvv×ω = 2m(vvv×ωf + vvv×ωé), (8.3)

where the angular velocity was split up to two components as ωωω = ωωω f +ωωωé, that is, to a com-
ponent pointing in direction north and one pointing upwards (or downwards on the Southern
Hemisphere).
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8.3 Outline of three lectures

The effect of the Coriolis force on moving objects near the Earth We analyse
the terms of Eq. (8.3) in more detail to understand its effect on objects moving in different
directions. For instance, the Eötvös effect is deduced, that is, the weight of object moving East
gets smaller whereas those moving West gets larger.

Foucault pendulum and the Eötvös balance To understand the behaviour of the Fou-
cault pendulum an experiment with the model of a Foucault pendulum is performed. This
consists of a pendulum swinging on a rotated frame and the bob contains ink that gradually
flows out on a paper, so, the path of the pendulum is visualized. A star like pattern is obtained
and discussed in terms of the Coriolis force.

Afterwards the operation of Eötvös balance is shown and it is explained how this device can
be used to demonstrate the rotation of the Earth within seconds.

Phenomena on the rotating Earth The lecture is concluded by mentioning few phenom-
ena related to the rotation of Earth, such as the rotation of cyclones, and, finally, a gyroscope
that can be used as a compass (gyrocompass) is shown and explained.

Lecture 20: Gravitation II.

During the preceding lecture the students got familiar with Laws of Kepler, central force fields
and the conservation of angular momentum.

This lecture continues the discussion of gravitation and comprises one of the most influential
experiments of physics, the Cavandish experiment, that is demonstrated to the students in the
lecture hall. I believe that seeing this sophisticated experiment is very impressive for first year
physics students, and this is the reason why I selected this lecture as one candidate for my
habilitation lecture.

Areal velocity We start by deriving Kepler’s second law from the conservation of angular
momentum in a central force field. After showing that the areal velocity (the area swept over
unit time by the vector connecting the origin and the moving object) is half of the magnitude of
the angular momentum, we conclude that the gravitational force is central and that objects in a
gravitational field perform planar motion.

Newton’s law of universal gravitation Assuming that an object moves on a circular path
around the Sun we derive the Newton’s law of universal gravitation using Kepler’s Laws. We
conclude that

FFFg =−G
m1m2

r2
rrr
r
, (8.4)

where m1 and m2 denote the masses of the interacting objects, rrr is a vector between the two
objects pointing to the one FFFg acts on and G is the gravitational constant. We discuss that

83



8 Outline of a lecture course

Newton was unable to measure the value of the latter, because from astronomical observations
only the product G ·M could be calculated, where M is the mass of the Sun.

The Cavendish experiment The measurement of the value of G had become possible
much later with the Cavandish experiment, performed in 1798. It was also important because
it demonstrated, for the first time, that gravitation can be not only observed on astronomical
scales but also between regular objects in a laboratory.

During the lecture the experiment is performed with a torsion balance similar to the original.
The rotation of the balance is monitored in two ways: a) A laser beam is pointed directly at
the mirror attached to the arm of the balance and the motion of the light spot can be observed
visually by the students on the wall of the lecture hall. b) An electronic device measures the
position using red LEDs and a computer automatically collects the data.

The first measurement has the advantage that the value of G can be determined by the stu-
dents themselves using a simple calculation that assumes constant acceleration of the masses.
The second method, on the other hand, shows the complete history of the rotation where, for
instance, damping due to air drag can be observed.

Work of the gravitational field In the last part of the lecture the work done by the gravi-
tational field is calculated and we conclude that it is independent of the path itself, that is, the
gravitational field is conservative. This finding will be exploited during the subsequent lecture
that is concerned about planetary motion.

Lecture 25: Mechanics of rigid bodies IV.

This lecture concludes the semester and is the last in a row to discuss the mechanics of rigid
bodies. The preceding lectures were concerned about kinematics and dynamics of rigid bodies
rotating around a fixed axis. Quantities such as torque, moment of inertia, rotational energy
and angular momentum were introduced as well as the fundamental dynamical equation of
rotational motion.

Work and work theorem for rotating motion We start by determining the work done by
a force acting on a rigid body that is allowed to rotate around a fixed axis. From the definition
of work we conclude that the work is

Wf =

ϑ2∫
ϑ1

Mdϑ , (8.5)

where ϑ is the angle of rotation and M is the component of the torque parallel with the axis.

84



8.3 Outline of three lectures

With the definition of work the work theorem is stated for rotational motion. In order to
bring these quantities closer to the students, a simple problem is solved using the work theorem
followed by summarizing analogies between the quantities and equations describing dynamics
of a point like object and that of a rigid body rotating around a fixed axis (e.g., the force is
analogous to the torque).

Physical pendulum The motion of a physical pendulum is then discussed. Using the fun-
damental dynamic equation for rotational motion we conclude that

Θϑ̈ =−Gssinϑ , (8.6)

where Θ is the moment of inertia, ϑ is the angle between vertical and the line connecting the
axis of rotation and the centre of mass, G is the weight of the pendulum and s is the distance of
the axis and the centre of mass. Using an analogy with the equation of motion of a harmonic
oscillator we conclude that for small angles the pendulum performs harmonic oscillations with
angular velocity ω0 =

√
Gs
Θ

. To demonstrate this result we perform an experiment with a rigid
body where s can be tuned and show how the period depends on s. We also perform a short
calculation to obtain the angular frequency of a uniform rod swinging around one of its ends.

General motion of a rigid body The dynamics of a rigid body is dictated by two vector
equations:

FFFe = maaaTKP, (8.7)

that is, the net force FFFe determines the acceleration of the center of mass aaaTKP and

MMMe = L̇LL, (8.8)

that is, the net torque on the center of mass (MMMe) is equal to the time derivative of the angular
momentum LLL. To express the latter with the orientation of the body requires the introduction of
the moment of inertia tensor which is out of the scope of this course. It is part of the parallel
advanced mechanics course.

Planar motion of a rigid body Here we continue with the special case of planar motion,
when each point of the body move in parallel planes. In this case only the z component of the
second equation above is considered where the z axis is chosen to be perpendicular to the plane.
In addition, the moment of inertia is scalar and Lz = Θω .

To demonstrate how the resulting equations are solved in practice we consider the rolling
motion of a cylinder and a wheel. Before solving the dynamical equation an experiment is
performed where a cylinder and a wheel having equal mass and radius are let to roll down
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a slope. The calculation then proves the observations that the cylinder rolls faster due to its
smaller moment of inertia.

Gyroscope and torque-free and torque-induced precession At the very end of the
semester phenomena related to gyroscopes are briefly discussed. Since the analytical treatment
is again out of the scope of this course we rather present many experiments with various gy-
roscopes, explain the difference between the two types of precession and derive a formula for
the torque-induced precession: ωP = M

Θω
, where M is the external torque, Θ is the moment of

inertia and ω is the angular velocity of the gyroscope. The validity of this formula is verified
experimentally. The semester is concluded with presenting a few exotic gyroscopes without an
intention to explain the observed complex behaviour.
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