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Abbreviations
2D
3D
AE
CA

Elastic constant: u/[27(1 — V)]

System size

Dislocation mobility

Total number of dislocations in 2D DDD simulations
Plastic potential

Drift velocity

Mean velocity

Total (or statistically stored) dislocation density
Geometrically necessary dislocation density
Components of the Nye dislocation density tensor
Stress

Strain

Plastic strain

Shear stress

Shear stress of an individual straight edge dislocation
Externally applied shear stress

Mean field stress

Back-stress

Diffusion stress

Yield stress

Shear strain

Shear modulus

Poisson number

Two-dimensional
Three-dimensional
Acoustic emission

Cellular automaton



Nomenclature

CDD
CTD
DDD
EBSD
ED
FCC
FEM
FIB
GND
HR-EBSD
IPF
MFD
ML
PBC
PLC
RD
SCPM
SEM
SSD
STEM
XRD
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Continuum dislocation dynamics
Continuous time dynamics

Discrete dislocation dynamics

Electron backscatter diffraction

Extremal dynamics

Face-centered-cubic

Finite element method

Focused ion beam

Geometrically necessary dislocation
High-resolution electron backscatter diffraction
Inverse pole figure

mean-field depinning

Machine learning

Periodic boundary condition

Portevin-Le Chatelier

Random dynamics

Stochastic continuum plasticity model
Scanning electron microscope

Statistically stored dislocation

Scanning transmission electron microscopy

x-ray diffraction
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2 Recent scientific work

2.1 Introduction

Already more than eight decades have passed since it became known that a certain line-like
crystal defect is responsible for the plastic deformation of crystalline materials, the so-called
dislocation (Fig. 2.1) [1-3]. The mechanism, first recognized simultaneously by Orovan, Taylor
and Polanyi, proved successful in explaining numerous fundamental issues related to plastic-
ity, yet, a vast amount of questions, most notably those related to the collective dynamics of
dislocations, are still to be answered. One of the most known such problems is the pattern for-
mation of dislocations. As well-known, upon deformation dislocations arrange into structures
with properties depending on the type and extent of deformation. Although these patterns play
a fundamental role in the mechanical properties, an in-depth physics-based theory of pattern

formation is still elusive. The main reasons for the lack of such a theory are as follows:

— [ —

Figure 2.1: Schematics of an edge dislocation moving due to externally applied shear stress.

* Dislocation lines induce long range (1/r-type) stress fields in the material, so, the interac-
tion of distant dislocation pairs cannot be neglected. Consequently, most of the classical
thermodynamical concepts, since they assume short-range interparticle interactions, can-

not be applied.

* The motion of dislocations is non-conservative due to the strong phonon drag. The role
of thermal noise at low temperatures (that is, below approx. one third of the melting

temperature) is negligible.
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» Strong geometrical constrains apply for the motion of dislocation lines, since at low tem-
peratures they can only glide in a certain plane (called glide plane). As a result, the system
cannot reach its ground state, rather, it gets trapped in a meta-stable configuration. This

means, that dislocation systems at low temperatures are far from equilibrium.

However, in the engineering practice it is essential to employ models that predict plastic
deformation to certain precision. To fulfil this demand, several phenomenological models have
been proposed that do not address the difficulties mentioned above thoroughly and usually pro-
vide constitutive relations between the stress, strain, strain rate and dislocation densities [4—8].
These models give satisfactory results under various specific conditions and sufficiently large
sample sizes. In materials science currently the most widespread such model is the ‘Crystal
Plasticity Finite Element’ method [9-11] which couples phenomenological plasticity models
with an anisotropic elastic description. The model obtained proved capable of, e.g., modelling
texture evolution in copper [12] or plasticity of nickel-based superalloys [13].

In summary, the phenomenological theories in many cases seem to be capable of describ-
ing the processes involving relevant dislocation motion. However, some of the breakthrough
deformation experiments conducted around the millennium changed this view fundamentally.
On the one hand, it turned out that if a characteristic scale of either the deformation volume or
the sample itself (e.g., size of an indentor tip, size of the specimen, grain size or size of disper-
soids) decreases to 1 um or below, the mechanical properties start to differ considerably from
the predictions of classical models [14, 15]. This phenomenon in materials science is referred
to as size effect. On the other hand, it also became clear that size effects are accompanied by
stochastic fluctuations. The first indication for this was delivered by acoustic emission (AE)
measurements performed on ice single crystals, where it was found that the size distribution of
the individual events of the burst-like AE signal follows a scale-free distribution [16, 17]. This
suggested that plastic deformation is not a smooth process as phenomenological viscoplastic
theories may suggest, rather deformation is, in fact, the accumulation of numerous independent
scale-free distributed local plastic events. Subsequently, the spatial distribution of these events
was also mapped and it was found that they originate from a fractal-like subvlume of the sample
with dimension ~2.5 [18].

The next milestone following the AE results described above were the deformation exper-
iments performed on micron-scale cylindrical samples, called micropillars. With the devel-
opment of scanning electron microscopy (SEM) technology it became possible to fabricate
microscopic samples with nm precision with a focused ion beam (FIB), and their subsequent
compression while obtaining the stress-strain relationship to high precision. The latter can be
performed using a nanoindenter equipped with a flat punch diamond tip. The experiments were
initially performed on Ni single crystal samples by Dimiduk and co-workers [19, 20]. Figure 2.2

presents SEM images obtained after the deformation for various micropillar sizes. It is evident
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that with decreasing diameter deformation becomes more and more inhomogeneous as it gets
localized in distinct slip bands. These bands, in fact, form due to the local plastic events which

are also responsible for the emission of acoustic signals discussed in the previous paragraph.

Figure 2.2: SEM images of deformed Ni single crystalline micropillars of various diameters. It is seen that for
small samples deformation is localized in distinct slip bands and with increasing diameter deforma-
tion gets more homogeneous [20]. [Note that the sample in panel (c) is the undeformed initial state of
the one seen in panel (d).]

The measured stress-strain curves of the micropillars are plotted in Fig. 2.3(a). In addition
to the strong size effect (smaller samples are harder) it is visible, that for small sizes step-like
features appear. These steps also correspond to the plastic events, that is, to the sudden ap-
pearance of individual slip bands. These events are, thus, also called strain bursts or dislocation
avalanches. The stochasticity here means that micropillars prepared from the same sample with
the same geometry exhibit different stress-strain responses: both the width of these steps as well
as the strengths corresponding to their onset can be considered random variables. This remark-
able observation is shown explicitly in Fig. 2.3(b). Note, that the scatter in the ‘yield stress’
is around 50% for pillars with a relatively large diameter of ~10 um. For smaller samples the

effect is even stronger.
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Figure 2.3: Stress-strain curves obtained during the compression of micropillars depicted in Fig. 2.2. The red
curve corresponds to a bulk sample and the various colours denote micropillars with different di-
ameters. (a): Curves corresponding to various diameters show a strong size effect. (b): Curves of
micropillars with nearly equal diameters show the stochasticity of the response [20].

The statistical analysis of this random process mostly focused on the size distribution of the
strain bursts. It turned out that, similarly to the distribution of AE events, they can be also
characterized with a scale-free distribution [21, 22]. The practical relevance of this finding
is that these random bursts prevent the predictable deformation of micron-scale objects. And
from the theoretical point of view one can conclude that crystal plasticity is closely related to
many other physical systems being far from equilibrium such as tectonic motion of the Earth’s
crust [23], migration of domain walls in ferromagnets due to external magnetic field [24] or
the propagation of either liquid fronts in porous materials [25] or crack fronts in heterogeneous
materials [26].

These stochastic features of plastic deformation immediately raised a focused interest of
the community due to the fact that understanding micron-scale deformation had become a key
issue with the rapid development of nanotechnology. The fact that phenomenological plasticity
theories were not capable of describing these phenomena related to the fundamental properties
of dislocations served as a driving force for the developments of statistical physics descriptions
of dislocations. This was also assisted by the rapid increase in computational power that now
lets us to simulate the dynamics of a large number of interacting dislocations. Yet, dislocation
based modelling of a samples larger than few pum is still elusive due to the huge dislocation
content and long-range interactions. So, the aim of the community is to develop physics-based
mesoscopic models that may serve as a link between the properties of individual dislocations
and experimentally observed macroscopic properties.

This scientific summary describes the recent research activities of the Author in this field.

During this period, special emphasis was placed on the following aspects:

10
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Figure 2.4: The size distribution of the strain bursts measured during the compression of the micropillars seen
in Fig. 2.2. The open symbols represent data collected during the compression of a single micropillar

with diameter of ~20 um, whereas full symbols stand for data summed over several such samples
[21].

* The theoretical models of dislocation systems should contain as few free parameters as
possible, yet, they should preserve the fundamental physical properties of dislocations
described above.

* When possible, predictions of the mesoscopic models should be compared with lower

scale discrete dislocation models.
* When possible, predictions should be also validated by experiments.

* To help validating theoretical results new experimental methodologies should be devel-
oped for the characterization of the dislocation microstructure and its dynamics on the

micrometer scale.

The thesis is organised according to the methods used. The first section will focus on results
obtained by the numerical analysis of discrete dislocation dynamics and a stochastic plasticity
model. These, on the one hand, aim at the statistical description of the stochastic properties
and, on the other hand, identify the anomalous scaling properties that stem from the universal
scale-free nature of dislocation dynamics.

Results related to the continuum description of dislocation dynamics are presented in Sec. 2.3.
This model considers the evolution of plastic deformation in terms of smooth dislocation den-
sity fields. After summarizing the reformulation of the theory into a variational framework
results related to dislocation pattern formation will be presented. Finally, generalization of the
theory for curved dislocations will be outlined that is a key step towards modeling realistic

dislocation arrangements.

11
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The last section focuses on experimental results. Firstly, statistical properties of micropillar
compression will be presented and compared to predictions of numerical modelling. Secondly,
the method of high-resolution electron backscatter diffraction (HR-EBSD) will be introduced
which is capable of determining the dislocation structure close to the material surface. As
shown, the applications of the method range from measuring the internal stress distribution
to understanding dislocation interaction mechanisms during small-scale plastic deformation.

Finally, results and prospects of the application of AE in micromechanics are discussed.

2.2 Stochastic properties of dislocation systems
2.2.1 Introduction

In order to understand the stochastic features of plasticity it is necessary to investigate this
behaviour using physical models. The main reason for this is that during experiments the in-
formation one can gather is rather limited (mostly global properties, like stress or strain, or
information from the sample surface) and one cannot access microscopic information like the
precise position and speed of individual dislocations. In addition, for small samples (with vol-
ume of few um?>) measurement errors may also play an important role. Possible sources of error
include: (i) During FIB milling Ga>+ ions get deposited at the surface making them harder to
penetrate by dislocations, (ii) The elastic stiffness of the testing device has a strong influence on
the avalanche dynamics and (iii) The geometry of the pillar is usually not regular but exhibits
tapering [27].

Molecular dynamics simulations may seem adequate to study the collective behaviour of
dislocations, where dislocation appear as line-like defects in the simulated crystal structure. In-
deed, they have been used extensively to understand the specific features of nanoscale plasticity
summarized above. However, limitations in computational power only constrains their use for a
volume smaller than a few um3 and duration shorter than a few ns or for shock loading [28-31].
One, thus, cannot model the evolution of the system on atomic level but needs to use tools on
higher scales. Since the elastic properties of dislocations in most materials depend only indi-
rectly on the inter-atomic potentials one can substitute the crystal lattice between dislocations
with an elastic continuum. Models obtained with this approach, thus, formulate equations of
motion for individual dislocation lines and are called discrete dislocation dynamics (DDD) [32].

The model to be investigated is one of the simplest DDD systems that still incorporates the
most important physical properties of dislocations summarized in the Introduction. The system
consists of straight edge dislocations parallel with the z axis, and their slip plane is parallel with
the xz plane (single slip). Since the system is translationally invariant along the z axis it can be

considered two-dimensional (2D) and it is sufficient to track the motion of dislocations in the

12
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xy plane. In this set-up the Burgers vector points in the x direction, so, reads as b = s(b,0),
where s € {+1,—1} is the sign of the dislocation, that can be understood as some kind of
charge. Figure 2.5(a) shows an example of such a 2D dislocation configuration. The colour
of dislocations represents their sign and the background colour refers to the local shear stress

within the embedding elastic medium.

L LF10

Figure 2.5: (a): 2D system of edge dislocations. (b): Shear stress field of individual dislocations with periodic
boundary conditions.

Because of the strong dissipation due to phonon drag the motion of dislocations is assumed
to be overdamped, that is, the force acting on a dislocation segment of unit length is proportional
with its velocity. If the system consists of N dislocations and r; = (x;,y;) denotes the position

of the ith dislocation then the equation of motion reads as

N
X,':MSib Z sjrind(r,-—rj)—i—’cext 5 inO. (i: 1,...,N) (21)
j=1 j#i
Here M is the dislocation mobility, Tey is the externally applied shear stress and 7j,q is the shear
stress field generated by individual dislocations. For the latter the solution corresponding to

isotropic continua is used [33]:

ub  cos(@)cos(2¢) _ Gbcos((p)cos(Z(p) _ Gbx(x2 —?)

2n(1—v) r r (x2 +y2)2’ (2:2)

Tind (1) =
where 1t and v denotes the shear modulus and the Poisson number, respectively, and notation
G was introduced for a combination of these elastic constants. Dislocations are arranged in
a square-shaped simulation area and periodic boundary conditions (PBC) are applied. The
emerging image dislocations alter the stress field of Eq. (2.2), which can be obtained using a
Fourier method [see Fig. 2.5(b)] [34]. Further details about the implementation can be found in
[A].

13
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One of the main advantages of the model system introduced is that it preserves the 1/r-
type long-range dislocation interactions. This means that apart from the average dislocation

spacing (being equal to p—%3

, where p 1is the total dislocation density) no additional length
scales appear in the model. One may, thus, introduce dimensionless variables that represent this

scaling property by measuring length, stress, strain and time in units summarized in Table 2.1.

Quantity ‘ length  stress  strain time
Unit ‘p—o.s Gbp®S  bpOS (szMp)_l

Table 2.1: Units of the dimensionless quantities used in the simulations.

It is important to note that the studied system is a strong simplification of realistic dislo-
cation networks found in crystals as it cannot account for dislocation multiplication, forest
dislocations, the role of curvature, cross-slip, and dislocation reactions (such as the formation
of Lomer-Cottrell locks).! Yet, it was successfully applied to describe Andrade-creep [17, 38],
size distribution of dislocation avalanches [39-41], subgrain formation at elevated tempera-
tures [42, 43], distribution of internal stresses [44, 45] and several statistical properties of the

microplastic regime [46].

2.2.2 Plastic yielding in the sub-micron regime [A, D, F]

The fluctuations observed in the micron and submicron regimes make the stress-strain response
random in several aspects. The step-like curves become a sequence of close to horizontal strain
bursts connected by close to vertical stress increments (see Fig. 2.3). Both the bursts and the
stress increments can be considered random variables that can be characterized with power-law
[21, 22] and Weibull distributions [47], respectively. As a result, the stress corresponding to
a given strain differs from sample to sample. The same is true for the yield stress, which for
bulk materials is identified with the stress measured at 0.2% plastic strain. For micropillars this
quantity is also stochastic and loses its universal nature being characteristic to the specific mate-
rial only. In the literature, therefore, several new definitions of the yield stress were proposed at
this scale, such as the stress at a given strain being larger than 0.2% [20], the stress at the onset
of the first large strain burst [48] and the concept of ‘Laue yield stress’ was also introduced
which is related to lattice rotations measured during in situ Laue-diffraction experiments [49].
The variety of the proposed methods raises the question what kind of physical process yielding
corresponds to and whether a general definition of the yield stress exists that is not dependent

on arbitrary parameters and the properties of the experimental device.

I'Tt is noted that various extensions of this 2D model were proposed to account for these phenomena [35-37],
but as these introduce various phenomenological length scales and we here focus on the role of the long-range
interactions, we rather remain at the simplest version described above.

14



2.2 Stochastic properties of dislocation systems

The fundamental hypothesis of the work described in the following was that at the micron
level the yield stress can only be defined in a probabilistic sense for a set of samples with iden-
tical macroscopic parameters (size, crystal orientation, dislocation density, etc.) [A]. We, thus,
performed 2D DDD simulations on a large ensemble. In every case, the system consisted of
64 positive and 64 negative sign dislocations initially arranged randomly in the simulation cell
with uniform distribution. Firstly, the system was let to relax into a meta-stable state at zero
stress, then the stress was increased with a constant small rate and the plastic strain y was com-
puted from the dislocation displacements as Y = Y ; s;Ax;. Thin lines of Fig. 2.6(a) correspond
to a few representative stress-strain curves obtained and indeed show the stochastic nature of
the response. However, with averaging these curves (in this case, over 5000 realizations) the

fluctuations disappear and one arrives at a smooth curve (thick red curve) typical for a bulk

sample.
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Figure 2.6: 2D DDD simulations with 128 dislocations. (a): Few representative stress-strain curves obtained
from individual realizations (thin) and the average over an ensemble of 5000 realizations (thick).
Inset: The average curve on a double logarithmic plot. The thick horizontal black line denotes the
average yield stress. (b): Plastic deformation rate as a function of the applied stress. (c): Standard
deviation of the plastic strain as a function of the applied stress [A].

Based on the average stress-strain curve one may split the plastic response into two regimes.
For small stresses plastic strain increases as a power-law with an exponent ~0.85, this can be
identified with the microplastic regime. At larger loads, the curve deviates from the power-law
and larger strains are measured. Based on this observation an average yield stress of 7, ~ 0.17
can be introduced that separates the two domains.

Figures 2.6(b) and 2.6(c) plot the average plastic deformation rate and the standard deviation
of the plastic strain values of different realizations, respectively, as a function of the applied
load. It is evident that the characteristic stress 7. marks a sharp transition for these quantities,
too.

The analysis of the velocity distribution of individual dislocations yields additional informa-

tion about the dynamics of the system. Figure 2.7(a) shows the P(v) distribution for various
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external stress levels. In every case the distributions exhibit an inverse cubic decay, that is, for
large velocities v
Pv) =Avt, (2.3)

where A ~ 3 and the pre-factor A depends on Toxt.2 Figure 2.7(b) plots this A(Tex¢) function and

it is clear that, again, a well-defined shoulder is seen at 7.
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Figure 2.7: Velocity distribution of dislocations in 2D DDD simulations. (a): Distribution of velocities P(v) for
various external stresses Tex;. The arrow indicates the increase of Tey and the blue dashed line is the
distribution corresponding to T.x; = 7. (b): The pre-factor of the inverse cubic tail A as a function
of the external load. (c): Above T, distribution P(v) can be decomposed into the contribution of the
avalanches (dashed green) and systems in a quiescent state (continuous blue) [A].

In individual realizations the deformation process is a sequence of two alternating states:
there are irreversible deformation avalanches (strain bursts) with quasi-reversible quiescent
states in-between (for a detailed analysis the reader the referred to [F]). In Fig. 2.7(c) the ve-
locity distribution was determined independently for systems in either avalanche or quiescent
state. It is seen that the appearance of the shoulder in P(v) [Fig. 2.7(a)] and, therefore, to the
yielding phenomenon is due to the rapidly increasing number of dislocation avalanches above
7. [A].

In summary, the threshold stress 7, was found to separate two regimes with different dynamic
behaviour, thus it can be identified with an average yield stress. This result is not specific to 2D
systems as similar behaviour was found in more complex 3D DDD simulations and micropillar

experiments as well (see also Sec. 2.4.2) [D].

% The theoretical background of the origin of the exponent is described in [A].
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2.2 Stochastic properties of dislocation systems

2.2.3 Scale-free dynamics in discrete dislocation systems [C, E, S]

As it was mentioned in the previous section 2D DDD simulations usually start with a random
initial configuration that is first relaxed at zero stress. In this section, first, we investigate this
relaxation process in more detail. As a tool we employ the velocity distribution of disloca-
tions P(v) introduced above. Obviously, dislocations move quickly during the initial, close-to-
random state and slow down gradually until they stop when the system reaches equilibrium, so,
the velocity distribution also depends on time ¢. Interestingly, according to Fig. 2.8(a) the P(v,t)

distributions can be collapsed on a master curve using the scaling relation
P(v,t) =t*f(t%). (2.4)

The exponent o was found to be o = 0.85+0.02 and the scaling function f can be well approx-
imated by the form f(x) ~A/(Bx® + 1) (note, that the inverse cubic tail is again recovered).
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Figure 2.8: Dynamics during relaxation from a random configuration. (a): The scaled velocity distributions of
dislocations P(v,r) given by Eq. (2.4) with a = 0.85 at system size N = 2048, and the approximated
fitted scaling function (see text). (b): The moments (|v(z)|") for different exponents m (identified by
colours) and dislocation numbers N. The solid, dashed, and dotted lines correspond to N = 128, 512,
and 2048, respectively [C].

In order to investigate this scaling behavior in more detail, the mth moment (|v(¢)|™) of the

absolute velocity was also determined for different m values. According to Eq. (2.4)
O = [ "P.dy = o™, 23)

where C,, is a constant. (Because of the asymptotic properties of the scaling function f, the
integral is finite only for —1 < m < 2.) Figure 2.8(b) shows the measured (|v(r)|™) curves for

different m values and system sizes. The fitted exponents are in agreement with Eq. (2.5). (With
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the same simulation setup the scaling regime and the value of o has been already reported in
[501)

As seen in Fig. 2.8(b) the scaling region is bounded from both sides. It starts at a fixed 7y ~
0.4 and lasts till a cut-off time #; increasing with linear system size L = V/N as obtained from
fitting an exponential cutoff. This is in accordance to what is usually found in systems with long-
range interactions. To analyse this behaviour in more detail, additional simulation scenarios
were studied, namely, perturbation by an externally added dislocation and creep response to
applied stress. Both of these yielded equivalent velocity scaling, albeit with different exponents
[C].

In summary, power-law relaxation of dislocation systems was observed in different sce-
narios. This effect may be attributed to the quenched random positions of the slip axes, the
complex nature of the interactions and their long-rangeness. Remarkably, the scaling of the
time-dependent velocity distribution goes with different exponents depending on the physical
setup. Scaling is cut off due to the finite size, so the system does not possess any inherent
time scale. The dislocation system is, therefore, found to behave like a critical one in all cases
considered, strongly resembling glassy systems [C].

As it was explained in the Introduction in detail, the strain fluctuations observed in micron-
scale plasticity are in many aspects analogous to other physical systems exhibiting criticality.
In particular, several researchers have advanced the idea that the dislocations in a crystal de-
forming under stress might be envisaged as a driven non-equilibrium system, where power-law
distributed avalanches arise from dynamic critical behavior associated with a non-equilibrium
phase transition at a critical value Tex; = 7. of the externally applied stress, analogous to the de-
pinning transition of elastic interfaces in random media [S1]. This idea applies in a straightfor-
ward manner to single dislocations interacting with immobile impurities which provide a text-
book example of one-dimensional elastic manifolds undergoing a depinning transition [52, 53,
S]. In generalization of this observation, several authors have argued that the mean-field limit
of the depinning transition (mean-field depinning, MFD) might correctly describe the dynamics
of stress-driven many-dislocation systems even when other defects are absent [41, 46, 54-57].

To unambiguously determine the nature of criticality associated with the strain bursts and the
yielding transition we analysed 2D D