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Abstract
A numerical method is developed to efficiently calculate the stress (and dis-
placement) field in finite 2D rectangular media. The solution is expanded on a
function basis with elements that satisfy the Navier–Cauchy equation. The
obtained solution approximates the boundary conditions with their finite
Fourier series. The method is capable to handle Dirichlet, Neumann and mixed
boundary value problems as well and it was found to converge exponentially
fast to the analytical solution with respect to the size of the basis. Possible
application in discrete dislocation dynamics simulations is discussed and
compared to the widely used finite element methods: it was found that the new
method is superior in terms of computational complexity.

Keywords: numerical method, dislocations, crystal plasticity

(Some figures may appear in colour only in the online journal)

1. Introduction

Several mechanical properties of crystalline matter, such as work hardening, ductile-brittle
transition, creep or fatigue are caused by the collective motion of lattice dislocations [1].
These defects, therefore, have played a central role in materials science in the last approx.80
years. In order to describe the mentioned and related phenomena one has to understand both
the individual properties of dislocations (usually investigated using molecular dynamics (MD)
simulations or methods derived from first principles) and also their complex collective
dynamics during plastic flow. The latter is usually investigated on various scales [2].

• The basic constituent in MD simulations is the atom, and dislocations form and move in
such models as realistic topological crystal defects . Although due to the huge degrees of
freedom in such models the simulations are strongly constrained both in achievable
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volume (typically less then 1 μm3) and duration (typically few ps), this method is very
powerful since it gives the best possible description of dislocation dynamics without any
significant approximation [3–6].

• In the case of discrete dislocation dynamics (DDD) the basic constituents are the
dislocation lines themselves and the underlying crystal lattice is considered as a
continuum elastic medium. During the simulations complicated dynamic equations
govern the motion and interaction of dislocations. These equations are either derived
using physical arguments or by lower scale numerical modelling. The phenomena listed
above were studied in numerous 2D [7–14] and 3D DDD simulations [15–20].

• In dislocation field theories even the dislocations are considered in a continuum manner
in the form of various dislocation density fields. The evolution of these fields, and thus the
plastic response, is obtained by solving partial differential equations describing the
evolution of the densities [10, 21–28].

All these methods have their advantages and disadvantages and usually one has to choose the
one that suits the problem at hand the best.

In the last decades new technologies have emerged to create and manipulate samples on
the micron or sub-micron scale. It turned out that at this scale the mechanical properties of
crystalline materials are profoundly different from those of macroscopic samples. First of all,
a significant size effect can be observed, i.e. the strength of the specimens increases as the size
at least in one dimension reduces to or below approx.10 μm [29, 30]. In addition, the plastic
response becomes jerky and unpredictable as random strain bursts start to dominate the
deformation. These bursts are localised both in time and space and are caused by the sudden
rearrangement of the dislocation network [31–33].

These two important features observed experimentally at the smallest scales drew sig-
nificant attention from the modelling community with the motivation to develop a detailed
physical understanding of these phenomena. It is evident that at small scales sample
boundaries play a crucial role. They modify the stress fields of dislocations within the crystal
and, thus, act as attracting or repelling surfaces depending on the type of the boundary (fixed
traction or displacement). Since in small specimens a large portion of dislocations is close to
the surface, one must take boundary conditions properly into account to give a physically
correct description. In MD simulations this can be performed by prescribing displacements or
forces on the atoms on the boundaries. In higher scale models (that is, DDD and CCP),
however, the crystal is modelled as an elastic medium, so, boundary conditions must be
solved in the framework of continuum elasticity. For this purpose the elastostatic equations
are typically solved using the finite element method (FEM). This versatile and flexible tool
allows us to study various geometries and boundary conditions with high numerical stability.
Despite the advantages of the FEM, in some cases different methods may suit the investigated
problem better and may, e.g. exhibit faster runtime compared to FEM. It was shown, for
instance, by Wei et althat a particular spectral method has superior time complexity com-
pared to FEM when modelling 3D DDD in a cylindrical micropillar geometry [34]. This
method is based on the series expansion of the analytical elastic solution and the boundary
conditions are prescribed in terms of Fourier coefficients of the desired boundary values.

In this paper we follow the route proposed by Wei et alin order to develop a spectral
method to efficiently handle the boundary problem for 2D systems. 2D modelling represents
an essential part of the numerical research in the field because the conceptual simplicity
compared to 3D systems makes it easier (or even possible) to develop and test analytical
models of plastic deformation. Consequently, various phenomena have been investigated
using 2D models such as thin film plasticity [35–37], micropillar plasticity [38, 39] and
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statistics of strain bursts [40–42]. All of these studies consider a rectangular simulation area
and apply FEM to tackle the boundary problem. Here we, therefore, aim at developing a
spectral method that can solve the elastostatic equations on a 2D rectangular domain more
efficiently than FEM.

The paper is organised as follows. Firstly, the theoretical background of the method and
its main principle, the superposition method introduced by van der Giessen and Needleman
are reviewed in section 2. This is followed by the presentation of the basis of functions on
which we expand our solution of the Navier–Cauchy equation that describes the elastic,
homogeneous and isotropic medium in equilibrium. After that, the details of the imple-
mentation are summarised (section 3). In section 4 the method is tested on analytically
solvable problems which yields a remarkably fast convergence to the solution. The method is
also tested on systems with discrete dislocations and the results are compared with analytic
solutions. In the last part of the section the computational complexity of the method is
assessed and we indeed obtain a superior performance compared to FEM. Finally, a dis-
cussion and summary conclude the paper.

2. Theoretical background

2.1. Boundary conditions in 2D dislocation systems

The stress at a given point of the 2D material can be decomposed into two parts: one part is
due to the dislocations and the other is due to external load. The formulae of the stress field of
straight dislocations are well-known in an infinite elastic medium. However, in real (finite)
systems these solutions do not satisfy the prescribed boundary conditions. In addition,
external load is applied on the boundaries in the form of traction or displacement, that usually
leads to an inhomogeneous stress field in the material. Since the dynamics of dislocations is
governed by the local stress via the Peach–Koehler equation

( ) ( )s= ´F l b , 1

(where F is the force acting on the unit length of a dislocation line, l is the unit vector pointing
in the direction of the dislocation line which is perpendicular to the plane of the 2D system, b
is the Burgers vector, and σ is the stress tensor at the position of the dislocation generated by
the other dislocations and the boundary conditions), the boundaries may significantly affect
the acting forces and, thus, the evolution of dislocation ensembles. Hence, it is very important
to handle properly the boundary conditions in DDD simulations.

The boundary condition may concern the displacement (Dirichlet boundary value pro-
blem), the traction (Neumann boundary value problem) or the displacement on some parts of
the boundary and the traction on the others (mixed boundary value problem). The numerical
method proposed in this article is capable of solving all of these on a rectangular 2D domain.

To describe the stress field of dislocations that fulfil the boundary conditions we follow
the method proposed by van der Giessen and Needleman [7]. Assuming linear elasticity the
stress field can be decomposed in the following way:

( )s s s= +¥ , 2ij ij ij
img

where s¥
ij is the stress field of the dislocations as if they were in an infinite medium and sij

img

is a dislocationless solution of the elastic problem with complementary boundary conditions.
The latter is defined so that the superposition of the two must satisfy the boundary conditions
determined by the examined physical problem. The method is illustrated in figure 1 for a
traction-free boundary.
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Since one can easily evaluate the stress field of dislocations in infinite medium (that is,
s¥

ij ), the relevant task is to solve the dislocationless elastic problem in finite medium with
given boundary conditions (which may concern displacement, traction or both) in order to
obtain sij

img. We, therefore, continue with solving this elastic problem.

2.2. Solution of Navier–Cauchy equation in 2D

To obtain the equilibrium displacement field of a homogeneous and isotropic elastic medium
one should solve the Navier–Cauchy equation:

( ) ( ) ( )m l mD + +   =u u 0, 3

where u is the displacement and λ and μ are Laméʼs first parameter and the shear modulus,
respectively. As it was discussed in the Introduction in this paper we focus on 2D problems,
so, in the following we will solve the Navier–Cauchy equation in 2D, that is, when the
solution is invariant in the direction parallel to the z axis.

To solve equation (3) with certain boundary conditions, firstly, we searched for a set of
functions that satisfy the equation (without considering any specific boundary conditions).
Since, the equation is linear and homogeneous, any linear combination of these functions is a
solution as well. To find the proper basis functions, the displacement field can be decomposed
to irrotational and solenoidal fields:

( )j y=  +  ´u , 4

which in 2D reads as

( )j y= ¶ + ¶u , 5x x y

( )j y= ¶ - ¶u . 6y y x

Since in this case only the z component of the ψ potential is non-vanishing, we simply wrote
ψ instead of ψz. Plugging it into equation (3) yields the biharmonic equation for the two
potentials [43]:

( )jD = 0, 72

( )yD = 0. 82

Figure 1. Illustration of the practical decomposition of the sij stress field (equation (2)):
the first term s¥

ij is the field of dislocations as if they were in an infinite medium and the

second one (sij
img) is a dislocationless solution of the inverse elastic problem. The

superposition of these two fulfils the equation describing elastic media while containing
dislocations and satisfying the boundary conditions as well. In the case shown in the
figure this means that the relevant components of the stress vanish on the boundary,
although, the method can be applied to solve problems with arbitrary boundary
conditions.
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Searching the potentials (for example j) in the form

( ) ( ) ( ) ( )j =x y X x Y y, 9

yields:

( )¶
¶

+
¶
¶

¶
¶

+
¶
¶

=
X
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2
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Since, ¶
¶Y

Y

y

1 2

2 and
¶
¶Y

Y

y

1 4

4 are independent of x (so, they are constants) the solution can be found in
the form

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠( ) ( )p p

= +Y y a
l

ny b
l

nysin
2

cos
2

, 11

where a and b arbitrary parameters of length dimension, l is the longest possible wavelength
and n is a dimensionless positive integer. The differential equation for X is then:

( ) ( )
( )

p p
¶
¶

-
¶
¶

+ =
l X

x
n

l X

x
n X

2
2

2
0, 12

4

4

4

4
2

2

2

2

2
4

which yields

( ) ( ) ( ) ( )= + + + -p p
X x a a x b b xe e . 13nx nx

0 1 0 1l l
2 2

Using the results for X and Y the possible solutions can be [44]:

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )

f p p
f p p
f p p
f p p

=
=
=
=

x y f nx l g ny l

x y g nx l f ny l

x y xg nx l f ny l

x y f nx l yg ny l

, 2 2

, 2 2

, 2 2

, 2 2 , 14

1

2

3

4

where

( ) ( ) ( )= =f s s f s ssin or cos 15

and

( ) ( ) ( )= = -g s e g s eor . 16s s

Since there are 4 fi functions and there are two possible choices for both f and g, there are 16
different possible solutions for every n. The derivatives of the f si can be given with their
linear combinations. Therefore, according to equations (6), ux and uy can be also written as the
linear combination of these functions.

The functions (14) all satisfy the biharmonic equation, however, only certain linear
combinations fulfil the Navier–Cauchy equation (3). The appropriate linear combinations can
be determined by inserting the functions from (14) into the Navier–Cauchy equation as the ux
or uy component of the displacement have relations between their coefficients. The obtained
basis functions (that satisfy the Navier–Cauchy equation) of ux and uy are shown in table 1 in
which we introduced p=k l20 .

In table 1 the notation

( )m l
m l n

a
+
+

=
-

º
3

1

3 4
17

is used, where
( )

n = l
l m+2

is the Poisson ratio. Interestingly, displacement components of the
basis functions only depend on one elastic constant instead of two. Mathematically this is the
consequence of equation (3) being homogeneous.
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The dynamics of dislocations is determined by the stress field, thus, one should calculate
the stress field as well. If the displacement field (i.e. the ( )Ci

n coefficients for i=1, 2, K, 16)
is known, the stress field can be easily calculated from it with its derivatives. We determined
the stress components corresponding to each basis function, which are not shown expli-
citly here.

To find the best approximate solution for the elastic problem examined, we should find
the linear combination of the basis functions (values for the ( )Ci

n coefficients) that is the best in
some sense. Since all the basis functions in table 1 satisfy the (3) Navier–Cauchy equation,
their any linear combination will do as well, however, if we use finite orders of n there might
not be a solution that fulfils exactly the boundary conditions. In the next section we will show
our approach to find an approximate solution that matches the boundary conditions the best.

3. Implementation to 2D rectangular domain

Using only a finite number of basis functions, the solution might only approximately fulfil the
boundary conditions. One, therefore, needs to define criteria for selecting that particular
solution that is the closest to the boundary conditions in some sense. Our requirement is that
the Fourier series of the prescribed boundary condition and the Fourier series of the chosen
solution at the boundary have to be identical until a certain order (i.e. the first few coefficients
in the Fourier series of the solution should match the corresponding coefficients of the Fourier
series of the BC). In this section we will introduce the method to determine the solution that
meets this criterion.

Supposing that solution (i.e. the finite set of ( )Ci
n coefficients) is already known, both the

stress and displacement can be evaluated at the boundaries. If we settle the coefficients ( )Ci
n in

Table 1. The basis functions that fulfil equation (3) and the notation for their coeffi-
cients, where a = m l

m l
+
+3

and = pk
l0

2 . Apparently, every order of n consists of 16

basis functions and both displacement components are non-vanishing for every
function.

Coefficient ux uy

( )C n
1 ( ) ( )a+ nk y nk x1 sin enk y

0 0 0 ( )a- nk y nk xcos enk y
0 0 0

( )C n
2 ( ) ( )a- -nk y nk x1 sin e nk y

0 0 0 ( )a- -nk y nk xcos e nk y
0 0 0

( )C n
3 ( ) ( )a+ nk y nk x1 cos enk y

0 0 0 ( )ank y nk xsin enk y
0 0 0

( )C n
4 ( ) ( )a- -nk y nk x1 cos e nk y

0 0 0 ( )a -nk y nk xsin e nk y
0 0 0

( )C n
5 ( ) ( )a- nk x nk y1 e sinnk x

0 00 ( )a- nk x nk ye cosnk x
0 00

( )C n
6 ( ) ( )a+ -nk x nk y1 e sinnk x

0 00 ( )a- -nk x nk ye cosnk x
0 00

( )C n
7 ( ) ( )a- nk x nk y1 e cosnk x

0 00 ( )ank x nk ye sinnk x
0 00

( )C n
8 ( ) ( )a+ -nk x nk y1 e cosnk x

0 00 ( )a -nk x nk ye sinnk x
0 00

( )C n
9 ( )a- nk y nk xcos enk y

0 0 0 ( ) ( )a- nk y nk x1 sin enk y
0 0 0

( )C n
10 ( )a- -nk y nk xcos e nk y

0 0 0 ( ) ( )a+ -nk y nk x1 sin e nk y
0 0 0

( )C n
11 ( )ank y nk xsin enk y

0 0 0 ( ) ( )a- nk y nk x1 cos enk y
0 0 0

( )C n
12 ( )a -nk y nk xsin e nk y

0 0 0 ( ) ( )a+ -nk y nk x1 cos e nk y
0 0 0

( )C n
13 ( )a- nk x nk ye cosnk x

0 00 ( ) ( )a+ nk x nk y1 e sinnk x
0 00

( )C n
14 ( )a- -nk x nk ye cosnk x

0 00 ( ) ( )a- -nk x nk y1 e sinnk x
0 00

( )C n
15 ( )ank x nk ye sinnk x

0 00 ( ) ( )a+ nk x nk y1 e cosnk x
0 00

( )C n
16 ( )a -nk x nk ye sinnk x

0 00 ( ) ( )a- -nk x nk y1 e cosnk x
0 00
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vector c and the Fourier coefficients of the solution on the boundary in vector f, there is a
linear relation between the two. It can be described with a matrix M as:

( )=f Mc. 18

Since, the boundary condition is known, the task is to determine the ( )Ci
n coefficients. It can

obtained by inverting the matrix M:

( )= -c M f. 191

The matrix inversion requires M to be a square matrix. In principle, we have infinite number
of basis functions and the Fourier series of the boundary conditions consist of infinite number
of coefficients as well. Thus, both c and f consist of infinite number of components. In order
to be able to accomplish the calculation the basis functions and the Fourier coefficients have
to be restricted to a finite order. This will result a finite-sized matrix M. If we have basis
functions of orders n=1, 2, K, N the vector c will have 16N components according to
table 1. It will be shown below that it is enough to use only sinusoidal or cosinusoidal modes
of the Fourier series of the boundary conditions. Since on all four boundaries we need the
Fourier coefficients of two displacement or stress components (depending on the boundary
conditions), the vector f will contain 8 coefficients of each Fourier order. Hence, to get a
square matrix we will need to take into consideration the first 2N orders of the Fourier series
of the boundary conditions.

Since, the displacement and stress fields do not have physical meaning outside the
rectangular area of interest (for which  x y L0 , ) we have the freedom to have an arbi-
trary field there. There are two simple ways to extend the field outside the specimen which we
implemented: a field that is periodic or antiperiodic in x and y with (anti)period L. During
implementation, for simplicity, we used L=l/2=π, hence, k0=1. This choice, however,
does not limit the applicability of the method, since the solution can be easily rescaled to any
L value. A periodic field makes all sinusoidal Fourier coefficients vanish while an antiperiodic
one will cancel all cosinusiodal coefficients. Therefore, it is possible to use purely sinusoidal
or cosinusoidal Fourier-series to describe the boundary conditions. This implies that (as it was
mentioned above) 2N Fourier orders should be used to describe the boundary conditions if we
have a basis of order N. In the sinusoidal case we should use Fourier coefficients of order
n=1, 2, K, 2N while for the cosinusoidal case relevant orders are = ¼ -n N0, 1, , 2 1,
since in the latter case all cosines have zero average, therefore, the constant should be also
included in the Fourier series. In practice we determined the components of the vector f using
FFT (fast Fourier transform) algorithm after completing the field periodically or
antiperiodically.

The Mij matrix element describes the connection between the basis function corresp-
onding to the jth component of the vector c and the Fourier coefficient of a certain dis-
placement or stress component on a certain boundary corresponding to the ith component of
the vector f. Since, we have finite number of basis number families (namely 16) given by their
analytical formula, the matrix element can be calculated either numerically or symbolically.
The matrix is unchanged during a DDD simulation (and so is its inverse), hence, the matrix is
to be evaluated only once.

The vector f and the matrix M can consist of the Fourier coefficients of displacement or
stress or both on the boundaries, otherwise the method remains the same, that is, only the
actual vector components and matrix elements depend on the boundary conditions.
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4. Results

4.1. Tests on analytically solvable examples

To verify the validity of our method we tested it on several analytically solvable examples.
We examined the convergence of the method numerically on these test cases and we observed
especially fast convergence as it is demonstrated in detail below.

One of the examined examples was pure shear. The boundary conditions are shown in
table 2 and one can see the outline of the deformation in figure 2.

The solution is the following:

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ ( )

= -

= -

u
c

L
y

L

u
c

L
x

L

2

2
,

2

2
, 20

x

y

which apparently fulfils the boundary conditions (table 2) and the Navier–Cauchy equation (3)
as well. From this the stress is:

Figure 2. Sketch of pure shear of the L×L sized sample, where the displacement c
characterises the extent of deformation (see table 2 for its accurate meaning). One can
only apply linear elasticity for c L, the extent of deformation is exaggerated in the
figure for visibility purposes.

Table 2. The boundary conditions corresponding to pure shear, where displacement c is
a constant that characterises the extent of deformation.

Boundary ux uy

y=0 -c ( )-xc

L

L2
2

x=L ( )-yc

L

L2
2

c

y=L c ( )-xc

L

L2
2

x=0 ( )-yc

L

L2
2

-c
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( )

s
s

s
m

=
=

= º
c

L
S

0,
0,

4
, 21

xx

yy

xy

where μ is the shear modulus and displacement c is the constant that characterises the extent
of deformation. The σxy stress component of the solution provided by our method can be seen
in figure 3 for the first four orders of basis size. As we can see, with increasing N, σxy
converges to a spatially homogeneous value of S predicted by equations (21). The other stress
components (not shown here) demonstrated similar convergence to the expected zero value.

The displacement (and the sxy) corresponding to this deformation are shown in figure 4.
Both figures 3 and 4 demonstrate that already the basis of N=2 describes the problem
considerably well and much better than N=1. Since, N=2 is already very similar to the
analytical solution, the improvement by further expansion of the basis is much smaller than
from N=1 to N=2. Although the convergence of the method seems obvious, we examined
the convergence quantitatively.

Figure 3. The σxy shear stress while applying pure elastic shear. Here the shear modulus
is μ=1 and the extent of deformation is c=1 (for the meaning of c see table 2).
Apparently, while increasing the basis size N, the solution quickly converges to the
analytical solution, which is spatially homogeneous in accordance with equation (21).

Figure 4. The σxy (colorbar) and the displacement of the pure shear for the first three
orders of basis size.
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The following quantities are introduced to characterise the deviation of the solution
provided by our method from the analytical one

∣ ∣ ( )ås
s s= -

=


p

1
, 22

xy
t

i
xy
n

xy
t

1
1

( ) ( )ås
s s= -

=


p

1 1
, 23

xy
t

i
xy
n

xy
t

2
1

2

∣ ∣ ( )
s

s s= -¥p
1

max . 24
xy
t xy

n
xy
t

Here = 11 025 is the number of points (placed on a square grid) where the analytical and
numerical results of σxy are compared. The superscripts ‘t’ and ‘n’ denote the values provided
by the theoretical solution and our numerical method, respectively. Obviously, these
quantities could be calculated for other stress or displacement components as well.

As it is shown in figure 5 all p quantities decay quickly while increasing the size of the
basis (i.e. the value of N). The (N, p) points can be fitted well by the -Ae bN exponential
function. The fit was done on (N p, log ) points using -A bNlog trial function. The fit
parameters and their standard deviation are shown in table 3. This exponential convergence
clearly outperforms the power-law convergence usually obtained of FEM. (We note, how-
ever, that for the particular case of pure shear FEM can provide an exact solution.)

We investigated other analytically solvable problems (u=const; ux=cy and uy=0)
which showed similar fast exponential convergence with slightly different fit parameters. To
summarise, the convergence properties of the numerical method (according to these

Figure 5. The extent of deviation of σxy from the analytical solution for pure shear on
linear (left panel) and logarithmic (right panel) scales. For the definition of p1, p2 and

¥p see equations (22)–(24).

Table 3. The parameters and their standard deviation of the = -p A bNlog log
functions for p1, p2 and ¥p values (corresponding to σxy) for pure shear.

A b

p1 2.36±0.14 2.875±0.017
p2 2.99±0.30 2.627±0.031

¥p 4.11±0.60 2.317±0.044
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analytically solvable problems) are promising since not only p1 and p2 but also ¥p showed
fast exponential decay which means that there is no big deviation from the analytical solution.

4.2. Application on systems with dislocations

As mentioned above we solve the dislocationless elastic problem to derive the solution
containing dislocations using the principle of superposition (see figure 1). For this purpose we
determined the Fourier coefficients of the dislocations’ (displacement or stress) field (valid in
infinite medium) on the boundaries using FFT. The (finite number of) Fourier coefficients can
be arranged in a vector ¥f . The boundary condition are also decomposed into Fourier series
and the coefficients are settled in a vector fBC. The arrangement of Fourier coefficients in the
vectors ¥f and fBC is arbitrary, although, should be the same in the two cases. The vector f
from which the proper dislocationless field can be calculated (using the inverse of the matrix
M ) is clearly the difference of these two vectors:

( )= - ¥f f f . 25BC

As it was explained above, we can get the field of dislocations in finite system by adding their
field to the appropriate dislocationless solution of the elastic problem derived from the vector
f. The method is demonstrated in figure 6 for the field of a dislocation dipole with Dirichlet
boundary conditions, namely ∣ =¶u 0. We tested on Neumann and mixed boundary
conditions as well and found that the method can handle these two boundary conditions
as well.

As a special case we investigated the force acting on a dislocation near an infinite free
surface. The stress field of this system can be given analytically using an image dislocation
[44]. The force acting on the dislocation will be perpendicular to surface (due to symmetry
reasons) and its magnitude is determined by the σxy shear stress at the locus of the dislocation.

Figure 6. The displacement field of a pair of dislocations with fixed boundaries
( ∣ =¶u 0). In this case we used N=2 basis size. Apparently, the method successfully
creates the displacement field that contains the dislocations and fulfils the imposed
boundary conditions.
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The analytical solution yields that the magnitude of the force is

( )t
= µF

x x

1
, 260

where x is the distance of the dislocation from the surface and
( )

t = - m
p n-

b
0 4 1

2

where μ, ν and
b are the shear modulus, the Poisson ratio and the magnitude of the Burgers vector,
respectively.

A dislocation dipole was placed at (x, L/2) and (L− x, L/2) in the L×L rectangular 2D
area. As the dislocations approach the boundaries, that is, x tends to zero or L, we expect the
results of the numerical method to approach the analytical solution, because in this case the
effect of the nearest boundaries (x=0 or x=L) is much more significant than that of the
farther ones and the other dislocation. We determined the shear stress generated by the
boundary conditions at the position of the dislocation for different x values and different N
orders of calculation. We used ν=1/4 during these calculations. In terms of boundary
conditions the free surface yields σnn=0 and σxy=0 at the boundary where { }În x y, is
the direction perpendicular to the boundary. We specified this boundary condition on x=0
and x=L boundaries. On the other two boundaries (y=0 or y=L) we prescribed that the
displacement components of the image field must vanish. The results are shown in figure 7. It
is consistent with the well-known fact that the free surface attracts the dislocation and the
µ x1 dependence of equation (26) is reproduced within a region in which the dislocation is
not too far from the surface (hence the approximation of the infinite surface is valid) and not
too close to it (where the numerical method does not work correctly due to the finite size of
the basis). However, the obtained values were around 20% smaller than the predicted values
of equation (26). An analytical solution for the specific boundary problem considered cannot
be given, therefore, to understand the deviation found, the results were compared to combined
effect of two (vertical) infinite traction-free surfaces (channel configuration). In the presence
of a single boundary, the contribution of one surface can be calculated as the sum of the field
of the dislocation, the field of an image dislocation and an additional term which vanishes at

Figure 7. The shear stress contribution of the boundary at the locus of the dislocation
near free surface. The theoretical µF

x

1 dependence near the boundary [44] and the

result provided by our numerical method for different Ns are shown with lines of
different colours. Despite the fact that the µF

x

1 proportionality is accomplished by the

numerical results, a smaller force is obtained by simulation than expected according to
theory. It was found that it is the effect of the two horizontal boundaries because while
extending the box in direction y, the result tends to the expected curve.
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the locus of the dislocation but is non-zero elsewhere [44]. The theoretical solution of the
channel problem can be given in the form of an infinite sum obtained by successive mirroring
the solution to to the opposite boundaries. The simulation results of figure 7 still slightly
differed from this theoretical prediction and yielded smaller shear stresses than expected. It
was checked, however, that the simulation results tend to the theoretical curve for taller
rectangular boxes (with larger Ly/Lx ratio) confirming that the deviance is the result of the
presence of the two y=const boundaries.

The width of the boundary region where the method does not work properly (where
µF x1 is not met) decreases as N increases. We note, however, that the sign of the field

does not change in this boundary region, so it is (as physically expected) attractive in the
whole vicinity of the surface.

It is important to investigate how the width of the boundary region (where the numerical
results for a certain N deviate from the theoretically expected values) decreases with
increasing N to know what basis size should we use to achieve a certain desired precision. To
quantify the cut-off distance xc from the boundary where the solution breaks down for a given

N we first consider the slope Σ of σxy on the log–log plot as
( )
( )

S = sD -

D x L

log

log
xy . The theoretical

value of this slope is Σth=1.
According to figure 7 the numerical results decrease below this for small x values. The

cut-off distance xc is, therefore, defined as the point where the slope Σ gets equal to a pre-
defined threshold mΣth, that is, Σ<mΣth for x<xc. As one can see in figure 8, the data
showed µx L N1c dependence for not too small Ns irrespective of the particular choice of
the threshold m.

Using the notation λmin for the shortest wavelength occurring in the trigonometrical
functions in the used basis functions, one gets that

( )l µ
N

1
. 27min

Figure 8. The width of the boundary layer (where the model cannot reproduce the
analytical diverging fields) for different slope thresholds m. The figure shows that
independently of the value of the parameter m, the data points show the expected

µx L N1c dependence.
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Also, the results above show that

( )µx
N

1
, 28c

yielding

( )lµx . 29c min

To sum up, the growth of the basis size N reduces the width of the region near the surface
where the method does not provide correct results. This width decreases proportionally with
the shortest occurring wavelength λmin.

Now we turn, as a possible future application, to DDD simulations and pose the question
how the basis size N should be chosen in order to preserve precision over various system sizes
(similar considerations apply for possible applications, such as CDD). Since, we are exam-
ining a 2D system, the characteristic distance rdis between dislocations is proportional to

N1 dis , where Ndis is the number of dislocations. As we want to decrease the critical distance
proportionally to this characteristic distance (i.e. µx rc dis), the basis size N should be
increased proportionally to Ndis . It has important consequences on the computational time of
the method as it will be discussed below.

4.3. Computational efficiency

The computational cost is one of the most critical properties of numerical methods. In this
section we examine the computational cost of each subtask that should be done once or after
every time step in a DDD simulation. The results will be compared with the FEM and we
found that our method has more favourable properties.

If the type of boundary condition (Dirichlet, Neumann, etc) is given, the matrix M
remains the same (and so does its inverse) even if the concrete boundary values change.
Hence, it is enough to evaluate and invert the matrix once. We found that the evaluation of the
matrix has a computational cost of the form of c N1

2. It is plausible since all the ´N N16 16
matrix elements should be calculated independently. Figure 9 shows the computational cost
of the construction and the inversion of the matrix M . We fit a c N2

2.376 function on the data
points corresponding to the computational cost of matrix inversion with the Coppersmith-
Winograd algorithm [45].

As a result of the motion of dislocations their field (valid in infinite medium) changes
even on the boundaries, consequently, the ¥f changes in time and so does the vector f—
according to equation (25)—even for unchanged boundary conditions (i.e. unchanged fBC).
To evaluate the vector f one needs to execute eight FFTs, since there are two relevant
displacement or stress components on all four boundaries. Of course, if f changes, the vector c
will do so as well, hence, we should perform the = -c M f1 multiplication every time step in a
DDD simulation. To determine the motion of the dislocations one should evaluate the
external stress (more precisely, the shear stress) at their locus caused by other dislocations as
well. These three subtasks are all to be executed at every time step, therefore, their compu-
tational cost is critical in a DDD simulation.

In order to execute FFTs along the boundary the field has to be evaluated at several
points. Since we use only the first 2N Fourier-coefficients the number of these points is at
least 4N on every boundary according the Nyquist–Shannon sampling theorem [46]. The
computational cost of this subtask is, therefore, +c NN c3 dis 4, where Ndis is the number of
dislocations since the field which is to be evaluated is the sum of the field of Ndis dislocations.
The second subtask was to execute the FFT itself and settle the coefficients in the vector f. We
assumed the computational time to be of the form of +c N N clog5 6 where the first summand
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is the contribution of the FFT and the second one is the creation of the vector f. The last
important subtask is the evaluation of the solution vector using the = -c M f1 relation. This is
expected to have computational time of the form of c N7

2. The measured computational cost of
these subtasks and the fits of the proposed functions can be seen in figure 10.

Figure 9. The computational cost of non-repeatable subtasks. The creation of the matrix
M—with the size of ´N N16 16 —has =t c NM,create 1

2 computational cost, while its
inversion costs =t c NM,inv 2

2.376.

Figure 10. The computational cost of repeatable subtasks. The computational cost of
the evaluation of the field in 4N points on each boundary for µN Ndis

2 number of
dislocations is = +t c N csample 3

3
4. The execution of the FFT and the creation of the

vector f has a ( )= +t c N N clogFFT 5 6 while the evaluation of the vector c has a
=t c Na 7

2 time dependence. The latter is calculated from the = -c M f1 relation.
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5. Discussion

In the following discussion we sum up our results about the computational efficiency of our
numerical method and compare them with the properties of FEM which is often used to
handle boundary conditions in DDD simulations.

In section 4.3 we examined the region where the numerical method reproduces well the
analytical solution for the force acting on a dislocation near an infinite free surface (see
figure 8). Using these results we concluded that if the total number of dislocations Ndis

increases (thus, their characteristic distance decreases) one needs to increase the basis size N
in order to preserve the numerical precision as

( )µN N . 30dis

The most time-consuming subtask that is to be executed every time step is the evaluation of
the field at (at least) 4N points on the boundaries with a computational cost of ( ) NNdis (see
figure 10). Therefore, the leading-order term is

( )µ µt NN N , 31dis dis
3 2

where we utilised equation (30).
While using FEM to solve PDE the problem leads to a system of linear equations. If it is

described by an ´N NFEM FEM matrix, the computational cost is ( ) NFEM
2 . The number of

basis functions NFEM should be increased with the number of dislocations as

( )µN N 32FEM dis

to get an sufficiently dense grid in a 2D simulation area. Hence, the computational time of the
leading-order term reads as

( )µ µt N N . 33FEM FEM
2

dis
2

The results (expressed in terms of dislocation number Ndis) can be translated into the
function of the linear size L of the system if we assume a given dislocation density ρdis. Then,
in 2D

( )rµ µN L L . 34dis dis
2 2

Our results discussed above (expressed with both Ndis and L) are summarised in table 4.
The result shown in table 4 is remarkable, because simulating the interaction between

dislocations has a computational cost of ( ) Ndis
2 . It is because there are ( )-N N 1 2dis dis

distinct pairs of them and due to the long-rangedness of dislocation stress fields all pair
interactions have to be taken into account during the course of the simulation. Thus, our
method (to handle boundary conditions) has more favourable computational complexity than
the computation of interactions in DDD simulations (while FEM does not). So, the main point
is that utilising our method, taking the boundary conditions into consideration will not be the

Table 4. The computational cost of our method and the FEM expressed with the Ndis

number of dislocations and the L characteristic linear size of the system. Apparently,
our method has more favourable properties, therefore, it can be more efficiently used to
handle boundary conditions in DDD simulations.

( )t Ndis t(L)

Our spectral method ( ) Ndis
3 2 ( ) L3

Finite element method ( ) Ndis
2 ( ) L4

Modelling Simul. Mater. Sci. Eng. 28 (2020) 035014 D Berta et al

16



main component that limits the maximal number of dislocations or system size due to its good
computational complexity, while the less favourable complexity of FEM can reduce its
applicability.

We also note that in the argument above a uniform dislocation density was implicitly
assumed. Due to the presence of boundaries, however, dislocation pile-ups may appear
yielding quasi-1D structures near the boundaries. Therefore, the same argument can be used
with a dislocation density µ N1 dis which leads to ( ) L4 and ( ) L8 complexities for the
present method and FEM, respectively. Thus, the use of this method is even more advan-
tageous in such a case.

6. Summary

In this paper a numerical spectral method has been proposed that provides a solution of the
Navier–Cauchy equation (which describes homogeneous and isotropic medium) in 2D with
given boundary conditions. The method is able to solve Dirichlet, Neumann and mixed
boundary value problems as well. Since, the solution is a linear combination of basis func-
tions which satisfy the equation exactly, in principle, it will also fulfil the equation exactly.
However, the boundary conditions are only met approximately. The basis we use is finite,
therefore, the possible solutions one can reproduce with this method are from a subspace of
all solutions of the Navier–Cauchy equation. Thus, we had to find the approximate solution in
this subspace that is the closest to the genuine solution in some sense. The proposed
requirement is that the first finite number of Fourier coefficients of the Fourier series of the
approximate solution on the boundary should be identical to the Fourier coefficients of the
boundary condition.

Firstly, our method was tested on analytically solvable problems such as pure shear. The
method reproduced the analytical solution and showed remarkable fast exponential conv-
ergence with the increment of the basis size which is superior to the power-law convergence
of FEM. Secondly, the method was applied to cases where the simulation cell contained
dislocation. It was found that if a dislocation is closer to the boundary than a certain distance
(which decreases at higher orders of computation) numerical errors appear due to the ana-
lytically diverging stress fields. Based on this observation the time complexity that is needed
to achieve a certain precision was assessed. As it was discussed in detail, the solution of the
PDE leads to a = -c M f1 type multiplication, where vector f can be obtained from the
prescribed boundary values, matrix M is characteristic to the type of boundaries and vector c
characterises the solution function. In a typical application the matrix M is unchanged during
a simulation even if the boundary values change (but remains of the same type, for instance
Dirichlet), hence, it is enough to evaluate and invert the matrix once, while the vector f should
be calculated at every time step. Naturally, the subtasks that should be done every time step
will be the ones that determine the computational efficiency of the method. After investigating
the computational time of these subtasks we concluded that the computational complexity of
our method is ( ) Ndis

3 2 , that is, ( ) L3 where Ndis and L are the total number of dislocations
considered and the characteristic linear system size, respectively. Thus, contrary to FEM, the
computational complexity of our numerical method is more favourable than the calculation of
dislocation-dislocation interactions in DDD simulations (being ( ) Ndis

2 or, equivalently,
( ) L4 ). Consequently, taking the boundary conditions into account will have a lower com-

putational cost compared to other tasks, therefore, this component of the simulation will not
limit the dislocation number (or system size) we are able to investigate in reasonable time.
This allow us to examine larger systems and gain better statistics (of for example dislocation
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avalanches). In the future we intend to build in this method into already working DDD
simulations that utilised PBC so far and investigate the effect of boundaries on dislocation
avalanches and size effects. We also note, that the application of this method is not limited to
DDD simulations, but its advantageous runtime properties can be also utilised in other 2D
elastic problems such as in CDD.
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