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We study a continuum model of dislocation transport in order to investigate the formation of heterogeneous
dislocation patterns. We propose a physical mechanism that relates the formation of heterogeneous patterns
with a well-defined wavelength to the stress-driven dynamics of dislocation densities that tries to minimize the
internal energy while subject to dynamic constraints and a density-dependent, friction-like flow stress. This
leads us to an interpretation that resolves the old “energetic vs dynamic” controversy regarding the physical
origin of dislocation patterns and emphasizes the hydrodynamic nature of the instability that leads to dislocation
patterning, which we identify as an instability of dislocation transport that is not dependent on processes such as
dislocation multiplication or annihilation. We demonstrate the robustness of the developed patterning scenario
by considering the simplest possible case (plane strain, single slip) in two model versions that consider the same
driving stresses but implement the transport of dislocations that controls dislocation density evolution in two very
different manners, namely (i) a hydrodynamic formulation that considers transport equations that are continuous
in space and time, assuming that the dislocation velocity depends linearly on the local driving stress, and (ii) a
stochastic cellular automaton implementation that assumes spatially and temporally discrete transport of discrete
“packets” of dislocation density that move according to an extremal dynamics. Despite the differences, we find
that the emergent patterns in both models are mutually consistent and in agreement with the prediction of a linear
stability analysis of the continuum model. We also show how different types of initial conditions lead to different

intermediate evolution scenarios that, however, do not affect the properties of the fully developed patterns.
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I. INTRODUCTION

Ever since the first TEM observations of dislocations it has
been known that the arrangement of dislocations in deformed
crystals is practically never homogeneous: dislocations show
an intrinsic propensity to form heterogeneous patterns. There
is an equally long-standing discussion regarding the physi-
cal nature of these patterns that is matched by an amazing
variety of approaches to their modeling, many of which are
based on analogies with pattern formation in other physical
systems. Thus, it has been argued that dislocation patterns form
because the dislocations try to minimize elastic energy (see,
e.g., Hansen and Kuhlmann-Wilsdorf [1]). Unfortunately this
“energetic” approach to dislocation patterning has hardly ever
been cast into a tangible mathematical framework by actually
formulating and minimizing the energy functional in question.
One notable exception is represented by the work of Holt [2],
which is clearly crafted in analogy with contemporary models
of spinodal decomposition patterns and relates the patterning
of dislocation densities to the minimization of an associated
internal energy functional, a process that in stark contrast
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to experiment is predicted to occur even in the absence of
external stress. The “energetic” approach may be contrasted
with the idea that dislocations in a deforming crystal constitute
adriven system far from equilibrium where patterns may form
as dissipative structures. This has led to the formulation of
nonlinear sets of partial differential equations for dislocation
densities by Walgraef and Aifantis [3] and Pontes et al. [4]
that give rise to a variety of interesting patterns. Some of these
resemble dislocation patterns observed by TEM, while other
types of patterns predicted by the same equations, such as
spiral waves, have never been observed [5]. In our opinion
most of these models suffer from an overly phenomenological
approach to modeling: They aim at reproducing patterns
(actually, pictures of patterns) rather than deriving them from
the known elastic and kinematic properties of dislocation
systems. As a consequence, the fundamental controversy as
to whether dislocation patterning is in essence an energetic or
a dynamic phenomenon, which has been neatly summarized
by Nabarro [6], remains unresolved.

Only in recent years have attempts been made to formulate
dislocation density based models by means of averaging
procedures that lead from the dynamics of discrete dislocations
to the evolution of dislocation densities in a systematic manner.
These methods have been used to formulate the kinematics of
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dislocations in 2D and lately in 3D [7-9] and also to system-
atically derive driving forces for the dynamics. To the latter
end, two alternative approaches have been pursued: Driving
forces for dislocation density evolution may be obtained by di-
rectly averaging the interaction forces of discrete dislocations
[10-12]. Alternatively, one may formulate an energy functional
governing the dynamics based on phenomenological consid-
erations [13,14] or from direct averaging of the elastic energy
of the discrete dislocation system [15], and then obtain driving
forces from variation of the energy functional in conjunction
with thermodynamic consistency requirements [16]. Both ap-
proaches have been shown to yield mutually consistent results
provided that, in the variational approach, a nontrivial mobility
function is assumed which implements a friction stress [12].

Importantly, these statistical averaging approaches do not
pursue the primary aim of “modeling patterning,” i.e., of repro-
ducing experimental images in a more or less faithful manner.
Rather, such models aim at “modeling dislocations”: their
primary thrust is to provide a physically and mathematically
consistent representation of the motion and interactions of
dislocations in a continuum framework (“continuum disloca-
tion dynamics,” CDD), just as discrete dislocation dynamics
simulations (DDD) aim at doing so in a discrete framework.
Similarly to DDD simulations, where dislocation lines are
quite generally found to entangle in a heterogeneous manner
which is matched by the emergence of micro-heterogeneous
deformation patterns (see, e.g., [17—19]), it has soon become
clear that in CDD models the emergence of heterogeneous
dislocation patterns turns out to be an almost inevitable feature
of the collective dynamics. Simulations of CDD models in
3D demonstrate an intrinsic tendency towards dislocation
patterning [20,21] as they relate the emergence of patterning to
the same dislocation interactions that govern strain hardening,
in line with the “principle of similitude” [22]. This principle
has been related to fundamental invariance properties of the
equations that govern the properties of discrete dislocation
systems, and indeed all physically based models of dislocation
patterning published in recent years are consistent with these
invariance properties [23].

While most recent models exploit advances in computa-
tional power [21] or in kinematic averaging methods [20]
in order to address the important problem of dislocation
patterning in 3D and under conditions of multiple slip, the
present authors have pursued a more simplistic yet more funda-
mental goal, namely to elucidate the fundamental nature of the
instability underlying dislocation patterning by investigating
a most simple model, and then demonstrating that the basic
mechanism of patterning in this model remains robust upon
generalization. To this end we focus on a minimal system (2D,
single slip) where an exact representation of the kinematics is
possible and well-defined forms have been established both for
the energy functional [13,15] and also for the effective mobility
law [12]. As a consequence, we can dispense to a large extent
with phenomenological assumptions and obtain a complete
understanding of the interplay of energy minimization, external
driving, and friction in driving the emergence of dislocation
patterns. In a previous work [12] we analyzed the linear
stability of the ensuing equations under the assumption of a
linear stress dependency of the collective velocity of disloca-
tions. While this allowed us to reach important conclusions

regarding the patterning mechanism, a linear stability analysis
is of necessity insufficient to decide on the stability of the
emergent patterns and the robustness of the patterning scenario.
Furthermore, even if the velocity of single dislocations depends
linearly on the local stress acting on the dislocation line, the
same is not necessarily true for the collective velocity of
interacting dislocations: Nontrivial collective velocity expo-
nents resulting from a linear stress-velocity relationship on the
single-dislocation level have been reported in simulations of
2D dislocation systems by Miguel er al. [24].

We therefore, in the present paper, combine linear stability
analysis for a generic nonlinear stress-velocity law with a com-
prehensive study of nonlinear aspects of patterning including
the influence of initial condition, pattern growth mode, and
investigation of pattern stability as well as an investigation
of the influences of model implementation (continuous vs
discrete, deterministic vs stochastic) and velocity law. The
paper is organized as follows: In Sec. II, we briefly present
the continuum model formulated by Groma et al. [12], its gen-
eralization to a generic nonlinear stress-velocity relationship,
and its implementation in a spatially and temporally continuous
setting. Section III presents a spatially and temporally discrete
stochastic model that considers the same spatial couplings and
friction rules, but implements a completely different dynamics
that corresponds to the limit of an infinite stress exponent of
dislocation velocity. Results from both models are presented in
Sec.IV and compared to results from linear stability analysis. A
discussion concerning the nature and robustness of dislocation
patterning is presented in the Conclusions.

II. DETERMINISTIC CONTINUUM MODEL

In the following we give a brief summary of the continuum
model of dislocation transport developed by Groma et al. [10]
and Groma et al. [12] (see also Valdenaire et al. [11]), where a
detailed discussion of the derivation and statistical averaging
methodology can be found. We consider a 2D system of straight
parallel edge dislocations of both signs which can be envis-
aged as charged point particles moving in a perpendicularly
intersecting plane (taken to be the xy plane). Dislocations of
Burgers vector modulus b are assumed to move on a single
slip system which constrains their motion to the slip direction
which we identify with the x direction.

A. Transport equations

The model equations have the structure of continuity equa-
tions. The stress-driven motion of a dislocation depends on its
sign; we use the sign convention that, under a positive resolved
shear stress, positive dislocations of density o™ move with
velocity vt in the +x and negative dislocations of density p~
move with velocity v~ in the —x direction. These motions
produce a shear strain y at rate

dy =b(p v+ p7v7). (1)

Neglecting dislocation generation or annihilation, the transport
equations have the simple structure

dpt(r,r)=—0,(ptvh),
o (r,1)=0,(p v), (2)
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where the velocities are assumed to depend on local driving
stresses in a generic nonlinear manner,

vt = Myb sgn(TH(T D™,
v = Mob sgn(T )T D" 3)

In these equations, the 7= are effective shear stresses driving
the motion of positive and negative dislocations and M, is a
dislocation mobility coefficient (inverse drag coefficient). An
alternative formulation of the transport equations can be given
in terms of the total dislocation density p = p™ + p~ and the
excess or geometrically necessary density k = p™ — p~ as

dho(r,t) = =3 (o v —pv7) = =3 (pv? + kv™),
dic(r, 1) = =3, (p v + p v7) = =3 (pv™ +xvh), (@)

where v™ = (v + v7)/2 is the mean velocity of positive
and negative dislocations and v¢ = (v* — v™)/2 the velocity
difference (see also Zhu et al. [25]).

B. Evaluation of the effective driving stresses

The effective driving stresses 7 (zj, 7;5) result from the
combination of sign-dependent local driving stresses tf and
friction-like stresses 'Cfi as

NP = + + +

T sgn(z)ry |l — 1), gl > 1,
T(ef, 1) = R C)

0 <

s |Td | < F -
The driving stresses are given by combinations of a spatially
homogeneous shear stress Tex; arising from remotely applied
boundary tractions, which provides the external driving force
for dislocation motion and plastic flow, and a set of stress

contributions describing dislocation interactions,

+
T3 = Text + Tint + Toack T Taift - (6)

For 2D dislocation systems as studied here, the interaction
stress contributions have been derived from a statistical anal-
ysis of dislocation correlations. This analysis was presented
independently by Groma et al. [12] and Valdenaire ef al. [11].
Here we only discuss the resulting expressions, considering
the interaction stress contributions iy, Tpack, and Tgif in turn:

(1) The “internal” shear stress i, arises from heterogene-
ity of the plastic eigenstrain ep = y (e, ® e, + e, ® e,)/2.
This stress can be calculated in various manners, e.g., by
direct convolution of the dislocation shear stress field with
the excess dislocation density k¥ = p* — p~ = —9,y/b as
done by Groma et al. [10], by using an Airy stress function
formalism [13], or numerically by solving the eigenstrain
problem using finite elements. Here we use the method based
on k, setting

() = / K Yes, (r — 1), ™
where ;) is the shear stress field of a positive edge dislocation
with the Fourier transform

o ikekd
7(l—v) k*°
where p is the shear modulus of the material, v is Poisson’s

ratio, and k, and k, are components of the Fourier wave vector
with modulus k.

78, (k) = — ®)

(2) The “back stress” tp,cx counteracts accumulation of
dislocations of the same sign. It is given by

D D
Tpack () = _,ubzax’((r) = M;axxy(r)’ 9

where D is a nondimensional factor of the order of unity. We
see that the back stress is proportional to the second gradient
of the shear strain.

(3) Finally, the “diffusion stress” zq;s; is given by

A
Taig () = —libzaxp("), (10)

where A is another nondimensional factor of the order of
unity. The terminology “diffusion stress” is used because
this stress, if inserted via Egs. (6), (5), (3) into the transport
equations Eq. (2), gives rise to a diffusion-like contribution to
the evolution of the total dislocation density p.

Groma et al. [12] observed that the stress contributions
Tint> Toack, and gy represent kinematic hardening contribu-
tions. Indeed all these stress contributions can, via variational
calculus, be derived from an energy functional of the disloca-
tion system given by

E = Eq + Egs,

Eq = / / (G — Py (P )drdr,

D 2
Egis = /sz(A,O In(p) + EK—)dzr- (11)
0

The first contribution to this functional represents the elastic
energy associated with the average plastic eigenstrain y,
whereas the second term represents a correction that captures
elastic energy contributions due to stress and strain hetero-
geneities on the scale of single dislocations, which cannot
be represented in terms of the coarse-grained strain variable
y. For a formal derivation of these terms by averaging the
elastic energy of the underlying discrete dislocation system,
see Zaiser [15].

The “friction stresses” 7" in the effective stress expres-
sions (5) are given by

o =a,ubﬁ<l :F%) (12)

These stresses are of a different nature from the driving
stresses: they represent friction-like, isotropic hardening con-
tributions. While these stresses arise naturally from direct
averaging of the dislocation interactions, they cannot be de-
rived from an energy functional but need to be added “by
hand” to an energy-based formalism where they enter in terms
of a nontrivial, nonlinear mobility function with a mobility
threshold [12]. The functional form of these stresses is that of
Taylor stresses; in physical terms, they represent the mutual
trapping of positive and negative dislocations into dipolar or
multipolar configurations. Their dependency on « reflects the
fact that the presence of an excess of dislocations of one sign
implies reduced pinning of the majority and enhanced pinning
of the minority population. In particular, fork = pork = —p
(only positive or only negative dislocations) the pinning stress
is zero.
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C. Physical interpretation

Before we proceed to analyzing our equations, it is impor-
tant to clarify the origin and physical nature of the different
stress contributions and the meaning of the nondimensional
constants «, D, and A which, in addition to material param-
eters, enter the model equations. To this end, it is important
to emphasize that we formulate a continuum description on
scales above the spacing of individual dislocations, such that
in general multiple dislocations may be contained within a
computational volume element. In fact, the mean dislocation
spacing (MDS) may serve as a length scale that bounds the
applicability of our equations from below. This distinguishes
our equations from discrete-continuum transitions as proposed,
e.g., by Lemarchand et al. [26]: There the plastic slip, and
by extension the dislocation core, is coarse-grained over a
volume less than the dislocation spacing; one is in these works,
in essence, dealing with a continuous formulation of discrete
dislocation dynamics where elastic dislocation interactions are
completely described by the internal stress i, that can be
computed from the plastic slip, either using a finite-element
framework as in Lemarchand et al. [26] or, for an infinite body,
using a Green’s function as done in the present work.

It is clear that if the elementary volume is such as to
encompass multiple dislocations, the interactions between
these dislocations are in danger of becoming lost in an averaged
description. Let us ask, what are the features of the dislocation
system that we can no longer see if, as in the present model, our
eyes are blurred to the extent that we lose vision of individual
dislocations? We can still see the presence of dislocations (the
variable p) as well as excess Burgers vector (the variable «),
but we can no longer see whether the excess dislocations are
arranged in embryonic walls or in small pile-ups. Equally, for
dislocations of zero net Burgers vector, we can no longer see
whether they are arranged in loose multipoles or in narrow,
isolated dipoles and what would be the height of these dipoles
(the slip plane spacing of adjacent dislocations). Yet, this
information matters; it is in fact essential for the dynamics:
Dislocations, if arranged in dipoles, will not move at stresses
below the dipole-breaking stress. Similarly, dislocations of the
same sign forming an embryonic pile-up will jointly push
against an obstacle, whereas dislocations of the same sign
forming an embryonic wall will mutually reduce the forward
stress on such an obstacle.

Since information is being lost if one coarse-grains on scales
above the MDS, yet the physical reality to be described cannot
depend on the level of resolution, it is mandatory that additional
terms must emerge, which in our equations are represented
by the additional stresses T, Tpack, and tgifr. Formally, these
stress terms relate to dislocation-dislocation correlations which
are bound to come into play if averages are computed in a
mathematically correct manner; regarding this aspect we refer
the reader to Groma et al. [12] and Valdenaire et al. [11]. Here,
we focus on the physics.

7; stems from the action, on a given dislocation, of dis-
locations of the opposite sign in its close vicinity. We may
call it a dipole-like stress. The action of this stress depends
on whether or not the stress acting on the dipole from outside
is sufficient to break the dipole. If it is not (static case), the
internal interaction of the dislocations in the dipole/multipole

offsets the acting stress and the dislocations do not move. In the
moving phase, above the dipole-breaking stress, the repeated
formation-and-breaking of dipoles leads to dissipation. We
also note that this effect is not dependent on the sign of
the acting stress. Hence, the overall picture is very much
that of a dry-friction-like behavior. The magnitude of the
“friction stress” is controlled by an internal length scale,
namely the spacing of the slip planes of the dislocations that
typically constitute a dipole, or in other words the dipole
height (multipoles add an additional layer of complexity but
do not change the fundamental picture). In our model, this
quantity enters through the nondimensional parameter & which
can be understood as being proportional to the characteristic
dipole height or, more generally, to the characteristic spacing
of opposite dislocations in mutual-trapping configurations,
measured in units of MDS.

The stress Tpack 1S associated with gradients in the excess
dislocation density; it is computed from a combination of
correlation functions that strongly weights the interactions
of dislocations of the same sign on the same or nearby slip
planes. Accordingly, we may consider it a pile-up stress: If
the density of positive excess dislocations ahead of a given
positive dislocation is larger than behind it (positive gradient
of «), the dislocation is pushed back; if the gradient of « is
negative, it is pushed forward. The nondimensional parameter
D can be understood as the typical spacing of dislocations of
the same sign in piled-up configurations, again measured in
units of MDS.

Least easy to interpret is the stress contribution g4 Which
pushes dislocations of opposite signs in the same direction.
This “diffusion stress”, which is controlled by the parameter
A, accounts for the fact that dipoles and multipoles have finite
extension, such that dislocation density cannot localize down
to arbitrary narrow scales.

In summary, all three factors «, D, and A are proportional
to spacings of individual dislocations, measured in units of
MDS, with o mainly characterizing the spacing of slip planes
of adjacent dislocations, D spacing of dislocations of the same
sign in piled-up configurations, and A the extension of dipoles
and multipoles in the glide direction.

D. Initial conditions, boundary conditions, loading protocol

We simulate a system of size L x L, implementing periodic
boundary conditions in x and y for the stresses and in x
for the dislocation fluxes. For the stresses this means that
the convolution integral in Eq. (7) is evaluated using the
L-periodically continued Fourier transform of the kernel. As
initial conditions we use p*(r, 1) = py/2 + €8p™(r, t) where
€ < 1 and we consider two types of perturbation 8p*: (i)
a Gaussian white noise of unit standard deviation and (2)
a localized Gaussian “blob” of width [ = p, "2 Jocated at
the center of the simulation cell. We consider two loading
protocols: In a creeplike protocol we impose a constant external
stress Texy > 1 above the flow stress of the homogeneous
system and keep it fixed throughout the simulation, thus
implementing creeplike testing conditions. Alternatively, in a
strain-rate controlled protocol we monitor the strain rate which
is locally given by Eq. (1). We then continually adjust the
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external stress to maintain the spatial average of the strain
rate at a fixed, externally imposed value, (9;y) = Vext. The
quasistatic case is implemented by letting the imposed strain
rate go to zero (in practice: to a very small value).

III. DISCRETE STOCHASTIC MODEL

Our second model considers dislocation motion to be driven
by the same stress contributions as introduced in Sec. IIB.
However, the implementation of the dynamics differs radically.

We now consider a spatially and temporally discrete model
where space is discretized onto an Lx L lattice consisting
of NxN square unit cells of size dxd with d = L/N. The
simulation lattice is aligned with the x and y axes of a Cartesian
coordinate system where (x, y) - (i =x/d, j = y/d). The
discrete coordinate i marks the slip direction and j the direction
of the slip plane normal. Periodic boundary conditions are as-
sumed. Again we consider densities p* of positive and negative
dislocations; however, dislocation densities are now assumed
to be constant over each lattice cell and to be “quantized” in
units p; which are integer fractions p; = po/M of the overall
dislocation density pg. A discrete density quantum p, of sign
s € {1, —1} is henceforth denoted as a positive or negative
“dislocatom.” The dislocation state of lattice site (i, j) is then
characterized by the densities p;; = nj; pq and pij = nl_jpd or
equivalently by the respective dislocatom numbers n -. Again,
we consider the overall densities of positive and negatlve
dislocations and hence the total dislocatom numbers to be
conserved.

We evolve the quantized dislocation densities on the lattice
in discrete steps. Since all dependent and independent variables
of the problem can be expressed in terms of integer numbers,
we are dealing with a cellular automaton (CA) dynamics for
which we now specify the evolution rules.

A. Cellular automaton dynamics

The motion of dislocations is described as discrete shuffling
of dislocatoms between sites that are adjacent in the i direction.
The motion of positive and negative dislocatoms is controlled
by driving forces that are proportional to the same effective
stresses 7+ that govern dislocation transport in the continuum
model, with the only difference that these stresses (and also
the plastic strains) are now defined on the boundaries between
cells (i, j) and (i + 1, j) that are adjacent in the slip direction.
This implies that the lattice used for stress evaluation is shifted
with respect to the lattice used for dislocation density evolution
by d/2 along the direction of slip. Without loss of generality,
we denote as boundary (7, j) the boundary between cells (i, j)
and (i + 1, j).

Dislocatoms move across boundaries subject to the follow-
ing rules:

(1) Dislocatoms do not move across boundaries experienc-
ing zero effective stress.

(2) Among all boundaries experiencing nonzero effective
stress we determine, in each given time step, a critical boundary
and dislocatom sign defined as the boundary and sign for which
the effective stress has the largest absolute value:

(ims Jms Sm) 2 [T | = rlnf§|7,.;;. (13)

ImJ/m

Across this critical boundary, we move one dislocatom of
sign sy, in direction sp sgn(fi"}m ). In other words, positive
dislocatoms move to the right from site (i — i + 1) under a
positive stress and to the left from (i + 1 — i) under a negative
effective stress, while negative dislocatoms show the opposite
behavior. After a dislocatom has moved across a boundary, the
dislocatom numbers on both sites are adjusted accordingly.

(3) Motion of a dislocatom across a boundary changes the
strain associated with this boundary. If a dislocatom moves
from a site under a positive effective stress, then the strain y;;
on the crossed boundary is increased by p,bd. If the dislocatom
moves under a negative effective stress, the strain is decreased
by the same amount.

(4) Afteradislocatom has moved we recalculate all stresses
(for details see below) and determine the next critical boundary.

These rules implement a CA with extremal dynamics,
corresponding to a physical situation where the velocity of
dislocations increases with effective stress in a very abrupt
manner (e.g., an exponential law with a large exponent or a
very high power law), such that the dislocation with the highest
stress moves much faster than all others.

B. Calculation of stresses

The effective driving stresses lei are calculated from the
same equations as for the transport model, with some adjust-
ments for the discrete nature of the model and for the inclusion
of stochastic terms. The total and excess dislocation densities
are evaluated as p;; = ,od(nl?; +n;;) and k;j = ,od(n;; —n;;).
The external stress is constant throughout the system. Internal
stresses are evaluated according to Eq. (7) with the convolution
replaced by the discrete lattice sum. Back stresses and diffusion
stresses are evaluated from Egs. (9) and (10) with the spatial
derivatives replaced by the respective directional difference
quotients. The friction stress associated with the boundary
(i, j) is evaluated as

Kij +Kz 1,
) = anby/ay o (15 255 e, g

Pij + Pi+1,j

where §;; is a Gaussian-distributed random variable of average
1 and standard deviation o,. After a dislocatom move across
some boundary, a new value of this variable is assigned to
the boundary from the same distribution. This feature allows
the model to account for stress fluctuations arising from the
changes in local configurations of the discrete dislocations.
Setting o, = 0 makes Eq. (14) the direct discrete counterpart
of (12).

C. Initial conditions, boundary conditions, loading protocol

We impose periodic boundary conditions as in the con-
tinuum model. Initial conditions are constructed by placing
NxNxM/2 positive and an equal number of negative dis-
locatoms randomly on the simulation lattice sites. We use
two different types of loading protocol: (i) We impose a
constant stress as in the continuum model. (ii) Alternatively,
we increase, after an initial relaxation step, the stress precisely
to the value needed to create one critical boundary. We trace the
subsequent relaxation until no critical boundaries are left, and
repeat. This algorithm corresponds to a quasistatic (infinitely
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slow) increase of the external stress and produces a stress-strain
curve that approaches a horizontal asymptote corresponding to
the macroscopic flow stress. Note that in the CA, performing
constant-stress simulations does not change the patterns at all
since the sequence of dislocatom moves due to the extremal
dynamics is unchanged if one adds a spatially constant external
stress of arbitrary magnitude.

IV. RESULTS

A. Linear stability analysis of transport equations

A linear stability analysis (LSA) of the dislocation transport
equations in Sec. II has been performed by Groma et al. [12].
Here we repeat that analysis for the generic dislocation ve-
locity law given by Eq. (3). The results serve as reference
for comparison with the numerical investigation of the fully
nonlinear equations and with the results obtained from the
discrete stochastic model.

One considers a spatially homogeneous reference state
o7 = p~ = po/2 under external stress Ty, and investigates
the time evolution of infinitesimal perturbations around this
state in linear approximation. Without loss of generality, we
assume that 7.y is positive; results for negative shear stress
are equivalent but for a change in the sign of k. The effective
driving stress in the reference state is givenby 7+ = 7~ = 7.
Two cases need to be distinguished: The jammed case, Tox <
apb,/po, whence 7o =0 and the system trivially remains
stationary in the reference state, and the flowing case, 7ex; >
apub./po, where Ty = Texe — apb,/pg > 0. This is the case
which we investigate in the following. Because of the general
scaling invariance properties of dislocation systems, results
can be expressed in a generic form where all dislocation
densities are measured in units of C, = pp, all lengths in
units of C; = '0071/2, all stresses in units of C; = ub/p, all
strains in multiples of C,, = b,/p, and all times in units of
C, = (Moubz,oo76'"_l )~!. In the following we use these units
throughout.

We consider the evolution of fluctuations sk = §p™ — 8p~,
which characterizes the excess or geometrically necessary
dislocation density, and §p = §p* + §p~, which characterizes
inhomogeneous fluctuations of the total dislocation density.
The corresponding evolution equations read in scaled form

3,8p = —[%ax(b"ﬁ — 5T )+ '768x8/c],

38K = —[%@(57* +8T) + 768x8p], (15)
where Tg = Tex /ub./po — o and

. _Ys, _ .
8T = 28,0 A0, 8p + adk — D3, Sk + Tin(8K),

Y —%8,0 + A08p — adk — D8I + Tin (550),
(16)

where the long-range internal stress 7, follows from §x by
convolution with the dislocation shear stress field.

In Fourier space we get the following evolution equation
for the Fourier modes of the perturbations §p and é«:

e (% j
o] = e ) e 7
m | 8k —(L - 2)ik, —Dk2—T(k) o

where the factor T derives from the Fourier transform of the
dislocation shear stress field as

; ﬁ (18)
a(l—v) k*

The growth rates of fluctuations follow from the equation for
the eigenvalues of the characteristic equation of this linear
system as

T(k) = ik, t{ (k) =

lAi<k)
m
[(A+ D)2+ T (k)]
- 2
\/[(A + D)2 + T(k)]" —4k2{ A[DR2 + T (k)] — B}
+ 5 ,
(19)
where
B:(a+5)<5—5), (20)
m 2 m

which in the limits 7y — O (slow deformation) or m — o0
(rate-independent behavior) reduces to

B = > (21)
Positive eigenvalues, corresponding to growing perturbation
modes, exist if B > 0 which, in the two limits of slow
deformation or rate-independent behavior, is always fulfilled
provided the condition for plastic flow, 7o > 0, is met. In the
general case we find an unstable band of external stress values
o < Texe < a(m + 2)/2 over which spatially heterogeneous
perturbations of a homogeneous dislocation arrangement are
able to grow. Within the unstable regime the unstable modes
extend over a band of unstable wave vectors k fulfilling the
equation

ADIK* + AT (k) — B < 0. (22)

Perturbations of maximum amplification have the wave vector
k™ with k7™ = 0 and

12
14 /1 4 @D?

max __ _1/2 4AD

e = | 28— . @)

Hence, we expect the emerging patterns to be dominated by
heterogeneities in the x rather than y direction. The wavelength
is determined by the external stress level (parameter B) as well
as by the parameters A and D which characterize the range
of dislocation correlations as shown in Fig. 3. Two important
limiting cases are the limit of slow deformation, 7y — 0,
and the limit of rate independence, m — oo. In both limits,
B — o?/2 and hence the critical wave vector depends only
on the nondimensional parameters A and D that characterize

054110-6



INSTABILITY OF DISLOCATION FLUXES IN A SINGLE ...

PHYSICAL REVIEW B 98, 054110 (2018)

— p/m -

»t/m

Gaussian white noise
(1) =0, {)=0.1]

o N W

(=7, () =0.1]

o N W

s

oL N W
i;/
g/
=S
3 ——
==

=N W
=
==
—

00 100 200 300 400 500
T

— p /o ‘
Localized 'blob’

(1) =0, (4)=0.1]

3

2

1

0
(=1, () =0.1]

3

2

1

0

O, N W
|

SRl
c
—
_
—
S

1A
YAVAVAVAVAVAY, kA

300 400 500

O N W
\‘%ED
i;;
-
-
<
—
——
——

x

FIG. 1. Spatiotemporal evolution of dislocation density patterns for two different initial conditions; left: small Gaussian white noise
superimposed on a homogeneous density distribution, right: localized density fluctuation superimposed on a homogeneous distribution;

parameters A = 0.5, D = 0.4, ¢ = 0.3, T, = 1. 1.

the range of dislocation correlations in units of dislocation
spacings. This result implies that the dimensional pattern
wavelength, Ap.x = 27/ knax, 1S proportional to the MDS in the
reference state and inversely proportional to the corresponding
flow stress, in line with the similitude principle.

B. Simulations of the continuum transport equations
1. Scenarios of pattern growth

Given that LSA predicts the dominant unstable mode to
be associated with heterogeneities along the x but not the
y direction, we first investigate a one-dimensional scenario
where we impose homogeneity in the y direction, hence
ky = 0 by construction. In the x direction we use periodic
boundary conditions with period L = 500. We consider two
types of initial conditions, namely (i) a Gaussian white noise
and (ii) a small, localized dislocation density “blob” on top
of the homogeneous background (Fig. 1). The amplitudes
of the Fourier components of the perturbation are identical
in both cases; however, in the case of the localized “blob”
the phases are identical whereas for the white noise they
are random. Assuming a white noise perturbation leads to
spatially distributed growth of the patterns, whereas a localized
blob as initial condition leads to a correlated growth scenario
where a fully developed pattern emerges locally and then
spreads through propagation of an enveloping wave. Despite
the different growth dynamics, the fully developed patterns
resulting from initial conditions (i) and (ii) are very similar in
terms of morphology and wavelength.

Initially all Fourier modes of the perturbation have equal
amplitude in both cases. The time evolution of the Fourier

coefficients of the emergent patterns is shown in Fig. 2 (left) for
case (i); case (ii) shows a practically identical behavior. From
the initial growth rates of the discrete Fourier modes p(k,)
we deduce growth factors defined as A(k,) = Aln p(k,)/At.
Comparison with the analytical prediction of Eq. (19) shows
excellent agreement as illustrated in Fig. 2 (right). The wave-
lengths A of the fully developed spatial patterns, determined as
A = L/nmax where i,y is the number of density maxima along
the direction of the slip, match very closely (within 5%) the
predictions of linear stability analysis for the wavelength of the
mode with maximum amplification. This observation, which
holds throughout the parameter regime (Fig. 3), is remarkable
since the nonlinearities have clearly a strong influence on the
density distribution which is very different from a sinusoidal
wave.

0.02

o o Simulated
—0.04}| — Analytical o
0.0 0.2 0.4 0.6

T

FIG. 2. Left: Evolution of the Fourier modes p(k,) of the total
dislocation density p(x); right: growth rates as deduced from the
initial slope of the In |p(k,)| vs ¢ curves and analytical prediction
according to Eq. (19); parameters as in Fig. 1.
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FIG. 3. Pattern wavelength A as function of the model parameters,
left: A(A, D) values for D = 0.5 (squares), A = 0.5 (circles), and
A = D (stars), solid line: theoretical curve according to Eq. (23) (note
that this expression is symmetrical with respect to an exchange of A
and D), Tex = 1.1a; right: A(Tex, m) for A = 0.5 and D = 0.4 and
different values of stress and stress exponent, solid lines: theoretical
curves according to Eq. (23).

We then study the same patterning scenarios in two di-
mensions. In this case the emergent patterns have a stripelike
character where the system is near-homogeneous in the y
direction whereas the x dependency of the dislocation densities
is almost identical to the one-dimensional case. If we use
a Gaussian white noise as initial perturbation, embryonic
patterns start growing locally and then, in a first “synchro-
nization” stage, organize in the y direction to form parallel
walls. In a second “growth” stage the amplitude of these
wall like dislocation density modulations increases while the
once-established pattern remains in place (Fig. 4). If, on the
other hand, we start from a localized dislocation density “blob”
then an interesting scenario occurs (Fig. 5): The blob causes
positive and negative dislocations to pile up from both sides.
The long-range stresses of the double pile-up then lead to
growth of a double wall similar to a kink band in the y direction.
Finally, the double wall serves as the nucleus for a nonlinear
wave which spreads the pattern in the y direction as in the
one-dimensional case. Irrespective of the growth mode, the
wavelength and morphology of the patterns are almost identical
to the one-dimensional case.

Finally, Fig. 6 shows the Fourier spectrum of the emerging
dislocation density distribution. We use a logarithmic scale;
hence the color level can also be envisaged as an exponential

growth factor, enabling direct comparison with Fig. 6, top
left. It can be seen that the Fourier pattern of the develop-
ing pattern closely matches the growth predictions of linear
stability analysis also in 2D (Fig. 6, top right). At later stages,
nonlinear effects lead to growth also of initially damped short-
wavelength modes (Fig. 6, bottom). This is in close analogy
with the 1D observations shown in Fig. 2, left. Note that
the growth of damped modes concerns mainly harmonics in
x of the initial unstable mode, as evidenced by the periodic
striations of the Fourier patterns in Fig. 6, bottom.

2. Structure of the fully developed patterns

To elucidate the fully developed patterns, we refer for
simplicity of illustration to the 1D case, as the two-dimensional
patterns are homogeneous in the direction perpendicular to
the slip plane. We define averaged stresses per dislocation
as follows: the local flow stress is evaluated as the weighted
average of the local “friction stresses,” the local gradient
dependent stress T, is evaluated as the weighted sum of
back and diffusion stresses, and the local effective stress (the
effective driving force per dislocation) is the sum of all stresses
minus the flow stress. In nondimensional units we find

__pty e K
T o= —t t 2\//_)(1_; ’

0
trlh T Ak
Ty = Thack + P Taift TP Taiff _ __3 K+ __3)“0’
P op
Teff = Text T Tint + Tg — Tt (24)

The fully developed patterns shown in Fig. 7 consist of peri-
odic walls of high dislocation density separated by dislocation-
depleted channels. The increased dislocation density in the
walls increases the local flow stress 7y; the opposite happens
in the dislocation-depleted channels. This results in piling up
of positive dislocations on the left and of negative dislocations
on the right side of the walls. The resulting dislocation density
gradient-dependent stresses (in our model: diffusion and back
stresses) enhance the applied stress in the walls and reduce
it in the channels until a balance is established. The internal
stress Ty 1S everywhere zero whereas the effective stress
Tofr assumes a small positive value which, in load-controlled

3.0

- 1.5

<

2 0.0

S

=15
-3.0
120 =700 t—150 1.5
0.6 1.1

% 0.0 | 0.8%
'0-6 | 0.4
120120 20 0.0

FIG. 4. Spatiotemporal evolution of dislocation density patterns [total density p(r) and excess density « (r)] in two dimensions for small
Gaussian white noise superimposed on a homogeneous density distribution as initial condition; parameters as in Fig. 1.
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FIG. 5. Spatiotemporal evolution of dislocation density patterns [total density p(r) and excess density «(r)] in two dimensions for a
localized dislocation density “blob” superimposed on a homogeneous density distribution as initial condition; parameters as in Fig. 1.

deformation, precisely corresponds to the stress level needed
to maintain the imposed deformation rate. We note that the
task of balancing the flow-stress heterogeneity, which is in
the present model accomplished by the diffusion and back
stresses, may alternatively be accomplished in a 3D model by
line tension effects as considered in the model by Kratochvil
of dislocation patterning in cyclic deformation [27]. We note
that an equivalent role of line-tension and back-stress effects
was also discussed in different contexts; see the study of Forest
and Sedlacek on constrained plastic flow [28].

C. Simulations of the stochastic cellular automaton model

Simulations of the stochastic cellular automaton model
were conducted using a quasistatic stress increase protocol as
described in Sec. III C with the dislocatom size corresponding
to M = 16. The ensuing pattern formation is illustrated in
Fig. 8. We can see the emergence of alternating walls of positive

Analytical A Fourier transform of p 5
/4 0.02 /4 10
t =100, () = 10 -
/8 /8 10 =
/ 0.00 / <
] - & 10° =
<& <& =~
—0.02 o
_ _ -1
/8 /8 10 =
—0.04  —m/4 1072
Ry 0 T/8 m/d TAT—R/S 0 ms /4
ky
/4 Fourier trdnbfunn of p 102 . Fourier transform of p 102
8 ) 8 0t S
w/ < w/ )
= 0 = = 00 =
< = < =
_ 1 _ 1
/8 w0 s 0

-7 1072 1072

747r/477r/8 ].0 /8 w/4 7‘”44%/4771/8 ].(] /8 w/4

i i

FIG. 6. Top left: Analytical growth factor A as in Fig. 2; top right:
normalized Fourier pattern p(k, t) for t = 100C;, strain (y) = 10;
bottom: Fourier patterns p(k, t) for t = 150C;,, strain {y) = 15 and
t = 250C,, (y) = 19; parameters as in Fig. 1.

and negative dislocations which become more pronounced
with increasing strain.

The Fourier transform of the emergent patterns, taken
at different strains, points to a growth scenario that differs
substantially from that in the deterministic transport model.
While the overall symmetry of the Fourier pattern matches
the observations from the deterministic transport model and
the corresponding linear stability analysis results, Fig. 9
demonstrates that the dominant wavelength of the patterns
obtained from the CA shifts in the course of patterning from
shorter to longer wavelengths (smaller k). This may be a
feature of the short-wavelength noise that is inherent in the
CA dynamics: The deterministic transport dynamics leads to a
growth of the initially present spatial fluctuations that initially
follows the LSA predictions. The CA dynamics, by contrast,
continually adds spatiotemporal noise at the shortest possible

3 Text T Ty T Tt
3 2 N
21
2
® 0 4 \g
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N
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g LN VN
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x

FIG. 7. Stresses and dislocation densities in a fully developed
pattern; top: external stress, flow stress, and gradient-dependent stress
as defined in Eq. (24); center: densities p and « as used in our
computation; bottom: “geometrically necessary” density pgnp = |k |
and “statistically stored” density pssp = p — poND; parameters: @ =
0.3, A = D = 0.2, strain rate controlled deformation with y. =
0.01.
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FIG. 8. Spatiotemporal evolution of dislocation density patterns
[excess density « (r)] as obtained from the stochastic CA model using
a quasistatic loading protocol; parameters A = D = 0.1, « = 0.3.

scale wavelength, namely on the scale of a single simulation
cell. A second consequence of the “noisy” dynamics is that
the final patterns are much less clearly developed than in
the continuum model. While the Fourier transforms shown
in Fig. 9 have been averaged over multiple realizations to
eliminate the noise, this is unfortunately not possible for the
spatial patterns since a superposition of multiple realizations
would completely wash out the spatial features. If we reduce
the noise by refining the CA mesh and reducing the dislocatom
size accordingly, the results of the CA dynamics approach
those of the continuum model.

Analytical A Fourier transform of x, (v)

-1 o«
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FIG. 9. Top left: Analytical growth factor A according to Eq. (19)
at A = D = 0.5; top right: normalized Fourier patterns « (k, y) for
mean strain (y) = 1; bottom: Fourier patterns «(k, y) for mean
strains (y) = 4 and (y) = 16, the Fourier patterns have been averaged
over 100 realizations of the CA dynamics; cell size d = 2.

In agreement with the LSA the wavelength of the fully de-
veloped patterns increases with increasing A or D as illustrated
by the stars in Fig. 3. However, at larger A or D values the
characteristic wavelengths obtained are larger than is predicted
by the LDA. This can be attributed to the extremal dynamics
used in the CA model. Moreover, the patterns obtained from
the CA model are much more “noisy” than their deterministic
counterparts. This is evident, for instance, from the absence of
the higher-order “satellites” in the Fourier patterns of Fig. 9.

Repeating the simulations at constant external stress leads
to results that are virtually identical with those derived from
the quasistatic loading protocol. This is to be expected, since
it is in the nature of the extremal dynamics that the addition
of a constant stress, whatever its magnitude, does not change
the sequence of events dictated by the extremal rule. As a
consequence, the pattern wavelengths are stress independent:
Whatever the stress level, the fully developed patterns match
those obtained from the transport model in the limit 7oy —
aub./po whichrepresents the case of deformation at vanishing
rate. This limit actually represents the physically relevant case
since, in real patterning scenarios, the rate-dependent contribu-
tion to the flow stress is exceedingly small. For illustration, we
take typical parameters of Cu where My ~ 2x10* Pa—! s~!
(see Kubin and Canova [29]) and b = 2.54x107'° m and
assume a dislocation density po = 10'> m~2. A typical strain
rate of 1073 s~! then requires a stress on the order of 1 Pa
which is about 7 orders of magnitude below the typical level
of the dislocation interaction stresses; hence, the characteristic
deviation of the applied stress from the value Tex, = aub./p0
is expected to be negligible.

V. DISCUSSION AND CONCLUSIONS

Nonlinear simulations of a simple model of dislocation
density patterning show that the fully developed patterns
closely match the predictions derived from a simple linear
stability analysis. The patterns depend little on the dynamical
rules governing dislocation motion: Two different dynamic
models, one assuming stress dependent viscous dislocation
motion and the other an extremely jerky cellular automa-
ton evolution with extremal dynamics, produce qualitatively
similar results. Also, simulations of the viscous model for
different initial conditions show that the initial conditions,
while having appreciable influence on the transient behavior,
are practically immaterial to the fully developed pattern. The
final patterns are essentially governed by a quasistatic balance
of the different stress contributions entering the model; they
depend on a stress balance which makes dislocations rest in
metastable configurations, but not on the way the dislocations
move between such configurations. This provides some hints
as to why dislocation patterns are similar in pure and solute-
hardened fcc metals, or in fcc metals and ionic crystals with
KClI structure, where the dislocation velocity laws are surely
very different.

Looking at the balance of stresses involved we see three
different kinds of stresses, which only in their mutual interplay
can produce the observed patterning: First, we have an external
stress driving the dislocation system. This is essential: no
patterning can take place in the absence of plastic flow.
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Second, we have the stress contributions iy, Thack, and Tgisr
which derive from an energy functional comprising elastic and
defect energy contributions. These stresses are essential for
understanding the pattern morphology and wavelength; in par-
ticular, the wall-like morphology of the patterns stems from the
structure of the elastic energy functional and the corresponding
stress kernel governing tj,: Minimization of i, forces the
emergent walls to orient perpendicular to the slip plane. On the
other hand the pattern wavelength depends on the parameters
A and D which control the defect energy contribution to
the energy functional that gives rise to gradient-dependent
stress contributions. (Note also here the analogy with line
tension effects that also are a direct consequence of defect
energy—namely dislocation line energy—contributions). It is,
however, important to note that the internal energy related
stress contributions alone cannot explain pattern formation:
In fact, the patterning process depends crucially on a fourth
stress contribution which is dissipative in nature, namely
the friction stress t¢. Hence, the present patterning scenario
cannot be envisaged as “energetically driven.” In fact the
basic mechanism leading to instability can be understood
as a fundamental flux instability. To this end we envisage
the nonsigned dislocation flux in a homogeneous dislocation
system,

To = pv = Mobp(text — aptb/p)". (25)

Taken as a function of p, this flux increases for small p, reaches
amaximum, and then decreases towards zero when b ./p =
Text and the dislocation system gets jammed. The location of
the maximum is derived as

m

+2
Sanby/p=0.  (26)

Now we note that the instability condition B < 0, Eq. (20), can
be rewritten in dimensional variables as Tey — %(x ub./po <
0. Instability thus occurs whenever the system operates on
the descending branch of the J(p) curve: If an increase in
dislocation density decreases the local dislocation flux, then
more dislocations accumulate in such a location. This is the
“dynamic” patterning scenario of Nabarro [6], however, with
the twist that without accounting for the “energetic” stress
contributions it is impossible to understand the pattern wave-
length. We note that our observation—dislocation patterning
occurs if the system operates on the descending branch of
the J (p) curve—is equivalent to the observation reported by
Zhu et al. [25] that, under conditions of strain rate control,
dislocation patterning occurs in the regime where the flow
stress is an increasing function of dislocation density.

We come thus to the conclusion that the past discussion
about dislocation patterning may have been to some extent
marred by false dichotomies and misleading analogies. Dislo-
cation patterns are neither dynamic dissipative structures nor
is their formation driven by energy minimization. Rather, the
patterns emerge from the attempt of the dislocation system to
minimize a coarse-grained energy functional while driven by
an external stress and constantly encumbered by trapping into
local, “microscopic” energy minima corresponding to jammed
dislocation configurations [24,30]. On the coarse-grained scale
such jamming leads to a friction-like stress that increases with
increasing dislocation density, giving rise to a hydrodynamic

ajp/ap =0,

Text —

type of dislocation transport instability. Past analogies, be they
with spinodal decomposition or dynamic chemical waves, have
in our opinion not been very helpful to understanding this in-
terplay. Nevertheless the use of metaphors for conceptualizing
dislocation patterns has a long (if somewhat murky) tradition
and we cannot help coming up with a metaphor of our own:
We think that the emergence of dislocation patterns from a
hydrodynamic instability resembles the processes governing
the emergence of traffic jams. The idea that a flux of vehicles
that is a decreasing function of vehicle density is prone to
instability has been long known in traffic theory. Here we find
that the same instability scenario constitutes an intrinsic feature
of dislocation motion.

Of course, the model discussed here does not capture
all the features that are relevant to the morphology of real
dislocation patterns. Rather, it should be considered as a
maximally simplified model which strips the processes leading
to dislocation patterning down to the bare essentials. Similarly
to the Ising model in ferromagnetism that does not describe the
actual behavior of any real ferromagnet but captures essential
features of the ferromagnetic phase transition, we believe that
the present model, while not describing the detailed mor-
phology of any real dislocation pattern, captures the essential
mechanism leading to dislocation patterning. To corroborate
this conjecture we provide, in the Appendix, a discussion of
some generalized models which account for screw disloca-
tion motion, dislocation multiplication and annihilation, and
dynamics of curved dislocations. We demonstrate that the
inclusion of phenomenological terms describing dislocation
multiplication and annihilation does not change the instability
scenario: In the asymptotic limits of slow deformation or of
rate-independent behavior, these terms become irrelevant for
stability whereas in the general case, as we demonstrate for
some models proposed in the literature, they lead to only
very minor changes of the instability regime. We furthermore
demonstrate that the present instability scenario carries over to
models which describe motion of curved dislocations, and we
take a look at such a model to show why screw dislocations
do not form patterns. Further work is required to generalize
the present analysis to multiple slip systems, and of course
a large amount of effort is still needed to include all physi-
cally relevant details such as cross slip and climb processes,
dislocation reactions in multislip deformation, surface and
interface effects, lattice friction, and other factors that influence
the precise morphology of dislocation patterns observed in a
specific material and under specific deformation conditions.
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APPENDIX: GENERALIZATIONS

1. Dislocation multiplication and annihilation

Our basic patterning scenario assumes conserved disloca-
tion densities. In general, dislocations are created and annihi-
late, and both processes may affect patterning. In regions of
enhanced dislocation density, dislocation flow is impeded and,
as a consequence, dislocation multiplication may be inhibited.
Furthermore, increased dislocation density may facilitate dis-
location annihilation. It is thus plausible that both processes
counteract the growth of dislocation-dense clusters and hence
reduce the patterning tendency.

To assess this idea mathematically, we start out from the
fundamental transport equations in the form of Egs. (4) and
add generation-annihilation terms R » and R to the right-hand
side of these equations. To formulate these terms, we make the
following generic observations:

(1) Because of Burgers vector conservation, neither the
generation nor the annihilation of dislocations in the bulk
can change the local net Burgers vector. Thus the generation
or annihilation terms for excess (geometrically necessary)
dislocations must vanish in the bulk, 7~2K =0.

(2) Because of symmetry between positive and negative
dislocations, the generation term ﬁp(p, k) can contain only
even powers of k. This implies that the lowest-order «-
dependent contribution is quadratic and thus irrelevant in the
sense of linear stability analysis. For the purposes of linear
stability analysis we are thus allowed to envisage 7~€p as a
function of p only.

(3) Both the multiplication and the annihilation of disloca-
tions are consequences of their glide motion. We can therefore
write the generation-annihilation dynamics as

R, = Tp(p)P(p), (A)

where J, = pv = y /b is the flux function introduced in the
main paper and the function ®(p) characterizes the generation-
annihilation kinetics.

With these observations and notations, the generalized
transport equations become

dho(r,t) = —d(p vt — p v7) + T, (0)P(p) + O(x?),
dk(r,t) = —d(p v +p V7). (A2)

We now proceed to perform a linear stability analysis of these
equations. In the presence of generation and annihilation,
dislocation densities will in general reach a state of dynamic
equilibrium of density py such that ®(py) = 0. The corre-
sponding value of the dislocation velocity is vy, and the flux
function is Jy = povg. We take this state as our reference state.
The variation of the generation-annihilation terms around this
state is then given by Jo®'8p, where ' = P /dp|,,.

Using the same scaling as in the main paper, the equations
of evolution around the reference state read

38p = [%axaﬁ* —sT )+ Toaxax] —ToWsp,

3,8k = [%ax(aﬁ +8T )+ 768x5p:|, (A3)
where
N (A4)

The linear system changes to

8p —mAkZ — ToW'
U 5 | =

(ma + %)ikx |:8,0:|
(—%a + To)iks

—mDk> — T (k) |[5« ]
(AS)

It is immediately evident that the LSA matrix is negatively
definite in the short-wavelength limit ky — oo. The possibility
of instability can thus be investigated by checking for zeros
of the eigenvalues on the k, axis. Such zeros must fulfill the
equation

m*ADk} + m[AT (k) + DTo¥' — Blk* + TTo¥' < 0.
(A6)

As T =0 on the k, axis, a sufficient condition for the
existence of an unstable band of wave vectors is now given by
B — DTo¥’ > 0, which replaces the old condition B > 0. The
condition that the flux function J,(p) must possess negative
slope, Eq. (25), is thus replaced by the condition that this slope
must exceed a critical steepness. This is remarkable because,
in the limit of ¥ — 0, 7o — 0 whereas B goes to a positive
constant. Thus, if deformation is carried out at a sufficiently
low rate, instability is bound to occur whatever the kinetics
of multiplication and annihilation. The same is true in the
rate-independent limit m — oo.

To investigate in quantitative terms the question to which
extent the boundaries of the unstable regime are changed
by introducing multiplication and annihilation under condi-
tions away from these asymptotic limits, we need to specify
a multiplication-annihilation model. We study two models,
namely the well-known Kocks-Mecking model and a variant
which considers a different dislocation density dependence of
the multiplication term as proposed by Héahner and Zaiser [31].
Specifically,

B

Drm = B/P — YaP, PoKM = 2 (AT)
a
nt nt

Dz = — — yup,  Ponz = ot (AB)

Here, $ is a numerical parameter which can be understood as
a multiplication distance in units of the dislocation spacing, n
characterizes the fraction of mechanical work that is stored in
the form of dislocation line energy, and y, is an annihilation
cross section. With these relations we can write the parameters
U’ as

Wint = Yav/Poxmll — (Van/Poxn) /21, (A9)
Wiz = Ya/PoHZ- (A10)
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Experimental data indicate saturation dislocation densities of
the order of py &~ 10> m~2 and annihilation distances of the
order of y, = 1.6 nm for edge dislocations [32]. This leads to
the estimate that W’ < 0.025 for both models which implies
that any corrections to the extension of the unstable regime are
of the order of a few percent only. This consideration provides
a quantitative justification of our decision to study patterning
for the highly idealized conditions of a conserved dislocation
system.

2. Generalization to curved dislocations of general orientation

A major limitation of the present investigation is that it
considers straight and parallel dislocations only. For systems
of curved dislocations, one may formulate transport equations
which, similarly to those used in the present 2D models,
allow for coexistence of dislocations of multiple orientations
in the same volume element. The corresponding kinematic
evolution equations have been developed under the label
“continuum dislocation dynamics”’; see Hochrainer et al. [8],
Hochrainer [9], Monavari et al. [33], Monavari and Zaiser [34].
Here we present a generalization of the simplest CDD version
by allowing, in analogy with the 2D dynamics discussed in the
main paper, the velocity of dislocations to have both isotropic
and orientation dependent contributions, such that the scalar
velocity (the signed speed) of a dislocation with orientation
I is given by v(l) = v™ +v4 .1 = v™ + v¥/;. Note that while
v™ is still the mean velocity averaged over all orientations, the
directional velocity must now have a vectorial nature and the
corresponding contribution changes its sign if we change the
sign of the dislocation by replacing its line direction I with
—I. The asymmetry of the velocity is most pronounced for
dislocations parallel to the directional vector v¢. We consider
slip on a single slip system with the glide plane being the
xz plane of a Cartesian coordinate system and the Burgers
vector pointing in x direction. Curved dislocations may have
any direction within the glide plane and, accordingly, the
excess dislocation density is now described by a vector p(!
which points in the direction of the net dislocation orientation.
This vector is perpendicular to the gradient of slip, p1 =
(1/b)e - Vy = (1/b)g;;0;y, where € is the 2D Levi-Civita
tensor in the glide plane, that rotates a vector within the glide
plane counterclockwise by 90°. The total dislocation density is
still described by a scalar p which characterizes the line length
per unit volume irrespective of orientation. Because the motion
of curved dislocations perpendicular to their line direction
changes their lengths, an additional curvature variable g is
required in CDD. The so-called curvature density g gives
the average angular content per line length per volume. For
similarly oriented closed loops the integral of g yields the
number of loops. The named density variables, p, p(l), and
q, are the lowest-order terms of a list of higher-order fully
symmetric alignment tensors p®, p®, ... and ¢V, ¢, ....

For a given speed v(l) the evolution equations for
p,p", and ¢ may be obtained from Egs. (217)-(219) of
Hochrainer [9]. For the evolution of ¢ this requires consid-
eration of the so-called rotation speed ¢ defined on a higher-
dimensional configuration space. The rotation speed of a curve
segment is determined from a derivative of the speed along the
curve. In this, the directional dependence of the velocity v(l)

introduces besides spatial derivatives a curvature contribution
to ©. Eventually, the evolution equations for the lowest-order
CDD variables are obtained as

dp = 0;(v"eip; + U;f&jpkj) +v"q — U?Eijk,
i = —eij0; (V"0 + ngk)’
3;6] = —Bi(—vmqi — v?qsij + 8jvm,0ji + 8jv,f,ojki). (All)

In these evolution equations appear the components g;, p;;, and
pijk of further alignment tensors. In order to obtain a closed
system of equations, the higher-order terms may be expressed
in terms of the given variables by the use of closure assumptions
(cf. Monavari et al. [33], Hochrainer [9]).

In the sense of a linear stability analysis we now regard
the evolution of small perturbations of an initially homoge-
neous and isotropic dislocation arrangement. For such weakly
anisotropic arrangements we can use the following relations
(see Hochrainer [9] and Monavari et al. [33]):

qi = 0 pij,
pij = 3pdi; + 0(p}),
pije = 0(p)). (A12)

To make the analysis more transparent, we use a simplifi-
cation which, however, does not reduce the generality of our
stability considerations. Namely, we consider plane-wave-like
perturbations where the projection of the wave vector on the xz
plane has the direction e; L e,. Derivatives in this direction are
denoted as d; = e, - V, and the corresponding projected wave
vectorisk; = e;(k - ey). It then follows that the vector p can be
written as k€ - e; where « is the scalar GND density. Nonzero
Kk breaks the initial statistical isotropy of the system and defines
areference direction; hence, the directional velocity must have
the structure v¥ = vle - e;. With these notations and neglecting
terms of quadratic or higher order in the perturbations «, v,
the evolution equations take the form

dip = =0, (V™ + Lv?p) + v™g + v¥o,p,
d = —d,(pv™ + kv?),

dq = —3[0,(™d;p + v'q — pd,V™]. (A13)

It is instructive to compare these equations with those for a
2D system. The structure of the transport terms is in fact very
similar, with exception of a factor (1/2) in the equation for p
that stems from the fact that only half of the total dislocation
density is transported in the direction of e, (but all of the excess
density). However, additional generation terms appear in the
balance of p which relate to dislocation curvature and reflect
the fact that motion of curved dislocations generally changes
the line length per unit volume. Accordingly, an equation for
curvature density emerges, as the motion of dislocations in an
inhomogeneous velocity field may change their curvature.

‘We now need to define areference state for stability analysis.
A homogeneous reference state is given by p = pg, k = 0,
q = qo with the velocities v’ = vo, vg = 0. This state is no
longer stationary as expansion of curved loops continually
increases the reference density which evolves according to
d:po = qovo. This poses a conceptual problem, since pertur-
bations which grow less rapidly than the reference density can
hardly be taken to be indicators of patterning. The problem
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can however be resolved by scaling all variables as in the main
paper and accounting for the time dependence of the scaling
factor pyp. Hence we set p = p/po, & = k/po. Furthermore,
if we scale lengths in units of p~!/2 this imposes for ¢ the
scaling § = g/p>/?. The scaled variables fulfill in the spatially
homogeneous case the equations

0;0 = Togo — Golop,

3;/2 = —(iol)ol?,
2
8 = — q;vo ; (A14)

It can be seen that the time-dependent scaling introduces terms
which formally resemble a generation-annihilation dynamics
for p. The stationary solution of the scaled homogeneous
equationsis p = 1, & = g = 0. The evolution of perturbations
around this state is in linear approximation, in scaled variables
and dropping the tildes, given by

98p = —d, (vodk + $6v7) + vodq,
0;8k = —35(vodp + Sv™),
¥dq = —%(vodisp — 378v™),

(A15)

where we assume that vy depends on stress as in the main
paper: vy = 7". To facilitate comparison, we also consider
the additional stress contributions in the same form as in the
main paper by setting
o
S = m[—E(Sp + T (85) — Das&c],
Svd = m(—Ad;8p + adi). (A16)

The evolution of perturbations is then given, in Fourier space,
by the matrix equation

A2 7o To
a | % —2k “G )ik sy
o === §)iks —DKZ—=Thk) 0 |||,
) - . 8
q Yo 2)2 k1) + k2] o | L
(A17)

where the factor T is now evaluated by superimposing the
Fourier transforms of the shear stress fields of screw and edge

dislocations according to

1 Kk 1 k2
T0=ferg—p e T hmp (A18)

with the notations f, = kZ/k? and f, = k2/k?, kZ = k2 + k2,
and k* = k2 + k2 + k2.

Looking at the system of equations which govern linear
stability, we first consider the limit of quasistatic or rate-
independent deformation when 76 /m — 0. In this limit, the
equation for §g decouples from the equations for §p and d«k
and the system is then almost equivalent to the 2D system
studied previously. In this case, the existence and extension
of an unstable band of positive eigenvalues follows from a
condition identical to Eq. (22) with the only difference that B
is now replaced by the slightly modified expression

= 2)s-2)
m 2 m

which in the athermal rate independent limit yields the same
result as for the 2D case, B = o2 /4. Differences with respect
to the 2D case of straight parallel edge dislocations arise,
however, if we take the wave vector of the perturbation in
a direction other than the x direction. For instance, we may
consider perturbations in the z direction, corresponding to
patterning of screw dislocations, such that k = ke,. In this
case, T (k) = 1/(2w) and Eq. (22) may be difficult to fulfill
because the numerical value of B cannot exceed the value
o2 /2 =~ 0.05. To match the instability condition, we would
need to require A < wa? &~ 0.1; however, then the critical
wavelength becomes comparable to the MDS and the descrip-
tion of patterning in terms of dislocation density variations
becomes spurious. Hence, we conclude that, under single slip
conditions, pattern-forming instability of an arrangement of
screw dislocations is suppressed because such patterns would
induce long-range internal stresses which are absent or at least
significantly reduced in a structure of edge dislocation walls.
This is in line with the well-known observation that systems
of long parallel screw dislocations, which dominate plasticity
in low-temperature deformation of bcc metals, are homoge-
neously distributed and do not show appreciable patterning.
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