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Abstract We formulate a generic concept model for
the deformation of a locally disordered, macroscop-
ically homogeneous material which undergoes irre-
versible strain softeningduringplastic deformation.We
investigate the influence of the degree of microstruc-
tural heterogeneity and disorder on strain localization
(formation of a macroscopic shear band) in such mate-
rials. It is shown that increased microstructural het-
erogeneity delays strain localization and leads to an
increase of the plastic regime in themacroscopic stress–
strain curves. The evolving strain localization patterns
are characterized.

Keywords Fracture · Microstructures · Inhomoge-
neous material · Numerical algorithms · Probability
and statistics

1 Introduction

Strain softening, loosely defined as a decrease of load
carrying capability with increasing plastic deformation
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of a material, leads to strain localization (formation of
shear bands) which in turn may lead to catastrophic
failure. If the width of the shear band is small as com-
pared to the specimen dimensions, the macroscopic
strain associatedwith the localized deformationmay be
small and failure occurs immediately after the material
enters the softening regime. In materials where irre-
versible softening occurs shortly after yield, this may
lead to a brittle appearance of the stress strain curves
even though the failuremode is actually ductile. Amost
prominent example of this type of behavior aremetallic
glasses—a class of materials with potentially outstand-
ingmechanical properties (Ashby andGreer 2006, for a
recent overview of the mechanical behavior of metallic
glasses, see also Schuh et al. 2007) but whose appli-
cation is hindered by a propensity to fail shortly after
yield by catastrophic shear band formation. The soft-
ening mechanism is in this case most likely associated
with a shear-induced increase in free volume as orig-
inally proposed by Steif et al. (1982), though thermal
softening associated with localized, adiabatic heating
has been discussed as an alternative explanation, see
e.g. Wright et al. (2001). A significant literature has
been devoted to the question how the ductility of metal-
lic glasses can be enhanced by delaying the onset of
catastrophic shear localization. In this respect, numer-
ous strategies have been explored that all rely on intro-
ducing some degree of nanoscale microstructural het-
erogeneity into the material. These include introducing
a second interface phase (Adibi et al. 2013), embed-
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ding of nano-crystallites or isolated dendritic crystal-
lites into a glassy matrix (Das et al. 2005; Hofmann
et al. 2008; Xu et al. 2016), pre-straining along a differ-
ent deformation path (Zhou et al. 2014;Wu et al. 2015),
as well as micro-alloying to increase atomic-scale dis-
order by introducing quasi-point-defects (Qiao et al.
2016).

Metallic glasses are just one example of materials
which exhibit local structural disorder—in this case
down to the atomic scale. However, if one looks at
defect microstructures, even crystalline solids exhibit
(micro)structural disorder on scales well below the
scale of a typical macroscopic specimen. On even
larger scales,microstructural disorder is present in solid
foams. In all these materials, one may legitimately ask
how the macroscopic deformation behavior is influ-
enced by the microstructural disorder and the associ-
ated length scales—which in the examples given may
range from nanometers (for metallic glasses) up to mil-
limetres for solid foams. For the case of transient soft-
ening, as observed in compression of metallic foams,
it has been shown that increasing the microstructural
heterogeneity may actually lead to a more homoge-
neous distribution of deformation on the macroscopic
scale (Zaiser et al. 2013). In the present paper we
consider a generic model which accounts for hetero-
geneity and randomness in the material microstruc-
ture and microstructure evolution, in conjunction with
strain softening. The model builds upon the scalar
plasticity model of Zaiser and co-workers (Zaiser and
Moretti 2005; Zaiser and Aifantis 2006) which was
originally introduced for single-slip deformation of
crystals with disordered dislocationmicrostructure, but
has recently been used by many authors to model the
inception of shear bands in amorphous materials and
the associated avalanche phenomena (see e.g. Tala-
mali et al. 2012; Budrikis and Zapperi 2013; Sand-
feld et al. 2015; Lin et al. 2015). We generalize
this model to explicitly introduce a strain softening
mechanism. We first describe the model and then use
it to study how the simulated deformation behavior
depends on the degree ofmicrostructural disorder (scat-
ter of the local flow stresses). In particular we study
the strain localization process and the concomitant
stress strain curves, which demonstrate that increas-
ing the disorder can delay strain localization and thus
lead to a significant increase in macroscopic ductil-
ity.

2 The stochastic continuum plasticity model

The model was originally formulated for single slip
crystal plasticity. Accordingly, the plastic deformation
state is characterized by a single scalar shear strain vari-
able γ pl. Without loss of generality we then assume
the plastic strain tensor to be of the form ϵpl(r) =
γ pl (r)M where γ pl (r) is the local plastic strain field
and M =

(
ey ⊗ ex + ex ⊗ ey

)
/2. The incremental

dissipated work is given by dW diss = τdγ pl = σdϵpl

where the shear stress τ (r) := σxy (r).
In the present work we consider a 2D system where

an infinitely extended specimen mimicked by periodic
boundary conditions is, by remote boundary displace-
ments, subject to a pure shear stress τ ext in the xy plane.
This ’external’ stress superimposes on the ’internal’
shear stress which derives from solving the Eigenstress
problem associated with the inhomogeneous plastic
strain field ϵpl(r). The local shear stress acting on
a volume element at r , which provides the driving
force for plastic flow is then evaluated as τ loc (r) =
τ int (r)+ τ ext. For an infinite body, the solution of the
Eigenstress problem can be evaluated as the convolu-
tion of the plastic strain with an elastic Green’s func-
tionGE , τ int (r) =

(
GE ∗ γ pl) (r) (Zaiser andMoretti

2005). For details of the actual evaluation procedure see
Appendix.

The elastic domain is defined by the inequality

Φ(r) =
∣∣∣τ ext(r)+

(
GE ∗ γ pl

)
(r)

∣∣∣ − τ c(r) ! 0. (1)

The quantity Φ quantifies the difference between the
shear stress acting at a given location r and the local
yield stress τ c(r).As long as this quantity has anegative
value, the material behaves locally in an elastic man-
ner. Before specifying the evolution of plastic strain
which occurs once the inequality (1) is violated, and
the concomitant rules for assigning and evolving the
local yield threshold τ c(r), we first specify the imple-
mentation of the model on a two-dimensional discrete
lattice.

2.1 Discretisation and stress evaluation

The Eq. (1) is space-discretised on a 2D lattice with
square unit cell of area d2. The edges of the unit cell are
oriented along the x and y directions. The total system
is represented by a supercell of size d2(L × L) which
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is periodically continued in both x and y directions. To
each cell (i, j) where the integers i, j ∈ [1 . . . L] we
assign a single value of the local shear strain, the local
yield stress and the local stress. Where it is not noted
otherwise, L is taken to be a power of two: L = 2n .

The Green’s function used for computing the inter-
nal shear stress is denoted by GE (r) for the space-
continuous case and by GE

i, j = G(iex + jey) for
the space-discrete case; the indices (0, 0) correspond
to r = 0. Because of stress equilibrium, the condi-
tions

∫
GE (r)d2r = 0 must be fulfilled for the space-

continuous and
∑

i j G
E
i, j = 0 for the space-discrete

case. The internal stress acting in cell (i, j) is evaluated
as

τ inti, j (t) =
L∑

k,l=1

GE
k−i,l− jγ

pl
k,l(t). (2)

Here γ
pl
k,l is the plastic shear strain in the cell (k, l). The

calculation of the periodically continued stress kernel
GE

i, j is detailed in the Appendix.
The external stress is controlled by remote displace-

ments acting on the systemwhich impose a total (elastic
and plastic) shear strain γ tot. Since the average of all
internal stresses is by construction zero, stress equilib-
rium requires that

τ ext = µ
(
γ tot − γ pl

)
, γ pl = 1

L2

L∑

k,l=1

γ
pl
k,l , (3)

where µ is the shear modulus.

2.2 Stochastic flow rule

Plastic deformation is assumed to proceed in discrete,
localized events which occur whenever the inequality,
Eq. (1) is locally violated. If this is the case for any
site (k, l), we increase the plastic strain γ

pl
k,l at this site

instantaneously by

∆γ
pl
k,l = min

(
∆γ0,∆γ ∗

k,l

)
, ∆γ ∗

k,l = ∆γ0
τ intk,l + τ ext

∣∣∣GE
0,0

∣∣∣
.

(4)

where GE
0,0 = −2µ/ [π (1 − ν)] (see Appendix). This

means that the strain in increased by a value that sets

the local stress to zero if this value is less than ∆γ0,
or otherwise by ∆γ0. In this manner we ensure that
the increment dW diss of the locally dissipated work
is always positive as required by the second law of
thermodynamics.

Local structural disorder is taken into account in
terms of random variations of the local flow threshold
τ c. We assume that the system is statistically homo-
geneous and that the size of a cell is larger than the
spatial correlation range of themicrostructural disorder
that gives rise to local yield stress variations. Hence, the
local yield stresses are considered as independent, iden-
tically distributed randomvariables τ ck,l whichwe take
to be Weibull distributed with exponent β and mean
value τ c0 ; largerβ implies a smaller scatter of local yield
stresses, i.e., a lower degree of microstructural disorder
in the material. Independent values of τ ck,l are initially
assigned to all sites. Plasticity-induced changes in the
local flow threshold are taken into account by assigning,
after each local strain increment occurring at a site of
the simulation grid, to this site a new local yield stress.
Specifically, we draw a new value from the same distri-
bution with average τ c0 and multiply this with a strain
dependent factor F(γ pl

k,l) = 1 − f γ pl
k,l where f < 0

is a softening parameter (conversely, linear hardening
could be implemented by assuming negative f ).

2.3 Simulation protocol

We non-dimensionalize the model by measuring all
stresses in units of the mean flow threshold τ c0 , all
strains in units of τ c0 /µ (elastic strain needed to reach
the mean flow threshold, divided by the shear modu-
lus), and spatial coordinates in units of the cell size d.
The model behaviour is then, in addition to theWeibull
parameter β, controlled by a single numerical param-
eter I = |GE

0,0|∆γ0/τ
c
0 (henceforth: ‘coupling con-

stant’) which controls the magnitude of the internal-
stress re-distribution after a deformation event relative
to the average flow stress. In the following wemake the
simplifying assumption that ν = 0.353 in which case
I = µ∆γ0/τ

c
0 equals the scaled local strain increment.

The local stress reduction at the site of a unit deforma-
tion event is then I and the external stress reduction
associated with the same event is I/L2.

Simulations are performed as follows: we assign ini-
tial flow thresholds to all sites according to the pre-
scribedWeibull distribution with exponent β and mean
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value 1. We then determine the site with the lowest
threshold and increase the total strain γ tot such that
the concomitant stress increase as given by Eq. (3)
exactlymatches the threshold, triggering the first defor-
mation event. After the event, which is supposed to
occur instantaneously, we re-compute all stresseswhile
keeping γ tot fixed, evaluate the local values of the yield
thresholdΦk,l for all sites, and check whether there are
additional sites which become unstable (Φk,l > 0).
If yes we increase, still at fixed γ tot, the strain at the
unstable site with the largest value of Φk,l , thus imple-
menting an extremal dynamics. We repeat this until
there are no more unstable sites (the avalanche has ter-
minated). The plastic strain and the stress at this point
are evaluated from Eq. (3). We then determine again
the site with the smallest threshold, and increase γ tot

such that the concomitant stress increase as given by
Eq. (3) makes this site unstable and triggers the next
avalanche. We repeat this cycle of avalanche trigger-
ings until the local strain of at least one site reaches
the value γ

pl
k,l = 1/ f such that the strength of this site

becomes zero. This is tantamount to the nucleation of a
microcrack which we take as a signature of impending
system failure. The concomitant average plastic strain
defines the system failure strain γ

pl
f .

3 Results

Simulations were performed for Weibull shape param-
eters β = 1, 2, 4, and 8, coupling constants I = 0.125,
0.25, 0.5, and 1, and for system sizes L = 32, 64, 128,
256, and 512. In each case ensembles of 512 simu-
lations with statistically independent initial conditions
were performed. The softening parameter f was kept
fixed at f = 1/16.

3.1 Stress–strain curves

Average stress–strain curves were obtained by averag-
ing the external stress at a given deformation over the
simulations as shown in Fig. 1.

The curves exhibit three different regimes: an initial
quasi-elastic loading regime is followed by a transi-
tion to a plastic deformation regime where the stress
increases with strain (hardening regime). The elastic
and hardening regimes are system size independent.
The hardening regime is followed by a transition to a

Fig. 1 Stress–total strain curves for two different yield-stress
distributions (Weibull exponents β = 1 and β = 4) and different
system sizes; other parameters I = 1; f = 1/16

softening part where the stress decreases with macro-
scopic strain. The simulations are terminated once
microcrack nucleation occurs as indicated by a com-
plete loss of strength at one or more sites. The corre-
sponding failure strains are much below the expecta-
tion γ

pl
f = 16 for a homogeneous system, indicating

a significant degree of deformation localization. We
also observe that the softening regime is system size
dependent: The stress decrease occurs more rapidly
and failure occurs at lower strains in larger systems.
Such system size dependence again indicates some
kind of deformation localization.We therefore proceed
to investigate the strain patterns that emerge in the dif-
ferent deformation stages.

3.2 Patterns in the strain maps

Figure 2 illustrates the changes in the strain patterns that
occur during the softening regime. At the peak stress
before the onset of softening, deformation is macro-
scopically homogeneous but exhibits mesoscale pat-
terns in the formof numerous diffuse shear bandswhich
follow theplanes ofmaximumshear stress, here aligned
with the x and y directions. These patterns are more
pronounced with increasing degree of disorder. Note
that the peak stress is reached later in the more disor-
dered sample (top left graph in Fig. 2), hence the overall
strain is bigger.During the softening regimeweobserve
a qualitative change in the patterns as most of the addi-
tional strain accruing during the softening regime is
localized in a single shear band which also contains
the location where microcrack nucleation takes place.
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Fig. 2 Strain patterns at the highest external stress just before
the onset of softening (left) and at the end of the simulation
(right); β = 1 (top) and β = 4 (bottom); other parameters:
I = 1, f = 1/16, L = 256

This shear band is sharper and more pronounced in the
samplewith less disorder (bottom right graph in Fig. 2).

The formation of a localized shear band is in line
with the ideas of classical continuummechanics which
predicts localization to occur, in a system without
boundary constraints and under pure shear loading, at
the transition from strain hardening to strain soften-
ing regimes. To better characterize this behavior we
now seek to define a quantitative measure for the strain
localization process.

3.3 Deformation localisation

In order to quantify strain localisation we investi-
gate the spatial distribution of the incremental strain.
We divide the average stress–strain curve into n =
50 intervals, the kth interval is defined by γ pl ∈[
γ pl,k, γ pl,k+1) , γ pl,k = k

〈
γ
pl
f

〉
/n. The plastic

strain increase occurring at the site (i, j) during strain
interval k is denoted as γ

pl,k
i, j .

We now use that a shear band has a planar shape.
For any given planeP we can define a scalar measure
of distance which characterizes the distribution of the
incremental strain with respect to the plane. To this end
we denote the distance between site (i, j) and the plane
P as dPi, j . (Because of the periodic boundary condi-

tions used, we evaluate dPi, j as the minimum distance

between the site (i, j) and any of the periodic images
of P). We now define the strain-weighted average of
dPi, j as

[
dPk

]

γ
=

∑
i j γ

pl,k
i, j · dPi, j

∑
i j γ

pl,k
i, j

. (5)

For a completely homogeneous distribution of the plas-
tic strain increment, we have [dPk ]γ = L/4 for all
planes P . For a heterogeneous distribution we iden-
tify the plane for which [dPk ]γ has the smallest value
and define a localization parameter η as

ηk = 1 − 4
L
minP [dPk ]γ . (6)

This parameter takes the value ηk = 0 for a statis-
tically homogeneous distribution of the plastic strain
increment, and the value ηk = 1 if the incremental
strain is completely localized on a single plane.

It can be seen in Fig. 3 that in all simulations the
localization parameter η starts at η = 0 and then grad-
ually increases during the hardening regime. Immedi-
ately after the peak stress is reached and the system
enters the macroscopic softening regime, η increases
rapidly towards η = 1, indicating the localization of
deformation in a single shear band. The comparison of
the strain evolution of η and τ ext clearly demonstrates
the correlation. It is equally evident that an increasing
degree of disorder (decrease of the Weibull exponent
from β = 8 to β = 1), even though it leads to an ear-
lier onset of plastic flow, extends the hardening regime
to larger strains and delays the onset of deformation
localization. The role of the coupling constant I , which
reflects the magnitude of the local strain increment, is
more ambiguous: for small disorder, large values of
I promote localization whereas for large disorder, the
opposite is the case.

We now look at the distribution of incremental strain
around the final failure plane. This is shown in Fig. 4
which depicts shear band profiles for large disorder
(β = 1) and for small disorder (β = 8), recorded for
different values of the localization parameter η. The
width of the shear band is almost the same in both cases,
however, localization of deformation around the final
failure plane happens later in case of large disorder.
This looks strange at first glance, given that the curves
compare situations with equal value of η, however, the
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Fig. 3 Stress strain curves and strain evolution of the localization
parameter η for different degrees of disorder (Weibull parameter
β ∈ [8, 4, 2, 1]. The upper two figures correspond to I = 0.125,
the lower two ones to I = 1

reason is simple: In case of large disorder, deforma-
tion first localizes in a transient manner (i.e., on slip
planes that are in general not close to the final failure
plane) and localization on the final failure plane hap-
pens after extensive deformation activity has occurred
elsewhere. In case of small disorder, by contrast, defor-
mation localizes on the final failure plane almost from
the onset.

We note that the localization measure used here,
which measures localization with respect to a best-fit

Fig. 4 Evolution of the distribution of strain around the final
failure plane for Weibull parameters β = 1 (upper) and β = 8
(lower). Other parameters: I = 1, f = 1/16, L = 256

shear plane, is analogous to the one used by Lennartz-
Sassinek et al. (2014) for the analysis of strain localiza-
tion and failure processes in rock samples. This crite-
rion is quite different from other measures proposed in
the literature, in the sense that it accounts for the spatial
distribution of the heterogeneous deformation. If we
compare with the naive measure provided by the root-
mean-square deviation of the local from the average
plastic strain (see e.g. Cheng et al. 2009), it is evident
that the latter measure—which accounts for the magni-
tude of the scatter but not for its spatial distribution—
cannot distinguish between a single broad shear band
and numerous, spatially distributed narrow ones which
carry the same local strain. This distinction is, how-
ever, central to our argument (‘disorder is good for
you’) which states that a large degree of small-scale
microstructural heterogeneity increases heterogeneity
at the smallest scales but prevents, on the largest scale,
the emergence of heterogeneity in the form of a single
macroscopic shear band which leads to sample failure.
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Fig. 5 Mean strain at failure as a function of system size, for
different Weibull parameters; dashed lines fit curves γ f = c1 +
c2/L

3.4 Mean strain to failure

The beneficial effect of disorder on ductility is also
borne out when we consider the mean strain at fail-
ure. This strain is system size dependent and decreases
with increasing system size. This dependency can be
rationalized bymaking the simplifying assumption that
the system deforms homogeneously during the hard-
ening regime, accumulating a homogeneous strain γh ,
whereas all strain accruing during the subsequent soft-
ening regime is localized in a slip band of finite width
dβ . Failure occurs once the plastic strain in the band
reaches the value γ loc

f . Then the mean strain at failure
is γ f = γh + (γ loc

f − γh)(d/L). We can thus fit the
system size dependence as γ f = c1 + c2/L where the
parameter c1 defines the homogeneous strain γh which
is also the failure strain in the infinite system limit. This
strain is plotted in Fig. 6 as a function of the Weibull
exponent β. Again we see that larger microstructural
disorder leads to an increase in ductility of the strain
softening material. For large systems (L → ∞) the
increase is quite dramatic—between Weibull exponent
β = 8, corresponding to a coefficient of variation of
0.148, andWeibull exponent β = 1 (coefficient of vari-
ation 1), the strain to failure increases in this limit by a
factor of about 60.

3.5 A local criterion for shear band growth

Failure of a macroscopic system occurs once the first
macroscopic (system spanning) shear band forms and
deformation localizes there. However, embryonic shear

Fig. 6 Mean strain at failure as a function of the Weibull shape
parameter β, for different system sizes. The value for infinitely
large system size is obtained from the parameter c1 of the fit
curves in Fig. 5

bands are present already before the onset of softening
(Fig. 2). At this point we ask whether we can establish
a criterion which allows us to better understand the
conditions for the emergence of a macroscopic shear
band. To this end we assume a pre-existing shear band
of some extension and investigate its growth. The stress
concentration at the tip of a straight band with a width
of one cell can be estimated as

τtip =
∞∑

k=1

GE
k,0 ≈ 0.385GE

0,0 (7)

The band expands if this stress concentration trig-
gers a deformation event at one of the sites ahead of
either tip. The stress needed to activate a site is given
by ∆τ = −Φ (we might also call this the residual
strength of the site), and the probability that a ran-
domly chosen site is activated by a stress increment τ ∗

is P(∆τ < τ ∗). We now investigate the evolution of
the probability P(∆τ < τtip) (i.e, the probability that
an advance of a band triggers another advance straight
ahead) as a functionof strain. Figure 7 indicates that this
probability increases continually with increasing strain
until it reaches a level of about P(∆τ < τtip) ≈ 0.3
which does not depend on the model parameters (dis-
order parameter β, coupling constant I ). At this critical
value, P(∆τ < τtip) suddenly drops. This drop coin-
cides with the formation of a system spanning shear
bandwhere deformation localizes: the associated stress
drop reduces the value of P(∆τ < τtip) everywhere
except in the band itself where the local strain soften-
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(a)

(b)

(c)

(d)

Fig. 7 Evolution of the triggering probability P(∆τ < τtip) at
the tip of an incipient shear band. a I = 0.125, b I = 0.25, c
I = 0.5 and d I = 1

ing maintains it at the critical level for sustained shear
band operation.

Despite significant variations in the distributions
P(∆τ < τ ∗) which depend strongly on the disor-
der parameter β, we observe that the critical value of
P(∆τ < τtip) is quite universal. This leads us to the
conclusion that shear band growth is driven by pro-
cesses occurring at the tip of an incipient shear band,
and that it depends on the interaction of the shear band
tip with the local distribution of the residual strength
whether or not shear band growth can occur. Indeed, if
we account for the fact that shear bands may grow at
both tips, and that growth may not necessarily be con-
strained to expansion straight ahead but may occur via
sideways deflection (thus, at each tip theremay be three
sites available for continuing growth), we can estimate
that a critical probability of the order of 1/3 for trigger-
ing a site at the crack tip may be sufficient for sustained
growth of a shear band.

Thus our analysis leads us to envisaging shear band
formation as essentially a two-stage process: In a first
stage, local yielding and the concomitant stress re-
distribution lead to a system-wide re-shuffling of the
residual strength distribution in such a manner that the
triggering probability P(∆τ < τtip) at the tip of an
incipient shear band gradually increases. During this
stage, deformation is macroscopically homogeneous,
even though shear band nuclei are continuously form-
ing and getting again inactivated. The duration of this
latency stage depends on the degree of disorder and
increases with increasing disorder parameter β. As
soon as the triggering probability reaches a critical
value P(∆τ < τtip) ≈ 0.3, a transition to a second
stage occurs where the flow process is governed by the
rapid formation of a system-spanning shear bandwhere
deformation localizes. In large systems, this leads to
near-instantaneous failure.

It may be noted in passing that the residual strength
probability distribution P(∆τ < τ ∗), notably its
behavior near the edge of stability, ∆τ → 0, has
recently been conjectured by Lin et al. (2014, 2015)
to play a crucial role in the dynamics of similar models
as the present one butwithout softening. In these works
it is argued that the spatial organization of slip in shear
bands is largely irrelevant during the approach to fail-
ure, and that the non-local elastic kernel can be approxi-
mated by a random stress re-distribution in amean-field
model which by construction destroys any spatial cor-
relations. Our observations, by contrast, point to the
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importance of correlated shear band growth in control-
ling system stability as soon as some degree of soften-
ing is introduced into the model.

4 Discussion and conclusions

We studied the deformation and failure behavior of
microstructurally disordered model materials which
exhibit irreversible strain softening and therefore fail
by shear band formation. Contrary to the intuitive idea
that increased microstructural heterogeneity may facil-
itate shear band nucleation and therefore have a neg-
ative impact on deformability, we find a strong posi-
tive effect of increased heterogenity and randomness
on the deformation properties. Increased microstruc-
tural heterogeneity indeed leads to an earlier onset
of deformation in the form of diffuse shear bands—
an effect that is easily understood within the classical
paradigm of weakest-link statistics (for a discussion in
the plasticity context see e.g. Ispánovity et al. 2013).
However, the same heterogeneity prevents the spread-
ing of shear bands and their coalescence into a system
spanningmacro-shear-band. The earlier onset of defor-
mation is matched by an extended hardening regime,
associated with the elimination of weak regions from
the microstructure. This hardening can be envisaged
as a survival-bias-hardening (easily deformable con-
figurations are eliminated, stronger configurations sur-
vive) and becomes more pronounced with increasing
scatter in local strength. Only after the survival-bias-
hardening is exhausted, structural softening takes over
and promotes macroscopic deformation localization.
In line with classical concepts of continuum mechan-
ics of homogeneousmaterials, the onset ofmacroscopic
localization neatly coincides with the peak stress where
the system enters the softening regime of the stress
strain curve.

Our findings indicate that, in microstructurally dis-
ordered materials where ductility is limited by shear
band formation, it may be a good idea to increase
the degree of microstructural heterogeneity on the
nanoscale as such an increase results both in an increase
in strength and in a very significant increase in ductility.
In the context of metallic glasses, our findings match
well with ideas to increase the ductility of metallic
glasses by introducing a second interface phase (Adibi
et al. 2013) or by embedding nano-crystallites or iso-
lated dendritic crystallites into a glassy matrix (Das

et al. 2005; Hofmann et al. 2008)—ideas which are tan-
tamount to increasing the scatter of local deformation
properties within a generally disordered microstruc-
ture. From a computational point of view such ideas
have been until now mainly been studied by means
of molecular dynamics simulations which indeed indi-
cate that introduction of nanoscale heterogeneities such
as glass-glass interfaces can promote the nucleation of
multiple shear bands and thus mitigate against catas-
trophic shear localization in a single band, see in partic-
ular the work of Şopu et al. (2011), Albe et al. (2013).
Unfortunately such simulations can, owing to the lim-
ited spatial and temporal scales that can be reached in
MD simulations, not easily be carried to the level of
a direct investigation of macroscopic strain localiza-
tion phenomena. At the same time, MD simulations
can be used to parameterize mescoscopic models such
as the present one, as shown notably by Rodney (2009,
2011); Albaret et al. (2016). An important line of devel-
opment of the present work may consist in combining
the present mesoscale model with MD simulations to
obtain physically based parameters for the model for
bulk metallic glasses as well as for nanoglasses and
amorphous nanocomposite structures.

Of course, it is a well established idea that strong-
yet-ductile materials can be engineered by combin-
ing weak-but-ductile and strong-but-brittle compo-
nents into heterogeneous composite microstructures.
However, this is not what we are studying in the present
work: as manifest from the constitutive relation of our
model material, volume elements of different strength
are assumed to fail at the same local strain. Ifwe investi-
gate the evolution of the final, macroscopic shear band,
then we can see little difference between weakly disor-
dered and strongly disordered microstructures (Fig. 4).
Nevertheless, the overall deformation behavior is radi-
cally different in both cases, because enhanced disorder
leads to an extended regime of diffuse shear band for-
mation and delays the coalescence of local shear band
nuclei into a macroscopic shear band. To understand
this behavior it is in our opinion necessary to move
towards an understanding of the manner how fluctua-
tions emerge and extend across scales. This viewpoint
is corroborated by investigations of models similar to
the present one which demonstrate the emergence of
scale-free, system spanning correlations in the internal
stress and local strain patterns (Zaiser 2006; Kapetanou
et al. 2015). As a consequence of such correlations, the
emergent macroscopic materials behavior can neither
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be inferred from local statistics (e.g. usingweakest-link
arguments) nor can it be easily related to the properties
of a small, circumscribed representative volume ele-
ment. Thus, novel conceptual tools may be needed to
exploit the possibilities created for improvingmaterials
performance by exploiting the manner in which local
fluctuations in materials properties may not only influ-
ence, but qualitatively change the macroscopic behav-
ior of materials.
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Appendix

In our evaluation of internal stresses we use that the
evaluation of stresses in any plane strain deformation
problemcan bemapped onto the evaluation of the stress
field of a 2D dislocation arrangement consisting of
straight parallel edge dislocations with line direction
perpendicular to the considered plane. In particular, the
shear stress field σxy(r) =: τ (r) generated by a two
dimensional distribution of dislocations with Burgers
vector parallel to the x axis, line direction along the z
axis, and Burgers vector density α can be expressed as

τ (r) =
∫

τind
(
r − r ′)α

(
r ′) d2r ′ (8)

where τind is the shear stress field created by a disloca-
tion of unit Burgers vector length,

τind (r) =
µ

2π (1 − ν)

x
(
x2 − y2

)

(
x2 + y2

)2 . (9)

Due to the relation α = −∂xγ (r) (Groma et al. 2003),
the shear stress field can then be expressed in terms of
the shear strain field as

τ (r) = −
∫

τind
(
r − r ′) ∂xγ

(
r ′)d2r ′. (10)
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Fig. 8 In the elementary slip event, a cell is cut into four pieces
which are displaced according to the acting shear stress and then
glued back together. This cell is inserted back into the original
lattice and forced elastically to fit, generating an internal stress
field

By a partial integration one obtains

τ (r) =
∫

γ
(
r ′) ∂xτind

(
r − r ′) d2r ′. (11)

Here ∂xτind (r) = GE is the Green’s function which
allows to calculate the shear stress by convolution with
the strain.

We now need to adapt the above reasoning to a dis-
crete lattice system with periodic boundary conditions.
In doing so we aim at a correct representation on large
scales, and at a correct representation of the symmetries
of the Green’s function, but not at a faithful represen-
tation of the shearing process inside a single grid cell
(which cannot be represented anyway in a lattice based
simulation). Thus we calculate the stress and strain
fields generated by an elementary slip event in a cell
as follows (Fig. 8 illustrates the calculation.) The cell
under deformation is cut along the x and y direction.
The upper part is moved by a distance b along the x
direction and the right side is moved by b along the
y direction, according to the sign of the shear stress
acting on the cell. Then, the four parts are glued back
together. Next, an elastic deformation is applied which
transforms the cell back to its original shape so it fits
its original place in the sample. The cell is placed back
to its original position and the sample is elastically
relaxed. The average plastic strain generated by this
process in the cell is ∆γ pl = 2b/d.

The process is formally equivalent to adding four
edge dislocations with the respective virtual Burgers
vectors bex , bey , −bex , −bey at the centerpoints of
the right, top, left and bottom sides of the cell. Accord-
ingly, the stress field can be evaluated as the superposi-
tion of the stress fields of these four dislocations. Peri-
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Fig. 9 The stress field of a unit slip event located in the origin

in the units of
∣∣∣GE

0,0

∣∣∣, assuming periodic boundary conditions
with L = 32. Note the symmetry in the x and y directions and
the logarithmic color scale. In the upper right corner we show
a magnification for k ∈ [0, 2] , l ∈ [0, 2]

odic boundary conditions are implemented by adding
to the stress fields of the four dislocations those of
their periodic images which form an infinite lattice of
period L (for details of the method used for evaluat-
ing the lattice sum, see Bako et al. 2006). We evalu-
ate stresses at the cell centerpoints, hence, the stress
field induced by a elementary slip event ∆γ pl at the
centerpoint of the active cell is obtained from summa-
tion of the stress fields of the four edge dislocations
as GE

0,0∆γ pl = −2µ∆γ pl/ [π (1 − ν)] where µ is the
shear modulus and ν is Poisson’s ratio. The result is
shown in Fig. 9.

We emphasize that the use of dislocations to evaluate
internal stresses is, in our present context, a mere com-
putational device which allows us to treat the periodic
boundary conditions in a simple and efficient manner,
but which does not necessarily reflect the physical pro-
cesses which govern the elementary slip event ∆γ pl

(e.g., in the context of amorphous materials, this could
be a shear transformation which does not involve any
dislocations).
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