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Abstract
Plastic deformation of most crystalline materials is due to the motion of lattice
dislocations. Therefore, the simulation of the interaction and dynamics of these
defects has become state-of-the-art method to study work hardening, size
effects, creep and many other mechanical properties of metallic specimens. Lot
of efforts have been made to make the simulations realistic by including
specific dislocation mechanisms and the effect of free surfaces. However, less
attention has been devoted to the numerical scheme that is used to solve the
equations of motion. In this paper we propose a scheme that speeds up
simulations by several orders of magnitude. The scheme is implicit because
this type is the most efficient one for solving stiff equations that arise due to
the long-range nature of dislocation interactions. The numerical results show
that the method is not only faster than other approaches at the same numerical
precision, but it can also be efficiently applied even without dislocation
annihilation. The suggested method significantly increases the achievable
volume and/or duration of discrete dislocation dynamics simulations and can
be generalized for complex 2D and 3D simulations as well.

Keywords: dislocation dynamics, numerical simulation, implicit, efficient,
numerical method, integration, discrete dislocation dynamics

(Some figures may appear in colour only in the online journal)

1. Introduction

Although plastic deformation of crystalline materials is seemingly a smooth process on
macroscopic scales, on the microscopic level it is characterized by intermittent local strain
bursts [1, 2]. The reason for this behavior is that plastic deformation is the result of the motion
of individual dislocations. Due to their long-range stress fields and complex short-range
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interactions these line-like defects can entangle forming a rigid network of dislocation lines.
Upon external stress dislocations may locally disentangle and become mobile resulting in the
accumulation of plastic strain. This and many other processes involving collective dislocation
motion can be efficiently modeled by discrete dislocation dynamics (DDD) simulations [3].
They were successfully applied to various problems of materials science, such as describing
the role of multi-junctions [4], delivering a general picture of size effects [5] or to understand
the statistics of strain burst sizes [6], just to mention a few.

Several different kind of simulators are in use. The most important difference among
them is the dimension of the simulation cell. Three-dimensional (3D) approaches aim at
modeling the full 3D dislocation microstructure and its dynamics. Due to the topological
difficulties these simulations are numerically rather complex. Examples of such 3D DDD
simulations include ParaDiS [4], algorithm of Weygand [7], microMegas [8], and Parametric
Dislocation Dynamics [9]. These simulations are used when the role of specific 3D
mechanisms are investigated [10–12] or when one aims at a quantitative comparison with
experimental results [13, 14]. A much simpler representation of the dislocation systems is
delivered by two-dimensional (2D) simulations which only consider parallel straight dis-
locations. These are primarily used in cases when the physical consequences of long range
dislocation interactions are investigated and when large simulation volumes, large ensembles
for statistical averaging, longer timescales and/or higher numerical precision is required. Due
to the simplification mentioned above a quantitative agreement with experiments cannot be
expected, yet, these tools have been successfully applied to investigate, e.g. creep [15, 16],
dislocation avalanches [17–19] and patterning [20, 21] of dislocations. An intermediate class
is represented by 2.5D simulations, which are essentially 2D but with the inclusion of some
3D mechanisms, such as dislocation multiplication or dislocation pinning [22–28].

As it will be discussed in this paper the arising differential equation system that describes
the dynamics of dislocations or dislocation segments is stiff. In such cases explicit methods
are inefficient, because the achievable time-step is limited by the shortest timescale in the
system, which is determined by the shortest dislocation dipole. This typically leads to a very
slow propagation of the simulations even when the system is stationary. Nonetheless, most of
the simulators mentioned above employ explicit methods [23, 29–31]. This issue can be
solved by implicit schemes [30]. Sills et alshowed that with the help of the simple implicit
trapezoidal method and the Newton–Raphson nonlinear solver, in certain scenarios a speedup
is achievable compared to the default Heun-method of ParaDiS if a sparse matrix was used.
This was achieved by taking into account only short range elastic interactions in the Jacobian,
defined with a fixed limit on the distance [30]. Gardner et al applied diagonally implicit
Runge–Kutta methods and concluded that with high number of dislocation segments the gain
in the stepsize compared to explicit methods was not large enough to compensate for the
increase in the time needed to calculate one step [32]. Both of these studies were done using
ParaDiS or DDLab (which is the serial version of ParaDiS written in MATLAB).

In this paper we present an efficient implicit integration scheme that can speed up
simulations with several orders of magnitude while the numerical precision is the same or
even higher than in case of explicit methods. The proposed scheme is capable of handling
short dislocation dipoles efficiently that are responsible for the slowing down when using
explicit methods. Another important property of the proposed scheme is that it can be tuned
by a scale parameter which makes it possible to increase the efficiency of the simulator in
different regimes of activity.

The method is tested on 2D edge dislocation systems because it is conceptually one of
the simplest dislocation models. This simplicity makes it easier to compare the performance
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of different methods more accurately and precisely. However, the proposed method can be
applied in more complicated systems or in simulations with higher dimension as well.

The structure of the paper is as follows: first, the 2D dislocation model and its back-
ground is introduced in section 2. Then, in section 3 the numerical difficulties arising from the
properties of dislocation stress fields are discussed in detail followed by demonstrating the
difference in performance between an explicit and an implicit method on the case of a single
dislocation dipole. In section 4, the new numerical method is presented and it is also
explained how the previously highlighted features (better precision, larger stepsize, etc) can
be achieved. Then, a short insight is given into the actual implementation in section 5 fol-
lowed by the presentation of the numerical results on the efficiency in section 6. Section 7
presents a summary of the results and section 8 concludes the paper with an outlook on
possible applications of the new scheme.

2. Discrete dislocation dynamics

2.1. Model description

In the model considered, only straight and parallel edge dislocations are present with parallel
slip planes. This system is effectively 2D since it is enough to track the dislocation positions
on a plane perpendicular to the dislocation lines. Let the x axis of the 2D coordinate system be
parallel with the Burgers vector b of the dislocations. The mechanical shear stress field of an
individual dislocation in this case can be described with [33]

t
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p n
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b x x y

x y
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2 2

2 2 2
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where μ and ν are material dependent elastic parameters whereas x and y are the distances
from the dislocation along the corresponding axes.

For the motion of dislocations usually a linear velocity-force relationship is assumed.
This corresponds to overdamped dynamics and is argued to be valid due to strong phonon
drag acting on dislocations [33]. The equations of motion in this case are
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where B is the dislocation drag coefficient and the indices i and j refer to the N different
dislocations. Symbol s is equal to 1 or −1 depending on the direction of the Burgers vector.
The Burgers vector’s length b is the same for all dislocations. τext represents external loading
or any internal static stress field. For simplicity, in the current paper the focus is on the
integration scheme, so, τext=0 is considered, but the generalization to t ¹ 0ext is rather
straightforward. A square-shaped simulation area with periodic boundary conditions is
employed in order to mimic an infinite medium. It is noted, that periodic dislocation images
can be taken into account by using a modified stress field instead of τind [34]. This model is
not affected by the problem of conditional convergence, according to [35] neither constant
nor linear terms arise in such a model.

This model is one of the simplest representations of a complex dislocation network. Due
to its assumptions, it is incapable for investigating many deformation phenomena related to,
e.g. dislocation curvature or multiple slip. Its advantage is, on the other side, that it is
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conceptually much simpler than its 3D counterparts which makes numerical investigations
faster and more reliable leading to the possibility to study larger systems and larger statistical
ensembles at once with preserving high numerical precision. Another advantage is, opposed
to 3D simulators where the same simulation can lead to different results based on loading and
other factors [30, 32], that the results in this case are reproducible and consistent. Conse-
quently, several fundamental properties related to the long-range internal stresses of dis-
locations systems have already been successfully investigated with this model [36–40].

2.2. Dimensionless variables

In the rest of this paper, in accordance with the 1/r-type scale-free interaction τind, distance, stress
and time inside the simulation are measured in units of ρ−1/2, m r

p n-
b

2 1

1 2

( )
and p n

m r
- B

b

2 1
2

( ) , respectively,

where ρ=N/L2 is the total dislocation density and L is the linear size of the simulation area. This
is possible because, due to the absence of annihilation or other dislocation reactions with an
associated length parameter, there is no length scale in the system other than the system size and
average dislocation spacing. With this choice one does not have to specify the system size and/or
material-dependent parameters making the results more general.

2.3. Relaxation simulations

In the simulations we consider N dislocations with zero net Burgers vector, i.e. å == s 0i
N

i1 .
The size of the simulation cell in the dimensionless units is then ´N N . Both x and y
components of the initial coordinates of the dislocations are independent uniformly dis-
tributed random variables in the interval N0,[ ] (figure 1(a)). Then the equations of motion
(2, 3) are solved with zero external stress (τext=0). This leads to an initially rapid motion of
dislocations which later, due to the strong dissipation introduced by the overdamped
dynamics, slows down as the system gradually approaches an equilibrium state. During this
process strong spatial correlations in the dislocation coordinates build up, corresponding to
the build-up of low energy dislocation structures like dislocation dipoles and dislocation walls
(figures 1(b) and (c)) [36]. The relaxation itself is a slow, scale-free process, and the
relaxation time strongly increases with the number of dislocations considered [41], and so
does time needed to run the simulations.

3. Numerical difficulties

3.1. Long-range interactions

Due to the 1/r-type long-range stress field τind one cannot apply a cut-off in the mutual
interactions. So, all the terms in the sum of equation (2) have to be taken into account
irrespective of the relative distance of the dislocations. Introduction of a cut-off is known to
lead to the appearance of artificial dislocation patterns with a length scale proportional with
the cut-off radius [42].

The time complexity of every timestep is, therefore, N 2( ). In practice this means that if the
linear extension of a simulation cell size is doubled (i.e. the number of dislocations is increased by
a factor of 4) than computing a single timestep lasts 16 times longer. This extreme increase in
computational cost makes investigation of large configurations rather difficult.

One possible solution to overcome this difficulty is the fast multipole method first
introduced in 3D DDD simulations [43–45], then also used successfully in the present 2D set-
up [34, 46]. This method reduces the time complexity to approximately N Nln( ( )). In this
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paper we do not address this issue any further and will use the exact summation of
equation (2) in the simulations.

3.2. Stiff equations: limitations on time step

The previous section was about how to evaluate the sum in equation (2). Now we continue
with the numerical scheme that is needed to perform the integration of equation (2). The
average velocity of the dislocations can be used to monitor the activity of a system during a
simulation. In figure 1(d) the average velocity

Figure 1. Relaxation of an initially random dislocation configuration with N=256
dislocations. (a) The initial random configuration. (b) The final relaxed configuration.
(c) The relaxed configuration are characterized by spatial correlations. For instance, if
opposite sign dislocations get close to each other they form a dipole as illustrated in the
zoomed figure. (d) Average dislocation speed v (left scale, red color) is shown as a
function of simulation time tsim. The relaxation is characterized by strong velocity
fluctuations which eventually cease and the average velocity drops with 12 orders of
magnitude. The numerical stepsizes h (right scale) in case of an explicit 4.5th order
Runge–Kutta (RK45) and the weighted implicit trapezoid scheme (WITS) method are
also plotted. Whereas the timestep gradually increases during the relaxation for the
implicit scheme, for the explicit case it is influenced only by the shortest dislocation
dipole in the system. (It is noted, that the datapoints for the explicit method are
restricted to small tsim values because of the significantly increased costs of
computation.)
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is seen during the course of a representative simulation run with the full implicit weighted
trapezoid method (abbreviated as WITS, described later in section 4.3). As it is seen,
dislocation activity strongly fluctuates but gradually ceases as the system approaches
equilibrium. Although the average velocity has dropped in this case around 12 orders of
magnitude which is close to the precision of the used double data type, it does never reach
absolute zero due to some numerical noise always present in the system (the level of which
can be controlled by the tolerance parameter of the adaptive stepsize routine down to the used
architecture’s limit).

One of the most common methods for dislocation simulations is the 4.5th order explicit
Runge–Kutta scheme with adaptive stepsize control (abbreviated as RK45). This method is an
explicit scheme (thus, relatively easy to implement) and its popularity in solving a system of
ordinary differential equations is due to its high accuracy and relatively low computational
cost of performing a single timestep [47].

In figure 1(d) time stepsizes as a function of the simulation time for both mentioned
methods are also shown. In the beginning of the simulation the actual time stepsizes for the
RK45 method vary due to the adaptive stepsize control (being smaller in active periods and
larger in quiescent regions) but with the formation of a short dipole it quite quickly settles at a
quite low approximately constant value. At tsim≈0.6 an even shorter dipole forms, so the
timestep drops further and remains at the same value for the rest of the simulation. On the
other hand, the timestep of the implicit method increases throughout of the simulation run
with a total increase of more than 7 orders of magnitude. While it cannot be seen in the figure,
the timestep is strongly affected by the tolerance parameter: better precision (lower tolerance)
decreases the timestep and leads to longer simulation runs in real time.

The peculiar behavior of the timestep shown above is due to the stiffness of the governing
equations. This term applies to systems of ordinary differential equations where the timescales
of the parallel processes are on a broad scale. The timestep of explicit methods follows the
smallest timescale in the system, so for stiff systems the usage of implicit methods is advised.
In the case of dislocations the stiffness is due to the 1/r-type long-range interactions, since
relaxation is very fast for nearby dislocations and slow down with increasing mutual distance.
In the next section this will be quantified for a single dislocation dipole.

3.2.1. Demonstration on a dislocation dipole. To understand the basic reason for the stepsize
behavior observed above and the difference between the explicit and the implicit numerical
methods applied to the problem, a small dipole and its dynamics is considered. Such dipoles
form in a large number during the simulations, and ones with small distances have the highest

Figure 2. A dislocation dipole that is used for the stability analysis of the different
numerical methods. D represents the size of the dipole while x denotes the distance
from the equilibrium position.
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probability [48]. The considered setup can be seen in figure 2: the distance of the glide planes
is D, and one of the dislocations is slightly shifted from the equilibrium 45° position.

After the Taylor-expansion of equation (2) for this dipole, in the x D∣ ∣  limit one
concludes for the top dislocation that

= -x
D

x
1

. 5
2

( )

Here the dimensionless units of section 2.2 are used and it is noted that similar equation holds
for the bottom dislocation as well. The solution of this equation is an exponential relaxation to
x=0 with time constant τ=D2, that is, the relaxation timescale tends to zero quadratically
for small dislocation dipoles1.

The different numerical integration schemes that can be used to solve equation (5) can be
categorized as explicit or implicit methods. They can be sorted by inspecting the equation

-
=

+
+ -x x

h
F x x x t, , ,..., , 6

k k
k k k k

1
1 1( ) ( )

where x k approximates the solution x(t k) at t k=kh, and h is the timestep considered. If F
does not depend on x k+1 then the method is an explicit method. Typical examples are the 4th
order Runge–Kutta method or the simplest, forward Euler-method. If F is dependent upon
x k+1 it is an implicit method and usually a system of nonlinear equations has to be solved at
every time step. In the following we investigate how the simplest explicit (Forward Euler) and
implicit (Backward Euler) methods handle the above introduced perturbed dipole.

Forward Euler method The right-hand side of equation (5) is here evaluated at timestep
k, i.e. = -+ -F x x x t x D, , ,...,k k k k k1 1 2( ) . By rearranging equation (6) one obtains

= -+x x
h

D
1 . 7k k1

2
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⎝

⎞
⎠ ( )

It is seen, that if the time step h is larger than hcrit=2D2=2τ then instead of converging to
x=0 the dislocation will diverge in an oscillatory way (that is, >+x xk k1∣ ∣ ∣ ∣ for h>hcrit).
This happens irrespective of how close the dislocation is to the equilibrium position.

Backward Euler method In contrast, = -+ - +F x x x t x D, , ,...,k k k k k1 1 1 2( ) is assumed
when the backward Euler formula is used, and one gets

=
+

+x
x

1
. 8k i

k

h

D

1

2

( )

This means there is no limitation for h in terms of convergence, dislocations will approach the
equilibrium position x=0 independently how large h is (that is, <+x xk k1∣ ∣ ∣ ∣ for every h).
This means this scheme is stable for the given problem.

Comparison of the two methods The forward Euler method is thus seriously limited in
stepsize h when a dipole forms, no matter what else happens in the system. The maximum
allowed stepsize scales with the Dmin

2 , where Dmin is the characteristic distance of the shortest
dipole in the system. This is also true, when this particular dipole is already in equilibrium.
This can be observed in figure 1 for a more complicated explicit scheme. Hence, the common
solution in case of explicit methods is that under a certain threshold these dipoles are
annihilated. Although this process also happens in real crystals, in simulations in favor of
simulation speed often unrealistically large annihilation distances are applied that may lead to

1 Note, that throughout the paper the dimensionless units introduced in section 2.2 are used. For instance, equation

τ=D2 in normal units would read as t =m
p n-

Db

B2 1
2

2

( )
.
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physical side effects. In addition, even with annihilation the stepsize is still limited by the
smallest surviving dipole.

On the other hand, these kind of explicit methods have the advantage that there is no
need to solve systems of nonlinear equations which is usually necessary for implicit methods.
This is a serious drawback for the backward Euler formula, but near equilibrium,
theoretically, infinite stepsizes are possible which can compensate for the extra time but it
is not as efficient when the system is far from it. Consequently, an in between method would
be preferred.

4. The applied numerical scheme

4.1. Weighted implicit trapezoidal scheme (WITS)

We start by introducing the so-called WITS which is often referred to as θ-method [49]. When
solving the =x t f x t t,( ) ( ( ) ) ordinary differential equation this scheme with the notation of
equation (6) reads as

=
- + ++ -

+ +
F x x x t

d f x t d f x t
, , ,...,

1 , 1 ,

2
. 9k k k k

k k k k
1 1

1 1
( ) ( ) ( ) ( ) ( ) ( )

In the equation d is a weight factor that tunes the system between a backward Euler (d= 1)
and a forward Euler (d=−1) method.

The advantage of the introduction of the weight factor d is that if it is chosen properly it
can improve the efficiency of the integration. As it will be seen later, the symmetric trape-
zoidal rule (d= 0) is not optimal in situations where dislocations can jump over their equi-
librium positions, which may lead to spurious (though non-diverging) oscillations. This
nonphysical behavior can be removed by appropriate choice of d (see section 4.3) which
ensures energy dissipation. It is noted that a similar approach was applied in the parametric
dislocation dynamics simulator [50].

When applying the method to a dislocation system equation (6) with (9) has to be solved
for every dislocation. From now on, the lower index of a symbol will identify the particular
dislocation and upper index will mark the given time step. After introducing the function
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reorganizing the formula and inserting equation (2) one obtains
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which is a system of nonlinear equations that needs to be solved to get the coordinates +xi
k 1 of

the dislocations at the new timestep (the xi
k, and, thus, fi

k, values are known from the previous
timestep).
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4.2. Solving the nonlinear equation system

To solve equation (11) Newton–Raphson iteration method was chosen where we assume that
the solution is close to the actual position. Hence a few iterations (in our case 2) are expected
to deliver a close enough solution. If this was not the case the adaptive stepsize protocol will
correct the error by switching to smaller stepsize. The initial guess for the solution is the
coordinate vector from the previous time step

=+x x , 12i
k

i
k1, 0 ( )( )

and an iteration step takes the form

å - =
=

+ + + +x x J g , 13
j

N

j
k n

j
k n
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i
k n

1
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where +xi
k n1,( ) approximates +xi

k 1 as n increases and Jij
k is the Jacobian matrix and is

evaluated at timestep k. The latter reads as
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4.3. Selection of the weight factors

As it was pointed out previously, it is very important to select the right di values to avoid
oscillations of dislocations around equilibrium positions because that would violate con-
servation of energy in the system. Firstly, let us consider the case of a dipole of section 3.2.1.
Close to equilibrium the equation of motion is approximately

t
» -x x

1
, 15( )

where τ=D2. By applying the weighted implicit trapezoid rule on that equation and
requiring x(t)>0 for every t if x(0)>0, the ideal weight factor d can be obtained (for details
see the appendix) and reads as

=
+

t

d
1

1
. 16

h

2
( )

According to this formula if the timestep h=τ then d≈0, so one may use the second order
symmetric trapezoidal scheme. If, however, h?τ then d≈1 is obtained meaning that the
lower order backward Euler method must be used to avoid oscillations. This modification to
the scheme is not only advantageous numerically, but also motivated by physical arguments.
In the equation of motion equation (2) overdamped dynamics are assumed, so, the total
energy of the system may only decrease due to the strong dissipation. Any numerical
oscillation around an equilibrium position would, in fact, introduce energy to the system,
which could lead to unphysical phenomena. With the weight factors introduced this
possibility can be avoided in the case of a dipole (for details see the appendix).
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In order to generalize this approach to the system of N dislocations it is useful to define
matrix Akˆ as

t
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The di
k weights for each dislocation can be then determined as:
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For a short dipole this exactly reproduces equation (16). Finally, at a given timestep the
Jacobian matrix Jkˆ (according to equation (14)) can be computed as

d= +
+

J
d

A
1

2
, 19ij

k
ij

i
k

ij
k ( )

where dij is the Kronecker delta, which means that complexity of the method is not increased
with the introduction of the weight factors di

k.
It is noted, that for the weight factors di only the diagonal elements of the Jacobian are

used motivated by our result obtained for a dislocation dipole. In this case, however, due to
the existence of collective modes, oscillations are not fully avoided. As it will be shown in
section 6.3 this method still considerably reduces the level of oscillations.

4.4. Reducing the complexity of the implicit method

The time complexity of a single timestep for the explicit integration schemes in DDD
simulations is  N 2( ), since all the pair interactions have to be taken into account at every
timestep. Implicit methods, as explained above in detail, are expected to perform better due to
larger possible stepsizes that can be made with the same numerical precision. Yet, there is a
fundamental issue with such schemes that prevent them from being superior to explicit
schemes for large system sizes. Namely, the linear system of equation of equation (13) has to
be solved several times at every timestep. The complexity of such solution is N3( ) because
the Jacobian matrix is dense (its components, representing a dislocation pair, decay as r−2

with the mutual distance r between the dislocations) which makes this complexity also apply
for the whole scheme. This means that there is always a critical system size where the larger
obtainable stepsize compared to the explicit one cannot compensate for the longer runtime of
a single timestep.

In this section this problem is addressed by the introduction of a special cut-off function
during the calculation of the Jacobian matrix. The basic idea is that the stepsize constraint in
explicit systems are posed by the shortest dipoles in the system. So, by considering only these
short dipoles in an implicit manner would already increase significantly the possible stepsize,
similarly to the annihilation procedure applied for explicit schemes. We, therefore, define the
cut-off function as

=
+ <

- + -c x y
x y r

,
1, if ,

exp , else,
20
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where rc is a cut-off parameter setting a lengthscale. With this the Jacobian reads as

å t
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The exponentially decaying function c makes the values of the Jacobian at a certain distance
smaller than the floating-point precision. In the present case if the result of the function c is
less than 10−16 the corresponding element is replaced by zero. Consequently, the Jacobian
becomes a sparse matrix. It can be easily seen that number of non-zero elements is
approximately Na, where a does only depend on rc as long as =r L Nc  holds. To solve a
system of equations which is described by a sparse matrix is significantly faster than that of a
dense matrix with complexity under  N 2( ) [51], so the complexity of the whole method
remains N 2( ) (since the computation of pair interactions is still necessary at every timestep)
just like in case of the explicit methods. As such, with the introduction of the cut-off rc, the
performance ratio between the WITS and explicit methods is not expected to depend on the
number of simulated dislocations.

A similar method was used in [30], where elastic interactions between dislocation seg-
ments were only considered if they were closer than a specified length parameter (a hard
limit), but the lack of continuity in the derivative can cause performance drop because the
Newton–Raphson iteration method may not converge if the root is close to or at the
discontinuity.

It is clear, that by introducing the cut-off function an artificial analytical error appears in
the calculation. Since only the Jacobian is influenced by this modification the guesses of the
Newton–Raphson method are affected during the solution and the results of the nonlinear
equations become less precise. This will not result in systematic error since the adaptive
stepsize control (see below) monitors the introduced error and recomputes a step with
decreased timestep if necessary.

To elaborate further on this point it is noted that if the cut-off parameter rc is 0 the
method becomes exactly an explicit method (in particular, with two iteration cycles inside the
Newton–Raphson method it becomes the explicit predictor-corrector method), while if rc
approaches infinity it becomes a fully implicit method. So this rc can be used to tune the
scheme between explicit and implicit. Typically those dipoles (or dislocation pairs in general)
are considered implicitly where dislocations are closer than rc.

To summarize the above statements, two control parameters are present in the scheme:
the weight factors di which are fixed by the actual configuration of a dislocation system at a
given time and the cut-off distance rc which can be selected at any given timepoint differently
and is not restricted physically.

4.5. Adaptive stepsize control

A simple algorithm was used to control the precision of the solution described by the fol-
lowing procedure: With a given h stepsize a step was calculated, after that the same timepoint
from the original timepoint was reached by two h

2
sized steps. The difference between the

coordinates of the dislocations at t+h was calculated between the two, the largest absolute
value of these differences is called the error ε. This is required to be under a given limit εmax

(tolerance). If this condition is not fulfilled the results are marked as failed and need to be
recalculated. Otherwise, the result from the two smaller steps is stored at the new t+h
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timepoint. The new stepsize is determined by the following equation in both cases:

e
=

¹e
eh

h

h

0.9 min 2, , if 0

2 , else.
22new

max⎧⎨⎩
· ( )

( )

5. Implementation

The method described above was implemented in c++ in a strictly non-parallel fashion, but
the scheme can be parallelized in an efficient manner and ported to GPU as well. To solve the
arising, previously described linear equation systems, the UMFPACK library [52] was used
which is used in MATLAB as well to solve systems of linear equations described by a sparse
matrix.

During the implementation special care was taken to store the Jacobian directly in sparse
format to avoid unnecessary storage operations. This is very efficient if the matrix is indeed
sparse, but if it is not the case (e.g. a cut-off is not applied or it is comparable to the system
size) it comes with an overhead during element lookup. Hence, with the fully implicit method
( = ¥rc ) faster results are possible with a storage scheme optimized for dense matrices.

The shear stress field of a dislocation was precalculated with periodic boundary condi-
tions with good resolution on a grid [34]. Near the origin the exact value of equation (1) was
calculated but for greater distances linear interpolation between the precalculated values was
performed. The ∂x τind field needed for the Jacobian was evaluated in a similar manner. This
approach outperforms the image based field calculation in case of single thread computing on
our available hardware.

A version of the implementation is available on github under GNU General Public
License v3.0: https://github.com/pgabor/sdddst.

6. Numerical results

6.1. Effect of the cut-off parameter on the denseness of the Jacobian

As it was described in section 4.4 the cut-off parameter reduces the complexity of the problem
by calculating the elements of the Jacobian only where the distance between two dislocations
is under a certain threshold, thus, the Jacobian matrix becomes a sparse one. In order to
quantify its sparseness, we generated random dislocation configurations and the Jacobians
were calculated for each one with different cut-off parameters. The actual number of the
different configurations are summarized in table 1.

Table 1.Number of different dislocation configurations for each dislocation system size
for the density measurement of the Jacobian.

Number of dislocations N Number of configurations

64 10 000
256 5000
1024 2000
4096 1000
16 384 100
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The results can be seen in figure 3 where n denotes the number of non-zero elements in
the N×N sized Jacobian. As explained above in section 4.4 the number of non-zero ele-
ments is approximately n=Na, where a is the average number of non-zero elements in a
row. The latter is obviously proportional with the number of dislocations where the cut-off
function c returns a non-zero value, so, µa rc

2. This leads to the result µn Nrc
2, which can be

clearly observed in figure 3. There are two limits to this behavior: (i) for small rc values n
tends to N, since the diagonal elements do not vanish even for rc=0 (and one arrives at an
explicit method as explained previously) and (ii) for large rc values all matrix elements
become non-zero, so n saturates at N2.

These results clearly show that with the right choice of rc a sparse matrix can be obtained
that with increasing N becomes even sparser. Hence, the complexity may go below N 2( ) to
solve the linear equation system. In the next section we compare the runtime and the achieved
stepsize for different cut-off parameters for dislocation systems of various sizes.

6.2. Effect of the cut-off parameter on the runtime of the simulations

The relaxation of different initially random dislocation systems was performed with 1000
realizations for N=256 dislocations where the tolerance was 1.6× 10−5 and with 500
realizations for N=1024 dislocations with 3.2× 10−5 as maximal tolerance. Different rc
parameters were used but rc was kept fixed during every simulation run. In each case the spent
wallclock time (Δtreal) and the achieved stepsize (h) was measured between every successful
subsequent simulation step and the actual total simulation time (tsim) was also recorded2. The
resulting data was sampled on an equidistant interval on logarithmic scale and the corresp-
onding data were averaged for the different realizations (same dislocation number N and
parameter rc). If no exact datapoint has been found, linear interpolation was used between the
two closest ones. The results are shown in figures 4(a) and (b) for the N=256 and N=1024
case, respectively.

According to the figures, in line with the expectations, Δtreal increases significantly with
increasing cut-off rc. In addition, it hardly changes during the course of the relaxation. This
means that the sparseness of the Jacobian is nearly constant so it is not much affected by the

Figure 3. The ratio of the non-zero elements in the Jacobian matrix for different system
sizes as a function off the cut-off distance rc. n stands for the number of the non-zero
elements and N is the number of dislocations in the system.

2 It is noted, that rc, h and tsim are dimensionless units as introduced in section 2.2, wheres wallclock time Δtreal is
measured in seconds.

Modelling Simul. Mater. Sci. Eng. 28 (2020) 035013 G Péterffy and P D Ispánovity

13



formation of local correlated configurations seen in figures 1(b) and (c). This also implies that
the results of the previous section conducted for random dislocation ensembles remain
approximately valid even after relaxation. On the other hand, the achieved average timestep h
increases significantly as the final equilibrium configuration is approached. More specifically,
in the first part of the relaxation, where the system exhibits the largest activity, the achieved
stepsize does not depend on rc for the values considered. However, as the activity ceases, the
timesteps saturate at values that increase significantly with rc and even seemingly diverge
for = ¥rc .

Based on the previous observations the efficiency, defined as the simulation time advance
under unit wallclock time, i.e. h/Δtreal, was also calculated for both system sizes. According
to the plots of figure 5 at the beginning in the active regime, due to the smaller computational
cost, the efficiency is better for small rc values. However, as the system gets closer to

Figure 4. Dependence of the stepsize (h) and the spent wallclock time (Δtreal) between
to successful timesteps as a function of the simulation time (tsim) for different rc values
and (a) N=256 dislocations and (b) N=1024 dislocations.
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equilibrium a saturation in efficiency is seen and here the efficiency gets better for larger rc
due to the increased timestep. The efficiency without a cut-off ( = ¥rc ) seems to diverge in
equilibrium.

Every considered choice of rc leads to a significant decrease in total runtime compared to
explicit methods. As seen in figure 5, smaller rc values are more favorable in active (small
tsim) regions and larger ones gradually become more efficient as activity ceases (tsim
increases). It is interesting to note, that for N=1024 dislocations the choice of rc=1 is
never the most efficient. The reason behind this behavior turned out to be that at this sparsity

Figure 5. The efficiency h/Δtreal of the new method for different rc values as a function
of the simulation time tsim for (a) N=256 and (b) N=1024 dislocations. The left
panel plots the whole simulation time interval while the right one magnifies the part
where the curves cross each other.
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level (approx. 20% according to figure 3) the used linear solver (UMFPack) started to use a
different kind of strategy than for sparser cases. So, such details of the applied algorithms may
also need to be taken into account for choosing the appropriate value for parameter rc.

6.3. The importance of weighting

In order to decrease numerical oscillations around the equilibrium position of dislocations, an
effect that violates conservation of energy in this system, the WITS was introduced in
section 4.1. To demonstrate the advantage of this scheme relaxation simulations were per-
formed with the same original dislocation configuration of N=1024 dislocations with the
weighted and with the symmetric (i.e. di=0 for all dislocations) trapezoidal scheme. The
cut-off was set to rc=0.25 in both cases. According to the average velocity-time profiles
seen in figure 6(a) there is no noticeable difference in the active regime, so, the motion of the
dislocations is identical in the two cases. However, when motion stops and only numerical
noise is seen in the final regime the level of noise is more than an order of magnitude lower in
the case of the weighted scheme. This better performance does not require higher compu-
tational cost as seen in figure 6(b), where the efficiency of the two methods, defined above,
are compared.

It is noted that further decrease of the numerical noise is possible with increasing the cut-
off parameter rc. As mentioned before, with the fully implicit method ( = ¥rc ) the numerical
noise can be decreased to the floating point precision but with the cost of significantly higher
computational time of a single timestep. With a finite value of rc the simulation stepsize h will
converge to a finite value in equilibrium (see figure 4), signaling the presence of some
numerical noise. The fact that the WITS scheme is able to decrease significantly this noise
with preserving the same rc value (and, at the same time, not increasing the computational

Figure 6. (a) The average dislocation speed as a function of simulation time with the
implicit trapezoidal scheme with and without weighting with rc=0.25 and N=1024.
(b) The corresponding efficiency.
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cost of a single timestep) proves its advantageous properties compared to the traditional
symmetric trapezoidal scheme.

6.4. Comparison with an explicit method

In this section the performance of the WITS method described above and an efficient 4.5th
order Runge–Kutta (RK45) explicit scheme are compared. As it was mentioned above,
annihilation is usually introduced in RK45 with a prescribed threshold distance to increase the
efficiency. To be able to analytically compare the two methods annihilation was not per-
formed with RK45, instead, 1000 random dislocation configurations with 256 dislocations
were created and the one with the highest minimal possible dipole size was chosen as the
starting configuration. During the relaxation the smallest dipole formed had a distance of
1.9×10−3 in dimensionless coordinates, that is, approx.0.2% of the average dislocation
spacing. Assuming, for instance, 1012 m−2 as statistically stored dislocation density, this
distance would be 2 nm, which is certainly above the annihilation distance at small tem-
peratures. Therefore, in a such a scenario, introducing annihilation with realistic parameters
would not speed up the simulation at all.

The average velocity versustime plots are plotted in figure 7 demonstrating that the
motion of the dislocations is identical with the different methods. For the WITS method
rc=0.5 was chosen. It is noted that to achieve this overlap a significantly smaller tolerance
parameter had to be set for explicit method than for implicit (1.6× 10−9 and 1.6× 10−5,
respectively ). Further decrease of the tolerance parameter did not affect the relaxation curves
of figure 7.

The simulation runtime is remarkably different for the two methods, as shown in figure 8.
The total runtime needed to reach tsim=614.4 (at the time of the termination of the RK45
simulation, this was its latest recorded entry) is plotted for the RK45 and the WITS method.
Whereas to finish the simulations the RK45 needed more that 60 d it took only between 5 and
40 min for the WITS depending on the parameter rc.

Figure 7. Comparison of average speed v obtained by relaxing the same dislocation
configuration containing N=256 dislocations with the 4.5th order explicit Runge–
Kutta (RK45) method without dislocation annihilation and 1.6× 10−9 as tolerance and
the WITS implicit method introduced in this paper with 1.6× 10−5 tolerance and cut-
off parameter rc=0.5. There are fewer datapoints in the figure for the RK45 method
because it recorded the data at fixed intervals of approx.Δtsim≈2.5, whereas WITS
recorded data after every successful simulation step.

Modelling Simul. Mater. Sci. Eng. 28 (2020) 035013 G Péterffy and P D Ispánovity

17



7. Summary

DDD simulations play a central role in today’s computational materials research as they can
be used to model plastic deformation in crystalline materials without major approximations or
assumptions in most cases. Unfortunately its application is strongly limited in achievable
sample size (typically few microns) and duration (typically few microseconds) because of the
long-range nature of stress fields individual dislocations create. These stress fields do not only
decay slowly at far distances but also diverge at the core of the dislocation. As described in
this paper these features make the equations of motion of the dislocations a stiff set of
differential equations. So far mostly explicit schemes were employed in DDD simulations
where strong upper limit applies to the achievable timestep even in equilibrium. In particular,
the maximum possible timestep is basically determined by the smallest dislocation dipole in
the system even if the dipole is in its equilibrium, stationary state. To weaken this constraint
dislocation annihilation is usually introduced, where the smallest dipoles are removed from
the system thus increasing the stepsize.

Since these type of stiff equations can generally be more efficiently solved with implicit
schemes, in this paper a novel implicit method was introduced with adaptive stepsize control
to solve the differential equations governing the motion of dislocations. A weighted trape-
zoidal scheme was employed with specific weight factors in order to decrease oscillations
around equilibrium and resulting numerical noise. A cut-off parameter rc was also introduced
in the Jacobain matrix with the following properties.

• At = ¥rc (that is, without using the cut-off functions) the numerical noise can be
decreased down to floating point precision and the simulation timestep at equilibrium can
practically diverge. These optimal properties are somewhat flawed by an increased
computational cost of a single timestep because the Jacobian matrix is dense due to the
long-range nature of interactions. In fact, the complexity of computing a single timestep is
larger than that of the explicit methods (being  N3( ) instead of  N 2( )), so for large

Figure 8. (a) The overall spent wallclock time (treal) needed to reach a simulation
timepoint (tsim) for different methods (RK45 and WITS) and different cut-off
parameters rc in the case of WITS. At every choice of rc WITS performs significantly
better than the explicit RK45. (b) Overall spent wallclock time as a function of the cut-
off parameter rc to reach tsim=614.4 where we terminated the RK45 simulation after
approximately two months of runtime. rc=0 corresponds to the RK45 data. In case of
= ¥rc no cut-off function was used for the calculation of the Jacobian.
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systems the implicit method with = ¥rc only close to equilibrium may be more efficient
than traditional explicit methods, because here the gain in the timestep can be large
enough to compensate for the slower calculation of a single timestep.

• At finite cut-off rc an in between method is obtained: on the one hand, it makes the
Jacobian sparse thus decreasing the complexity of a timestep to N 2( ), which is the same
complexity of explicit methods, thus, it becomes efficient for large system sizes, too. On
the other hand, it still allows the stepsize to be significantly larger than that of explicit
schemes. It, in fact, acts similarly to the annihilation distance of explicit methods: dipoles
with distance smaller than rc are treated implicitly (and thus not limiting the timestep)
whereas those with distance larger than rc are computed explicitly and do limit the
timestep even at equilibrium. The advantage is, that the small dipoles here do not have to
be annihilated, and their dynamics are still solved with high precision. It was found that
the runtime of the new method was approximately 4 orders of magnitude lower than that
of the explicit method with a realistic annihilation distance.

The results obtained indicate that when activity was high in the system a smaller rc value
was the most efficient and as activity ceased an increasing value of rc showed better per-
formance. Future work will aim at developing an algorithm that dynamically changes the
value of rc based on the dynamic properties of the system. Such a method could further
improve the efficiency of this scheme. In addition, significant increase in computational speed
can be expected from porting the source code to GPU, which is also relegated to future work.

In this paper the performance of the WITS was demonstrated on relaxation simulations
where dislocations start from initially random configurations. After an initial high activity
period dislocations gradually slow down as they approach equilibrium. The motivation
behind studying such simulations was that dislocation dynamics is usually an intermittent
process characterized by short high activity periods (strain bursts or dislocation avalanches)
and long quiescent periods in between [1, 2]. The relaxation process contains both limits: a
very active initial phase together with an absolutely stationary state at large simulation times.
An optimal numerical method should be efficient in both regimes, and according to the results
presented so far, the implicit scheme described here fulfills this criterion.

8. Outlook

The proposed scheme, thus, can be successfully applied to 2D DDD systems, where it leads to
a significant speed-up compared to explicit methods. In addition, the newly developed
scheme, due to its relative simplicity, is not constrained to the specific 2D model used in this
paper but, as we show below, can be easily generalized for more complex 2D or 3D DDD
simulations.

The main assumption we made about dislocation systems is that their equations of
motion are stiff. This means that if xi is a degree of freedom (DOF) of the dislocation network
(position of a dislocation node, segment, etc) then in equilibrium fi(xi)=0 with some
function fi that stands for the generalized force acting on the dislocation node, segment, etc.
The slope of this function = ¢m f xi i( ) (similarly to a spring constant) characterizes how
quickly the DOF returns into its equilibrium position after some perturbation. The system is
stiff if the m values for the different DOFs have a huge scatter. In 2D it was shown
(equation (5)) that for close dislocation pairs m increases as 1/D2, where D is the distance to
the closest dislocation, and this leads to the stiffness. The reason for the divergent behavior of
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m at small distances is that dislocation interactions diverge for small distances. In more
complicated setups, like multiple slip geometries or curved dislocations in 3D it is still true
that dislocation interactions diverge for small distances, so the dynamic equations in these
cases must also be stiff [30]. The problem is usually addressed by either introducing a
minimal distance between dislocation slip planes or nodes or by using core regulated stress
fields that do not diverge at small distances. Unfortunately, these approaches only maximize
the possible value of m but the equations still remain stiff.

To tackle the problem of stiffness in more complicated set-ups the method proposed in
this paper have to be generalized. The generalized force fi(xi) introduced above may depend
on the other DOFs, externally applied tractions/displacements or internal objects (pre-
cipitates, vacancies, etc) and the geometry of the system (such as the configuration of the slip
planes), but in every case the analytical form of fi is available. Therefore, one can compute the
Jacobian as = ¶

¶
Jij

f

x
i

j
, although, it may be complicated and, thus, numerically demanding. In

order to make the Jacobian sparse and reduce the complexity of its evaluation to N( ), the
introduction of the cut-off radius rc can be done in a straighforward way, by neglecting those
Jij elements where the distance of the ith and jth DOF is larger than rc and one may also
introduce the cut-off function of equation (20) after replacing +x y2 2 with the distance of
the corresponding DOFs. The details of the determination of the Jacobian in a 3D imple-
mentation can be found in [30, 32]. Although a somewhat different method was used there to
obtain a sparse Jacobian, it was found that the numerical evaluation of the sparse matrix was
rather efficient and did not slow down the simulation [30, 32].

Our method is only concerned with the scheme of the numerical integration. All other
parts of the algorithm that take place between timesteps are unaffected by the new algorithm.
As such, it can be easily combined with dislocation reactions/collisions, dislocation sources,
re-meshing of curved dislocation segments, etc. It can be also combined with the fast mul-
tipole method mentioned in section 3.1 for the calculation of interactions in order to reduce
the complexity below  N 2( ). We, therefore, believe that our method will prove useful in
many implementations of DDD.
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Appendix. Selection of the ideal weight factor

In section 4.3 we concluded that close to equilibrium the equation of motion of a dislocation
dipole can be simplified to
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where x=0 is the equilibrium position. In this appendix we aim at finding the best weight
factors for the WITS method in order to solve this equation. This method for equation (23)
reads as
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If the weight factor is zero (d= 0), then one arrives at the trapezoidal scheme, which has an
 h2( ) convergence, superior to backward Euler’s  h( ) convergence at d=1. So, d=0 is
preferred but in this case after rearranging equation (24) one obtains
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If h=τ holds for the timestep, then x k+1≈x k−(h/τ) x k, so, if x k is positive then so is
x k+1. However, if h?τ then x k+1≈−x k, so the solution oscillates around the equilibrium
position x=0. It is easy to see that if d=1 (backward Euler) then x k and x k+1 have the same
sign for every choice of h. So, our intention is to select the weight factor d such that

• at small timesteps d→0 to exploit the higher precision and
• d→1 for large timesteps to avoid oscillations.

To fulfill these criteria we first rearrange equation (24):

=
- -

+ +
t

t

+x
d

d
x

1 1

1 1
. 26k

h

h
k1 2

2

( )

( )
( )

To avoid oscillations the prefactor of x k on the right-hand side must be positive, so

t
> -d

h
1

2
27( )

must hold.
The choice of

=
+ td
1

1
28

h

2
( )

introduced in section 4.3

• tends to zero as h→0,
• fulfills the criterion of equation (27), that is, suppresses oscillations around the
equilibrium position and

• tends to one as  ¥h .

To sum up, the choice of (28) for the weight factor d fulfills all the prescribed criteria to
be efficient and avoid oscillations at the same time.
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