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Abstract

Micron-scale single-crystalline materials deform plastically via large intermittent strain bursts that make the deformation process
non-deterministic. Here we investigate this stochastic phenomenon by analyzing the plastic response of an ensemble of specimens differ-
ing only in the initial arrangement of dislocations. We apply discrete dislocation dynamics simulations and microcompression tests on
identically fabricated Cu single-crystalline micropillars. We find that a characteristic yield stress can be defined in the average sense for a
given specimen ensemble, where the average and the variance of the plastic strain start to increase considerably. In addition, in all studied
cases the stress values at a given strain follow a Weibull distribution with similar Weibull exponents, which suggests that dislocation-
mediated plastic yielding is characterized by an underlying weakest-link phenomenon. These results are found not to depend on fine
details of the actual set-up; rather, they represent general features of micron-scale plasticity.
! 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The dominant mechanism for producing plastic strain in
most crystalline materials is the collective motion of inter-
acting dislocations. Although the gliding of an individual
dislocation produces a finite slip localized at its glide plane,
the plastic response of a macroscopic specimen, due to the
huge number of dislocations, is usually smooth in time and
space, resembling a viscous flow process. Consequently,
mechanical properties, like the yield stress, are not depen-
dent on the specimen size or shape. It was realized, how-
ever, that as soon as the size of the specimen is decreased
to around 10 lm in at least one direction, this picture is
no longer valid: the deformation process becomes inhomo-
geneous both in time and space. This was recently demon-
strated on cylindrical Ni single crystals (micropillars)
fabricated using a focused ion beam (FIB) [1,2]. These

breakthrough experiments showed that if the pillar diame-
ter drops below 40 lm, then the stress–strain curve
becomes visibly irregular with random steps appearing on
it. This phenomenon is accompanied by a strong size effect,
i.e. the small samples become much harder than the bulk
material [1,2]. This behaviour is analogous to the Hall–
Petch relation of polycrystalline materials [3,4] or the
increased strength of thin metallic films [5]. During the past
few years microtesting experiments have been carried out
on a wide range of face-centered cubic (fcc) [6–14] and
body-centered cubic (bcc) metals [15,16] and in all cases
similar behavior was found (for recent reviews see [17–19]).

Another related important observation was the realiza-
tion that the strain burst events (dislocation avalanches)
associated with the steps on the stress–strain curves follow
a scale-free size distribution. This was first demonstrated
by acoustic emission experiments on ice [20,21], Cd, Zn–
0.08% Al and Cu single crystals [22]. Later, direct measure-
ment of the strain jumps on Ni micropillars [23] as well as
computer simulations [21,24] yielded the same result. It was
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also found that the spatial arrangement of dislocation ava-
lanches has a fractal character [25] and that the surface
profile of deformed Cu crystals develops self-affine rough-
ness over several orders of magnitude in scale [26]. These
observations clearly demonstrate that plasticity is a criti-
cal-like phenomenon with avalanche dynamics and, there-
fore, shows analogy to sand piles, magnetic domains in
ferromagnets or tectonic plates [27]. This scale-free behav-
ior is quite general: it is present regardless of the actual
material, crystal structure, orientation and loading mode.
This robustness suggests that critical behavior is condi-
tioned on some very basic properties of dislocations, like
the long-range elastic interactions. Based upon these obser-
vations it was proposed that dislocation systems undergo a
second-order depinning-like phase transition at the yield
stress, and the different scale-free characteristics stem from
the closeness to the critical point of yielding [28–35]. It
should be mentioned, however, that recent numerical stud-
ies on two-dimensional dislocation systems suggest a differ-
ent picture, namely scale-free behavior is not only observed
at yielding, but arises already at stresses far below the yield
stress [36].

Due to the large strain fluctuations emerging at small
scales the stress–strain curves of micron- and submicron-
scale specimens are of random character in several aspects.
The step-like curves consist of plateaux corresponding to
strain bursts, and stress jumps connecting these plateaux.
Both the size of strain bursts and stress jumps are probabi-
listic variables, following a power-law [23,24] and a Wei-
bull distribution [15,37], respectively. Consequently, the
stress value at a given strain is also stochastic in nature.
In particular, the yield stress of the micropillars differs from
sample to sample. Its value is usually defined as the stress at
a predefined level of plastic strain epl,y (e.g. [2]) or the stress
at the onset of the first large/detectable strain burst (e.g.
[38]). On the basis of in situ Laue diffraction analysis the
so-called Laue-yield point was also introduced for micro-
pillars where internal lattice rotations are initially observed
[39]. The corresponding stress is usually below the yield
stress values of the previous two methods. Two remarks
have to be made at this point: (i) the yield stress defined
by each of these methods varies from sample to sample;
and (ii) the different methods yield different yield stress val-
ues for the same pillar. This raises an intriguing problem
regarding the picture of yielding as a critical phenomenon.
If there is a well-defined critical point (yield stress) as sug-
gested, one should be able to give instructions how to
detect it experimentally. Its value should not depend on
arbitrarily chosen parameters (like the epl,y) or the sensitiv-
ity of the testing machine (when one detects the first strain
burst). But how, then, to define a yield stress of a pillar that
exhibits stochastic plastic response?

Our proposition is that such a threshold stress level can
only be defined in a probabilistic way over an ensemble of
specimens with the same parameters (size, dislocation
density, etc.) [34,37,40,41]. According to the analysis of a
large ensemble of discrete dislocation dynamics (DDD)

simulations of Ispánovity et al. [40], several corroborating
quantities mark an average characteristic stress level, where
average plastic strain and strain fluctuations begin to
increase rapidly.

The question posed also has an important technological
aspect. The trend of miniaturizing mechanical devices has
led to their scale reaching the micron range and below.
The non-deterministic fluctuations associated with
micron-scale plasticity make design of such structures diffi-
cult, if not impossible. Obviously, the traditional determin-
istic methods of continuum plasticity fail to give useful
answers at this scale. For a proper failure assessment, first,
the stochastic properties of micron-scale plasticity need to
be understood in sufficient detail [35].

In this paper, therefore, we aim at giving an in-depth
statistical description of micron-scale plastic response.
To this end, compression tests are carried out on a large
number of pure Cu single-crystalline micropillars. These
pillars exhibit the same crystallographic orientation and
close to identical geometry so they in principle only differ
in the inherent initial realization of the dislocation struc-
ture. To test the robustness of our results, two-dimen-
sional (2-D) and three-dimensional (3-D) discrete
dislocation simulations are also carried out. The aim of
applying these simulation methods is not to give a quanti-
tative validation of the experiments, but by studying the
observed phenomena in idealized and simplified situations
to identify the possible relevant physical processes. This
wide toolbox allows us to highlight features that do not
depend on specific details of the material or simulation,
but on general aspects of dislocation plasticity. Through-
out this paper, due to experimental and computational
constraints, only one system size is studied with each
method. Consequently, understanding size effects in
beyond our scope here. Instead, we focus on a size regime
where collective dislocation dynamics is expected to play
an the important role and effects of surface-controlled
mechanisms are supposed to be weak.

The paper is organised as follows. Section 2 provides a
description of the models used in the simulations, followed
by the details of the simulation procedures and parameters.
Then the experimental methods of micropillar fabrication
and compression are summarized. In Section 3 the results
of the different statistical analyses are presented for the
three different methods. Section 4 presents discussion and
Section 5 summarizes the main results and concludes the
paper.

2. Methods

2.1. 2-D discrete dislocation dynamics

First, a conceptually simple model is considered that
consists of parallel edge dislocations with parallel glide
planes. This system is fully represented in a plane perpen-
dicular to the dislocation lines, thus it is effectively 2-D.
For the dislocation motion overdamped dynamics are
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assumed, i.e. the velocity is proportional to the acting force
per unit length. Let the system consist of N dislocations at
positions ri = (xi,yi) in the 2-D representation with Burgers
vectors of equal magnitude b. Without any loss of general-
ity Burgers vectors are taken parallel to the x axis bi = (-
bi, 0) = (sib, 0), where si = ±1 is the sign of the ith
dislocation. With these notations the equation of motion
of the dislocations reads as:

_xi ¼ B"1sib
XN

j¼1;j–i

sjsindðri " rjÞ þ sext

" #

; _yi ¼ 0: ði

¼ 1 . . . NÞ; ð1Þ

where B is the dislocation drag coefficient, sext is the ap-
plied external shear stress and sind denotes the shear stress
field generated by an edge dislocation. For the latter we use
the solution corresponding to linear isotropic media [42]:

sindðrÞ ¼
lb

2pð1" mÞ
cosðuÞ cosð2uÞ

r
; ð2Þ

with l and m being the shear modulus and the Poisson’s ra-
tio, respectively. A square-shaped simulation area is con-
sidered with periodic boundary conditions (PBCs) to
mimic an infinite system. As a result of the PBCs, due to
the introduced image dislocations, the stress interaction
(2) corresponding to infinite boundary conditions also
has to be made periodic. This procedure is performed by
a Fourier method described in detail in Ref. [43]. During
the simulation small dislocation dipoles of opposite sign
with distance less than 5% of the average dislocation spac-
ing are annihilated. This method speeds up the simulations
considerably, but, on the other hand, it is not expected to
affect the dynamics of the system, since short dipoles do
not generate long-range stress fields, thus their dynamics
is effectively decoupled from the rest of the system [21].

This model is a strong simplification of real dislocation
networks found in micron-scale crystals. First of all, the
PBCs correspond to an infinite but periodic system having
a finite number of differently moving dislocations. In addi-
tion, the representation cannot account for, for example,
dislocation multiplication, forest hardening, cross-slip, dis-
location junction formation and so on. Nonetheless, such
models proved to be very useful in studying general fea-
tures of dislocation dynamics. For example, it was success-
fully applied to study Andrade creep [21,44], dislocation
avalanche dynamics [31,45,29], subgrain formation at high
temperatures [46,47] and the effect of elastic anharmonicity
on the dislocation pattern formation [48]. A similar 2-D
model was used recently to study the microplastic regime
of the stress–strain curve [49]. The reason for the wide
applicability of 2-D DDD is that, despite of the strong sim-
plifications, the model still contains some very basic prop-
erties of dislocation systems: (i) that dislocation motion is
constrained to a glide plane; (ii) that dislocation stress
fields are long range; and (iii) that dislocation motion is
of highly dissipative nature. Therefore, one of the main

aims of using these 2-D models is to understand the role
of these fundamental ingredients.

It is also possible to include further rules to make the
model more realistic. Boundary conditions corresponding
to fixed displacement or stress can be implemented using
the superposition method suggested by van der Giessen
[50]. To mimic inherently 3-D dislocation effects such as
multiplication, junction formation and consequent strain
hardening phenomenological rules as well as multiple slip
systems can be introduced [50–52]. With these extensions,
and assuming initial configurations with certain statistical
properties, even problems as complex as the plastic proper-
ties of metal matrix composites [53,54] or micropillar defor-
mation [12,55] can be studied. For a quantitative
comparison, however, some of these parameters need to
be fitted to experimental data. In the present work we
aim at studying the simplest model that captures the funda-
mental properties of dislocation systems summarized
above, so these extensions are not implemented.

The simulation of a loading experiment is performed as
follows. Initially, an equal number of positive and negative
sign dislocations are placed randomly with uniform distri-
bution in the simulation area. Then the system is allowed to
relax at zero applied stress, i.e. Eq. (1) is solved parallelly
for each dislocation with sext = 0. Once the system has
reached its equilibrium state (an example can be seen in
Fig. 1a) we start slowly increasing the external shear stress
in a quasistatic manner. The latter means that during the
loading procedure the dislocation activity is continuously
monitored by the average absolute dislocation velocity
vðtÞ ¼ ð1=NÞ

P
jviðtÞj, and whenever it exceeds a predefined

threshold value vth (a dislocation avalanche is beginning)
the external shear stress is kept constant. If later on v(t)
decreases below vth, i.e. the avalanche has finished, then
the external stress is increased again with a constant rate.
In the illustrative sketch of Fig. 1b it can be seen that the
threshold value vth unambiguously determines the ava-
lanches, since there are more than two orders of magnitude
between the typical v(t) values for the quiescent and active
states. This simulation procedure is in principle identical to
the ones used in Refs. [34,45,49].

The plastic shear strain during the simulation is simply
cplðtÞ ¼

PN
i¼1bi½xiðtÞ " xið0Þ'=L2. Fig. 1c displays typical

stress–plastic strain curves obtained from three simulations
of different initial dislocation arrangements with a total dis-
location number N = 256. For the material-dependent
parameters the values corresponding to pure Cu were
taken: l = 48 GPa, m = 0.34 and b = 0.255 nm, and with
the choice of q = 1014 m"2 for the dislocation density, the
area of the simulation square was 1.6 ( 1.6 lm2. Note, that
in the 2-D model the length, stress, strain, time, etc., can be
expressed in dimensionless units [56], which means that sys-
tems with appropriately set different dislocation densities,
elastic properties, etc., behave equivalently. In the present
situation the material parameters were chosen in such a
way as to provide better numerical comparison with the
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other applied methods. With the loading procedure out-
lined above the applied stress during an avalanche is con-
stant, leading to a deformation curve consisting of
horizontal strain jumps connected by nearly vertical stress
steps (see the inset of Fig. 1c). Since there is no dislocation
multiplication in the model, at a certain stress level the sys-
tem enters an infinite avalanche, i.e. a flowing state.

One of the main advantages of 2-D dislocation model-
ling is its speed and accuracy compared to more complex
methods. In the current implementation the numerical
noise was negligible, yet the simulation of a large ensemble
consisting of 545 different configurations was possible. This
large ensemble and the high accuracy leads to exceptionally
reliable results.

2.2. 3-D discrete dislocation dynamics

A more realistic representation of a dislocation network
is considered here, by introducing curved dislocation lines
and crystallographic slip systems. This technique, known
as 3-D DDD, has recently seen a rapid development. As
a result, it is now capable of addressing fundamental issues
of micron-scale plasticity, such as reproducing size effects
of micron- and submicron-scale single-crystalline pillars
[13,57–62]. Here only some basic features of the specific
simulation method are outlined; for more details the reader
is referred to Refs. [63,64]. Most importantly, the disloca-
tion motion is modelled in a finite rectangular volume.
The curved dislocation lines are represented as chains of
short, straight segments and the medium surrounding the
dislocations is assumed to be isotropic and linear elastic.
In this case the analytical stress fields of the straight seg-
ments corresponding to infinite boundary conditions are
well known [42]. To obtain the stress fields corresponding
to the imposed boundary conditions (see below), the super-
position approach proposed by van der Giessen [50] is
applied. A second-order equation of motion is used where
beside the friction force, dislocation inertia is also taken
into account. This, however, does not significantly change
the overdamped nature of the dynamics. In the simulations
dislocation climb is not taken into account, but cross-slip is
enabled. All possible dislocation reactions of fcc materials,
such as Lomer junction formation, are included in the
model [64].

In the following a summary of the parameters used in
the simulations is given. The embedding crystal is consid-
ered a rectangular-shaped fcc Cu single crystal oriented
for single slip with an aspect ratio of 3:1:1 at room temper-
ature (see Fig. 2a for an example simulation snapshot). The
edge length of the square-shaped basal side is 0.36 lm, and
the loading direction is parallel to the longer edges of the
specimen. At the side surfaces free boundary conditions
are used, at the bottom side no displacement perpendicular
to the surface is allowed, while at the top the applied stress
is imposed. This set-up mimics the uniaxial compression of
a micropillar, often investigated by experiments (e.g. [1,2]).
For simplicity, the system initially consists of randomly
positioned and oriented Frank–Read sources with uniform
length of 0.2 lm and distributed equally between the 12 slip
systems. Although this is a highly artificial configuration, it
was found earlier that more realistic initial structures also
lead to the appearance of “static pinning points” similar
to the endpoints of the Frank–Read sources [65]. The
initial dislocation density is around 6 ( 1013 m"2.

(a)

(b)

(c)

Fig. 1. Two-dimensional discrete dislocation dynamics. (a) Snapshot of a
typical dislocation configuration after the initial relaxation step. (b)
Illustration of the quasistatic loading procedure from an example
simulation run. In the bottom panel the average absolute velocity v(t) is
shown and the threshold value vth is denoted by the thick dashed
horizontal line. The avalanche regions are marked by shading. In the top
panel the applied shear stress is seen, which is kept constant during
avalanches, and is increased with a constant rate otherwise. (c) Stress–
plastic strain curves obtained for three different random initial
configurations.
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The time-scale numerically achievable by DDD simula-
tions is orders of magnitudes smaller (few microseconds)
than the duration of a typical micropillar compression
experiment (several minutes), and therefore one has to
apply very high stress rates in the simulations. To over-
come this problem, a quasistatic loading procedure, similar
to the 2-D case described above, was implemented. The
only difference is that here, rather than the average abso-
lute velocity, the strain rate is thresholded to separate ava-
lanche states with constant applied stress, and quiescent
states with linearly increasing stress. Examples of the typi-
cal stress–plastic strain curves obtained from different (but
statistically equivalent) initial dislocation configurations
are shown in Fig. 2b. Note that only the plastic strain is
plotted, i.e. the elastic strain, ee = E"1r, where E is the
Young’s modulus, was subtracted from the total strain.
The total number of simulations performed for different
initial structures was 83.

It should be mentioned that, due to the high computa-
tional demand, the size of the simulated pillars is an order
of magnitude smaller than the micropillars studied experi-
mentally in the next section. Yet, owing to the relatively
large dislocation density, collective dislocation processes
cannot be neglected, as demonstrated by the simulations
of Csikor et al. [24]. It was shown that the size of the
observed strain bursts at this scale are power-law distrib-
uted. Although individual dislocation processes, such as a

single operational Frank–Read or single-arm source, can
lead to small strain bursts of nearly identical size [66], the
observed power-law distribution can only be explained by
their interaction. Therefore, it is expected that the simu-
lated size is large enough for the plasticity to be highly
influenced by collective dislocation phenomena.

2.3. Experiments

In recent years micropillar compression has become a
state-of-the-art methodology to investigate mechanical
properties of micron- and submicron-scale objects [17–
19]. FIB milling allows very precise control over the geom-
etry, and the subsequent mechanical testing can be
performed by a nanoindenter equiped with a flat-punch
tip. For this study, the micropillars were fabricated on
the flat surface of a pure Cu single crystal. According to
X-ray measurements, the initial dislocation density in the
predeformed host crystal was around q ) 1014 m"2, as
measured from the Bragg peaks by the variance method
of Groma et al. [67]. The initial structure of the dislocation
network was determined by transmission electron micros-
copy (TEM). The thin TEM specimen was fabricated from
the bulk sample by chemical etching. As seen in Fig. 3, dis-
locations form a cellular structure with typical cell sizes of
the order of 1 lm.

The FIB milling of the micropillars was performed in a
FEI Quanta 3D dual-beam scanning electron microscope.
The flat surface used had a [4710] (single slip) orientation,
as determined by electron backscatter diffraction (EBSD).
Before the milling, an amorphous Pt layer l = 2 lm thick
was deposited on the surface of the Cu specimen, and hence
the top part of the pillars had an increased hardness. In
order to avoid the damage of the polished pillar surface,
a 30 keV electron beam scan was used instead of Ga ions
for the deposition process. Since plastic deformation was
not observed in this top part (see Fig. 5b), dislocation
movement was mostly constrained to those slip planes, that
leave the sample on the side surfaces and not on the top.

(a)

(b)

Fig. 2. Three-dimensional discrete dislocation dynamics. (a) Snapshot of a
typical dislocation configuration. (b) Stress–plastic strain curves obtained
for three different random initial configurations.

Fig. 3. Bright-field TEM image of the original predeformed Cu single
crystal.
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For the fabrication, concentric circle patterns were used
with subsequent steps of decreasing diameter and Ga ion
currents (with final values of d = 3 lm and 30 pA at
30 kV, respectively). Since the Ga beam direction was per-
pendicular to the surface of the embedding Cu specimen,
the completed pillars were slightly tapered (a ) 2") and
the final height had some scatter h = 11 ± 1 lm. For the
final geometry, see the sketch in Fig. 4. A total of 42 pillars
were fabricated with this method (see Fig. 5a for a set of
such pillars before compression).

It is important to note that according to the X-ray mea-
surements the total dislocation density was around
q ) 1014 m"2, and therefore the average dislocation spac-
ing was approximately 1=

ffiffiffi
q
p ) 0:1 lm. Since the cell size

of the dislocation structure was of the order of 1 lm, the
pillars of diameter d = 3 lm and height h = 11 lm were
large compared to the internal length scales mentioned
above. In other words, the pillars contained a lot of dislo-
cations; thus, in this case it was expected that plasticity was
dominated by bulk dislocation mechanisms, and not by
surface effects, as was observed for much smaller nanopil-
lars [68,69]. In addition, due to the relatively large size,
the relative fluctuation of the total number of dislocations
in the undeformed pillars is expected to be small.

The uniaxial compression tests were carried out ex situ
with a UMIS II. Csiro nanoindenter using a flat-punch dia-
mond tip. The pillars were large enough to enable the
indenter to be properly positioned using an optical micro-
scope. The compression tests were performed under load
control with a rate of 0.01 mN s"1. Fig. 5b shows a micro-
pillar after compression. The nominal stress r and plastic
strain epl values are determined as:

r ¼ F =A; and epl ¼ juj=h; ð3Þ

where F and u are the measured force and the displacement
of the indenter tip, respectively, A = d2p/4 is the initial pil-
lar cross-section, and h = 11 lm is the initial pillar height.
We note that the computed elastic strain r/E, with E being
the Young’s modulus of pure Cu, was negligible compared
to epl throughout the compression experiments.

The compression tests were repeated on all 42 identically
fabricated pillars (for three examples of the measured

stress–plastic strain curves, see Fig. 6). As noted above,
the micropillars had identical crystallographic orientation,
identical initial dislocation structure in the statistical sense
and identical geometry (except for some scatter in height
due to the limitations of the milling method). The large
number of the samples was required for a satisfactory sta-
tistical analysis of the plastic response. It is noted that a
similar experimental study was performed by Rinaldi
et al. [38], but the Ni pillars they used were polycrystalline
and of much smaller scale: the average grain size was 30 nm

Fig. 4. Sketch of the pillar geometry.

Fig. 5. SEM backscattered electron images of the micropillars. This type
of imaging leads to different contrast for different elements, making the
amorphous Pt cap clearly visible. (a) FIB milled pillars before the
compression tests. (b) A micropillar after the compression test. Note the
absence of plastic deformation in the Pt cap.

Fig. 6. Nominal stress (r)–plastic strain (epl) curves measured for three
different cylindrical micropillars with a diameter of d = 3 lm and a height
of h = 11 lm.
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and the average pillar diameters were 160 and 272 nm for
two different sample sets. Owing to the different deforma-
tion mechanisms of ultrafine-grained materials Rinaldi
et al.’s study does not answer the main question of the pres-
ent paper, namely: what kind of stochastic features are
associated with pure collective dislocation plasticity at the
micron-scale?

3. Results

As described in the previous section, with all three meth-
ods one is able to obtain stress–plastic strain curves corre-
sponding to different but statistically equivalent initial
configurations. These curves are of random nature, i.e.
one (or few) of them does not fully represent the plastic
properties for the actual parameters (system size, crystal
orientation, etc.). Given that in this study a large number
of such curves are available for each method, in this section
an in-depth statistical analysis of these curves is carried out
in order to provide a more complete picture of the under-
lying micron-scale plastic behavior.

3.1. Average deformation curves

Firstly, the average plastic response and the fluctuation
of the plastic strain are investigated. The analysis to be per-
formed is in part identical to the one carried out in Refs.
[40] by some of the present authors, and can be summa-
rized as follows.

The individual stress–strain curves of Fig. 1c, Fig. 2b
and Fig. 6 share the same feature that because of the
stress-controlled driving, there is exactly one (plastic) strain
value corresponding to a given applied stress. So, for the
whole ensemble, for a given stress level one may look at
the average and standard deviation of these strain values
(one for each realization) corresponding to that stress.
Fig. 7a–c show these values computed not only for one
stress level, but for several in the applied stress range for
the 2-D simulations, for the 3-D simulations and for the
microcompression experiments, respectively. (Note that:
(i) the stress and strain axes were switched to express the
fact that the system was driven by the applied stress; and
(ii) in the 2-D case the applied stress and plastic strain
are denoted by sext and cpl, respectively, to emphasize that
these correspond to pure shear values.)

The three plots exhibit common features:

1. For small applied stresses the plastic strain is a power-
law function of the stress: epl / rb with b ) 1.1 " 1.2.

2. This power-law behavior of the strain is replaced by a
faster increase beyond a threshold stress level rth

(denoted by thick vertical lines in Fig. 7a–c).
3. The standard deviation of the strain exhibits a similar

increase above rth. In addition, its actual value is some-
what smaller than the average strain below rth, and
exceeds it above.

These findings are analogous to those of Ref. [40]
obtained by DDD simulations. Here, however, many
details of the simulations are different, such as the size of
the system, the loading method (quasistatic compared to
a constant stress rate), and the specimen orientation and
geometry in 3-D. Hence, the fact that the previous results
were recovered clearly indicates that this behaviour is not
dependent on fine details of the material and/or loading
set-up. Moreover, the fact that identical features were
found by micropillar compression experiments indicates
that the presence of an average threshold stress is a general
property of micron-scale plasticity.

It was mentioned in Section 2.3 that because of the mill-
ing method, there is a slight (*10%) scatter in the height of
the pillars. This of course introduces some scatter in the
measured stress–strain curves. The influence, however, is
not so strong, since the pillars are slightly tapered and,
thus, most plastic activity is concentrated in the top half
of the pillars. Thus, if the pillars are somewhat taller or
shorter, this variation is not expected to have a strong
influence on the plastic response. On the other hand, as
seen in Fig. 7c, the scatter of the strain values is of the
order of the average, i.e. about 100%. It is clear that this
large scatter cannot be explained by the initial differences
in the pillar geometry, but is characteristic of micron-scale
plasticity.

3.2. Stress statistics

In this section applied stresses corresponding to different
strain values are investigated. More precisely, if a plastic
strain value epl is fixed, for every individual specimen there
is a well-defined applied stress value that corresponds to
this epl. In the following, the probability distributions of
these stresses are investigated for the three different applied
methods.

The cumulative distribution functions Uepl
of the stress

values measured at different plastic strains epl on the 2-D
system are seen in Fig. 8a. The data can be fitted well by
a general Weibull distribution:

Uepl
ðrÞ ¼ 1" exp " ðr"r0ðeplÞÞk

drðeplÞk

" #
; if r > r0ðeplÞ;

0; otherwise:

(

ð4Þ

Here k is the Weibull exponent, and r0 and dr set the min-
imum stress and the scale (r0 is the lower bound of the sup-
port of the distribution function). Parameters r0 and dr
depend on epl, but k = 3.5 was taken identical for all the
curves (for details, see Section 4.2). The fit is not only sat-
isfactory on the linear scales but, as seen in Fig. 8b, the
Weibull plot of the data also yields a straight line, showing
that the asymptotic properties of the distributions are iden-
tical. (For the definition of the Weibull plot, see the caption
of Fig. 8b.)

Interestingly, the stress distributions of the 3-D DDD
simulations and the micropillar compressions can also be
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(a) (b)

(c)

Fig. 7. Average stress–plastic strain curves for the different methods applied (for details on the averaging procedure, see text). Note that the axes were
switched to emphasize that the simulations/experiments were performed under load control and that the averages were computed with respect to strain. (a)
2-D DDD simulations. (b) 3-D DDD simulations. (c) Micropillar compression tests.

(a) (b)

Fig. 8. Distribution of measured applied stress values for the 2-D DDD simulations. The different curves correspond to various plastic strain levels cpl

where the stress levels were measured. (a) Linear plot of the cumulative distribution function Ucpl
as a function of the applied stress sext. The solid lines are

fitted Weibull distributions of Eq. (4). (b) The same distribution on a Weibull plot, i.e. when the scales are set to ln (sext " sext,0) and lnð" lnð1" Ucpl
ÞÞ. The

resulting straight line is in accordance with the Weibull hypothesis.

(a) (b)

Fig. 9. Distribution of measured applied stress values for the 3-D DDD simulations. For the details of the figures, see the caption of Fig. 8.
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fitted well by the Weibull distribution (Fig. 9 and Fig. 10).
In these cases the scatter in the distributions is larger due to
the smaller number of available data. Nevertheless, the
Weibull plots are quite linear, supporting the weakest link
hypothesis.

Although all the datasets can be described well by a
Weibull distribution, there are differences between the dis-
tribution functions of Figs. 8–10. Namely, the parameters
r0 and dr behave in a different manner. For the 2-D and
3-D simulations r0 is approximately constant in the plastic
strain regime studied, but dr monotonously increases. On
the other hand, for micropillars studied experimentally r0

is increased with strain, and dr does not vary (this is man-
ifested in the overlap in Fig. 10b). These differences might
be related to the different behaviour of the dislocation den-
sity. Namely, the dislocation density is approximately con-
stant in the simulations (there are no sources in 2-D, and in
3-D dislocation creation is balanced by dislocations exiting
through specimen surface), and, according to Norfleet et al.
[70], it increases significantly in the case of experimentally
studied micropillars. However, further experimental and
modelling studies are required to address this issue in more
detail.

4. Discussion

4.1. Average yielding

According to the results of Section 3.1 a threshold stress
level rth can be defined on the average stress–plastic strain
curves in all three cases studied. This point exhibits features
that are characteristic of yielding. First, there is a micro-
plastic regime below rth where there is some plastic strain,
but epl starts to increase rapidly only above this threshold
stress rth. This microplastic regime is characterized by a
power-law as epl / rb, with b ) 1.1 " 1.2. This means that
the stress–plastic strain curve has an infinite slope at r = 0,
as expected and that some non-negligible plastic strain is
observed everywhere below rth, in line with the recent
in situ Laue microdiffraction experiments of Maaß et al.
performed on Ni micropillars under compression [71]. Sec-
ond, the variance of the plastic strain also increases faster

above rth, suggesting that the system enters a statistically
different regime above rth.

Note that although the average stress–plastic strain
curves of the systems studied here look similar, the stress
and strain values at the observed knees are quite different.
This is far from unexpected, since the yield stress is known
to depend on several parameters of the system such as size,
dislocation density, orientation, etc. In addition, there are
inherent differences in the studied models themselves, as
described in Section 2. For instance, in the 2-D model there
are no forest dislocations at all and multiplication is also
absent. In the 3-D simulations, the orientation and the
specimen size are also different from those in the experi-
ments. The initial configuration of randomly positioned
Frank–Read sources may also have an influence on the
plastic response because in this artificial configuration ini-
tially there are no dislocations that could leave the volume
at small applied stresses. For significant plastic strain to
occur, at least one Frank–Read source needs to be acti-
vated. In this case, therefore, the plastic strain correspond-
ing to the yield stress is expected to be smaller than for
pillars (where one expects a pronounced microplastic
regime), and the yield stress is expected to depend on var-
ious initial parameters of the Frank–Read sources such as
their average length. Indeed, according to Fig. 7b and c, the
plastic strain at rth is more than one order of magnitude
smaller for the 3-D DDD simulations than for the pillar
experiments. In addition, the knee on the stress–strain
curve at rth for 2-D DDD (Fig. 7a) is not as sharp as for
the other methods. We speculate that this is caused by
the absence of some processes that are active in 3-D, such
as dislocation multiplication or dislocation reactions.

In conclusion, it seems to be a general feature that a
threshold stress level rth exists in the average sense, which
acts as a yield stress. Although it is always present, its value
is not general at all, but is affected by the fine details of the
set-up, such as the orientation, statistical properties of the
dislocation network and so on, as expected for a yield
stress. These observations, therefore, support that rth acts
as an average yield stress.

It needs to be stressed that in this paper the question of
whether rth corresponds to a critical point and/or scale-free

(a) (b)

Fig. 10. Distribution of measured applied stress values for micropillar compression tests. For the details of the figures, see the caption of Fig. 8.
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behavior has not been addressed. As was mentioned in the
Introduction, there are still fundamental unresolved issues
regarding the nature of criticality during plastic deforma-
tion. Before the physical meaning of rth in this phenome-
non can be better understood, those open issues need to
be solved.

4.2. Weakest link statistics

In Section 3.2 it was shown that the stress values corre-
sponding to a given plastic strain follow weakest-link
statistics of Weibull type. The idea that plasticity of
micron- or submicron-scale pillars is influenced by a weak-
est-element mechanism has already been introduced in the
literature. First, Norfleet et al. made such a suggestion
based on TEM investigations of deformed Ni pillars with
diameters of 1–20 lm [70]. Later, this proposition was fur-
ther elaborated by 3-D DDD simulations of El-Awady
et al. [61]. The first quantitative analysis was performed
by Senger et al. using 3-D DDD simulations [41]. In that
study the distribution of flow stress values (corresponding
to 0.2% of plastic strain) were determined for various pillar
sizes, orientations and aspect ratios. It was found that these
stress values are Weibull distributed with Weibull expo-
nents varying between 4.0 and 20.4 depending on the size,
orientation and aspect ratio. The result was attributed to
the fact that in small pillars there are only a few practically
non-interacting Frank–Read sources, and plasticity onsets
when the resolved shear stress reaches the activation stress
of the weakest source. Remarkably, similar stress distribu-
tion was found by Rinaldi et al. on nanocrystalline Ni pil-
lars with diameters of 160 ± 30 nm [38]. The stress values
corresponding to the first, second, etc., detected strain
jump were also found to be Weibull distributed, with Wei-
bull exponents in the range 3.22–5.5. In our case, however,
the underlying mechanism involves collective dynamic
effects so the fact that the stress values follow a weakest-
link statistics is far from trivial.

The mathematical origin of the Weibull distribution is as
follows. Consider a chain of N links with independent ran-
dom failure strengths (being identically distributed). The
failure strength of the whole chain is then simply the failure
strength of the weakest link. According to extreme value the-
ory, if for the link strength cumulative distribution /(r) it
holds that /(r) = 0 if r < r0 (r0 is the lower bound of
the support) and for small loads above r0 it scales as
/(r) / (r " r0)k, then the corresponding extreme value
distribution is the Weibull distribution of Eq. (4) with
dr / N"1/k [72]. Hence, both r0 and k are characteristic of
the individual links and not the whole chain, and dr is related
to the number of the links in the system.

In the light of this background it is quite remarkable
that 2-D plasticity, where dislocation sources do not even
exist, can be described in terms of Weibull distributions.
This finding hints that the volume (chain) can be decom-
posed into weakly correlated subvolumes (links) with a cer-
tain failure strength distribution. In this case, the Weibull

exponent k should not depend on the specimen size, and
the stress scale dr should obey dr / L"d/k, with d being
the dimension of the chain network and L the linear size
of the system. In this case in the L!1 limit the distribu-
tion tends to a step function at r0, and therefore the aver-
age stress to r0. Since on the macroscopic scale, the stress
at a given epl has a well-defined non-zero value, if the above
picture is valid, r0 should differ significantly from zero.
Indeed, for 2-D systems the curves of Fig. 8b would not
be straight if r0 was set to zero.

Thus, according to the picture that has emerged, a 2-D
dislocation system can be envisaged approximately as a set
of independent subregions of the system, and its yield stress
obeys weakest link statistics. This finding is in line with the
stochastic plasticity model of Zaiser and Moretti [28], which
was successfully used to describe the effect of size, machine
stiffness and hardening in avalanche dynamics [24,28,30],
and more recently the role of the slow stress relaxation pres-
ent in the material [73]. In the model the simulation region is
subdivided into cells, with independent local yield stresses.
The argumentation for this assumption is as follows.
According to numerical investigations, although disloca-
tions exhibit long-range 1/r-type stress fields, the emerging
spatial correlation of the dislocations is short range, with
a correlation length of the order of the average dislocation
spacing 1=

ffiffiffi
q
p

[56]. It was shown theoretically that these cor-
relations lead to the screening of the 1/r stress field in an
analogous way to Debye screening in electrodynamics
[74,75]. The screened stress field decays faster than 1/r,
and therefore on scales much above the correlation length,
i.e. the average dislocation spacing, the interactions between
the dislocations are weak in equilibrium dislocation systems.
Thus, in the mesoscopic continuum model outlined above
the cell size is chosen to exceed the average dislocation spac-
ing. One of the most important findings of this paper is that
the results presented suggest that this concept is valid in
more complex situations of 3-D DDD simulations and
micropillar compression experiments.

5. Summary

Three different methods have been used to study micron-
scale plasticity: 2-D and 3-D DDD, and micropillar com-
pression experiments. Two important features have been
unveiled that are characteristic for all cases: (i) both the
average and the variance of plastic strain exhibit a crossover
at the same threshold stress level; and (ii) the applied stres-
ses corresponding to a plastic strain level follow weakest-
link statistics. This generality suggests that these features
depend on some basic properties of dislocations. In the 2-
D model practically only the long-range interactions are
included properly, and thus one might conclude that this
is the most important ingredient. However, several proper-
ties, such as the value of the suggested average yield stress or
the shape of the average stress–plastic strain curve, seem to
depend on underlying active dislocation mechanisms, such
as multiplication or dislocation reactions.
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As noted above, the introduced threshold stress is
expected to depend on many parameters, such as the sam-
ple size, dislocation density, orientation, etc. In addition,
the fitted parameters of the Weibull distributions might
also depend on these quantities. The nature of these depen-
dencies is an interesting issue and could give a deeper
insight into, for example, size effects. Since such studies
were beyond the scope of the present paper, they call for
further experimental and modelling work in this field.
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Szommer and D. Tüzes for their assistance during FIB fab-
rication, SEM, nanoindentation, EBSD measurements and
XRD experiments. P.D.I. would also like to thank Michael
Zaiser, Lasse Laurson and Mikko Alava for friutful discus-
sions and useful comments. Financial supports of the Hun-
garian Scientific Research Fund (OTKA) under Contract
Nos. PD-105256, K-105335 and K-75324, of the European
Commission under Grant Agreement No. MC-CIG-321842
(StochPlast) and of the European Union and the European
Social Fund under Grant Agreement No. TÁMOP-4.2.1/B-
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