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A variational approach is presented to calculate the stress field generated
by a system of dislocations. It is shown that in the simplest case, when the
material containing the dislocations obeys Hooke’s law, the variational
framework gives the same field equations as Kröner’s theory. However, the
proposed variational method allows us to study many other problems, such
as dislocation core regularization, the role of elastic anharmonicity and the
dislocation–solute atom interaction. The aim of this paper is to demon-
strate that these problems can be handled in a systematic manner.

Keywords: atomic defects; dislocation dynamics; dislocation theory

1. Introduction

Variational methods are frequently used in many fields of physics. They provide a
systematic and compact way to study different problems as well as allow relatively
simple ways to incorporate various physical interactions. They make it possible to
introduce generalized coordinates and variables reflecting the symmetry of the
problem. Moreover, they are extremely important in numerical finite element
simulations. In dislocation theory, however, variational methods are rarely applied.

One of the few examples is the parametric dislocation dynamics elaborated by
Ghoniem et al. [1]. They have suggested a thermodynamics-based variational method
to establish the equations of motion for three-dimensional (3D) interacting disloca-
tion loops. Their approach is appropriate for investigations of plastic deformation at
the mesoscopic scale by discrete dislocation dynamics simulations. A fast sum
technique for the determination of elastic field variables of dislocation ensembles
is utilized to calculate forces acting on generalized coordinates of arbitrarily curved
loop segments. Each dislocation segment is represented by a parametric space curve of
specified shape functions and associated degrees of freedom.

Another example is the phase field method proposed by Rodney et al. [2] to study
dislocation dynamics. They developed a general formalism for incorporating
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dislocations in phase field methods based on the elastic equivalence between
a dislocation loop and a platelet inclusion of specific stress-free strain. They also
discuss how dislocations are elastically and dynamically coupled to any other field
such as a concentration field. In their investigations special attention is paid to the
treatment of dislocation cores after the discretization of real and reciprocal space
required by the computer implementation of any phase field method. In particular,
they propose a method based on two length scales to account for dislocation cores
much smaller than the grid spacing.

In this paper we present a variational method that is quite different from the ones
mentioned above. It is based on two assumptions:

. The total deformation is the sum of the plastic and the elastic deformations,
i.e. we remain in the small deformation limit.

. The functional form of the Gibbs free energy–stress relation of the material
under consideration is assumed to be known.

First, the general form of the variational approach is outlined, then we discuss how
dislocation core regularization, elastic anharmonicity and dislocation–solute atom
interactions can be treated within the variational framework.

2. Derivation of the variational approach

In order to study the collective properties of dislocations, as a first step, the stress
field generated by a discrete dislocation system has to be determined. For a linear
elastic medium the problem was formulated in a general way by Kröner [3]. In this
section we present a variational framework, which is equivalent with Kröner’s theory
for a medium obeying Hooke’s law but it allows us to study non-local and non-linear
materials too. Elements of this variational approach have been presented in [4,5];
here we give a detailed derivation and clarify the meaning of the variational
functional.

It is commonly assumed that the final state of a body subject to shape changes is
reached by two subsequent steps, a plastic and an elastic deformation [6], i.e.

@jui ¼ �
t
ij ¼ ð�ik þ �ikÞð�kj þ �

p
kjÞ � �ij

¼ �ij þ �
p
ij þ �ik�

p
kj, ð1Þ

where ui is the displacement vector, �tij, �ij, �
p
ij are the total, elastic and plastic

distortions, respectively. In our analysis we remain in the small deformation limit, i.e.
we neglect the third term on the right-hand side of the above equation. Thus the total
deformation

�tij ¼ ð�
t
ij þ �

t
jiÞ=2 ð2Þ

is the sum of the elastic �ij¼ (�ijþ �ji)/2 and plastic �pij ¼ ð�
p
ij þ �

p
jiÞ=2 deformations:

�tij ¼ �ij þ �
p
ij: ð3Þ

The elastic deformation �ij is generated by the stress field �ij. Our aim now is
to formulate the condition for the stress in the presence of a given plastic
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deformation field. For that purpose a convenient way to proceed is to write �ij as the
functional derivative of the Gibbs free energy G[�], a functional of the stress tensor

components �ij, i.e.

�ij ¼ �
�G½��

��ij
: ð4Þ

With the above relation, Equation (3) reads as

�tij ¼ �
�G

��ij
þ �pij: ð5Þ

We shall use below the incompatibility operation �eikmejln@k@lTmn on a tensor Tmn,

where eikm denotes the antisymmetric unit tensor (sometimes it is defined with the

opposite sign). Since the incompatibility of �tmn is identically zero, by taking the

incompatibility of Equation (5), one obtains

eikmejln@k@l
�G

��mn
¼ �ij, ð6Þ

where

�ij :¼ eikmejln@k@l�
p
mn ð7Þ

is the incompatibility tensor of the plastic deformation. In terms of the dislocation

density tensor �ij, it has the form [3]:

�ij ¼
1
2 ejlm@l�im þ eilm@l�jm
� �

: ð8Þ

So, we end up with an equation, (6), which relates the stress field to the dislocation

distribution and can be used to determine the former if the latter is given.
We should add the condition of equilibrium, @j�ij¼ 0, which is automatically

fulfilled by representing the stress tensor as the incompatibility of the stress

potential �ij,

�eikmejln@k@l�mn ¼ �ij: ð9Þ

The functional derivative by the stress potential � is easily expressed via partial

integration from

�G ¼

Z
dV

�G

��ij
��ij ¼

Z
dV

�G

��ij
eikmejln@k@l��mn ¼

Z
dV

�G

��ij
��ij ð10Þ

to yield

eikmejln@k@l
�G

��mn
¼
�G

��ij
, ð11Þ

where G is considered as a functional of the tensor �ij only through its dependence on

�ij by Equation (9). Finally, by the use of Equation (11) the equilibrium condition (6)

becomes

�G

��ij
¼ ��ij: ð12Þ
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By introducing the ‘plastic free energy’ as

P½�, �� :¼ G½�� þ

Z
dV�ij�ij, ð13Þ

Equation (12) can be reformulated as

�P½�, ��

��ij
¼ 0: ð14Þ

In this way we arrive at a variational principle which yields the equilibrium equations

for the stress potential in the presence of dislocations. The functional P has a simple

interpretation in that G[�] is the elastic Gibbs free energy in the absence of defects,

complemented with the term representing the interaction between dislocations and

the stress field. Without dislocations, the first term alone is the functional to be

extremized, yielding the bulk equilibrium equations. In our formulation the

incompatibility tensor assumes the role of the ‘charge’ of dislocations, which

interacts with the stress potential linearly, and through the variation by the potential

it enters the equilibrium condition.
A further interesting relation can be obtained by taking the plastic free energy

(13) at the equilibrium stress potential �eq. Substituting Equation (6) into

Equation (13) and performing partial integrations one concludes that

P½�eq, �� ¼ G½�eq� �

Z
dV

�G½�eq�

��eqij
�eqij , ð15Þ

which is just the Legendre transform of the Gibbs free energy and is thus the elastic

free energy of the system as

F ½�� ¼ P½�eq, ��: ð16Þ

Note that, before extremization, P[�, �] is, in general, not the free energy, but it takes

the value of the free energy in elastic equilibrium, when it becomes a functional of the

dislocation distribution through the incompatibility tensor �.
To summarize this section, we can state that we need two constitutive relations to

determine the stress field generated by a set of dislocations. The first one is given by

Equation (1) expressing that the final state of a body subject to plastic deformation is

reached by a plastic and a subsequent elastic deformation. In our considerations we

neglect the cross-term between the plastic and elastic deformations, i.e. we remain in

the small deformation limit. The other constitutive relation we need is the Gibbs free

energy versus stress functional. With these the stress state generated by a dislocation

system can be determined by finding the extremum of the functional given by

Equation (13). It should be mentioned that the approach explained above provides

only the bulk equations. To get a unique solution, one has to set up boundary

conditions appropriate for the problem considered which in most cases cannot be

naturally obtained from the variational approach proposed. Since in this paper we

concentrate only on bulk properties, in the problems explained below we considered

either infinite size systems with vanishing fields at infinity or we used periodic

boundary conditions.
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Formerly, we have used previous versions of the variational formalism to treat

the effect of coarse graining and the correlations it entails, and recognized its use

to derive dynamical equations for dislocation densities via the phase field method.
Further studies in that direction will be presented in other publications. In the

following, we discuss how the extremum principle obtained can be applied in a

variety of equilibrium problems, like dislocation core regularization, studying

anharmonic effects and the interaction of dislocations with solute atoms.

3. Local linear medium

We first demonstrate the variational principle on the elementary example of a local,

linear material obeying Hooke’s law. In this case, the Gibbs free energy is a quadratic
functional of the stress as

G0½�� :¼ �

Z
1

2
�ijSijkl�kl dV, ð17Þ

where Sijkl is the elastic compliance tensor. Hence, the plastic free energy given by

Equation (13) reads as:

P½�, �� ¼

Z
�
1

2
eiopejqrð@o@q�prÞSijkleksteluz@s@u�tz þ �ij�ji

� �
dV: ð18Þ

One can find from Equations (14) and (18) that the stress function fulfils a system of

coupled, linear, fourth-order partial differential equations

eiopejqreksteluz@s@u@o@qSijkl�pr ¼ �tz: ð19Þ

Of course, the left-hand-side is just the incompatibility of the elastic deformation
tensor. The above equation greatly simplifies for isotropic materials with shear

modulus 	 and Poisson’s ratio 
, when it becomes (see [3])

42�0ij ¼ �ij, ð20Þ

where

�0ij :¼
1

2	
�ij �




1þ 2

�kk�ij

� �
ð21Þ

if �0ij satisfies the ‘gauge condition’

@i�
0
ij ¼ 0: ð22Þ

3.1. Plane problems

In the rest of the paper we restrict our analysis to plane (2D) problems, i.e. we

consider only systems of straight dislocations extending parallel to the z direction.
After a long but straightforward calculation one can find that for edge dislocations
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the plastic free energy functional reads as

P½�,�� ¼

Z
�
1� 


4	
ð4�Þ2 þ �ð@2�31 � @1�32Þ

� �
d2r, ð23Þ

where � :¼�33 is now a single component stress function (the other components of �ij
vanish) and the stress tensor components are

�11 ¼ �@2@2�, �22 ¼ �@1@1�, �12 ¼ @1@2�: ð24Þ

In the plastic free energy above the incompatibility tensor �ij has been expressed

by the dislocation density tensor �ij, which now has only two components.

The extremum condition �P/��¼ 0 leads to the fourth-order partial differential

equation as

1� 


2	
42� ¼ @2�31 � @1�32: ð25Þ

Although later in this paper we do not consider screw dislocations, we summarize

their case as well. To our knowledge this was the first application of a variational

principle in terms of the stress potential by Berdichevsky [7], which motivated us to

look for a variational description of general, including edge, dislocations. The plastic

free energy now is

P½�,�� ¼

Z
�

1

2	
jr�j2 þ ��33

� �
d2r ð26Þ

with

� :¼ �@1�23 þ @2�31, ð27Þ

and the relevant stress components are

�23 ¼ �@1�, �13 ¼ @2�: ð28Þ

The corresponding extremum condition gives Poisson’s equation

1

	
4� ¼ ��33: ð29Þ

It should be mentioned that the above equations obtained by the variational

approach are certainly equivalent with those derived earlier by different methods (see

Kröner [3]). In this section we just demonstrated how the variational method works

for a classical local linear medium.

4. Dislocation core regularization

The significance of dislocation core regularization is widely known. It is not only

necessary for the explanation of physical core effects, but also to eliminate

singularities in a physically well founded manner in numerical simulations. There are

many different propositions for dislocation core regularization (for a review see [8])
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but, as explained below, the variational approach offers a natural way to regularize

the singular stress at the dislocation line.
It is common in phase field theories that surface or size effects are captured by

introducing appropriate ‘gradient terms’ in the energy functional. The concept can

be applied in dislocation theory too, but as we have recognized above, the physical

properties of a material are determined by the functional form of the Gibbs free

energy–stress relation. So, the gradient terms should be introduced in the Gibbs

free energy and we have to add terms that depend on the gradient of the stress.

In a first-order linear approximation one can consider the ‘non-local’ Gibbs free

energy

Gnon-local½�� :¼ G0½�� � b2
Z

Nijklmnð@i�jkÞ@l�mn dV, ð30Þ

where Nijklmn is a constant tensor with inverse stress dimension and b is the Burgers

vector. (b2 is separated from Nijklmn to indicate the relative order between G0 and the

gradient dependent term.) From Gnon-local[�] the corresponding P[�, �] has to be

constructed as explained in Section 2.
It should be mentioned that non-locality could be introduced in a much more

general way by taking the Gibbs free energy in the form

Gnon-local½�� :¼ �

Z
1

2
�ijðrÞSijklðr� r0Þ�klðr

0ÞdV dV0, ð31Þ

where Sijkl(r) is a function which goes to zero fast enough if jrj!1, but in a

first-order approximation, if its range is of the order of the lattice constant, it

obviously gives the same as (30).
To demonstrate how the non-local term introduced above results in dislocation

core regularization let us consider a single straight dislocation embedded in an

isotropic medium. From Equations (23) and (30) for a single edge dislocation at the

origin

P½�� ¼

Z
�
1� 


4	
ð4�Þ2 þ a2jr4�j2
� 	

þ �@2�ðrÞ


 �
d2r, ð32Þ

where a is a parameter with length dimension that is of the order of the lattice

constant. Here, for the sake of simplicity, we considered only the simplest possible

isotropic gradient term from (30) but the general case can be treated in a similar way.

The corresponding equilibrium equation has the form

42�� a243� ¼
2b	

1� 

@2�ðrÞ: ð33Þ

The above equation can be solved numerically quite easily. By taking its Fourier

transform one can find that

�Fðq1, q2Þ ¼
2b	

1� 


iqy

ðq2x þ q2yÞ
4
þ a2ðq2x þ q2yÞ

6
, ð34Þ
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from which, according to Equation (24), the Fourier transform of the resolved shear

stress reads as

�r,F12 ðq1, q2Þ ¼ �
2b	

1� 


iqxq
2
y

ðq2x þ q2yÞ
4
þ a2ðq2x þ q2yÞ

6
: ð35Þ

By numerical inverse Fourier transformation one obtains the shear stress plotted in

Figure 1. To demonstrate the difference more explicitly the shear stress along the x

axis is plotted in Figure 2. As can be seen, for x larger than about 10a, �r12 is close to
the classical stress field �12/ 1/r. So, as expected, the ‘gradient term’ introduced

above influences only the central core region.
In a similar way, for screw dislocations from Equations (26) and (30)

P ¼

Z
�

1

2	
jr�j2 þ c2ð4�Þ2
� 	

þ b��ðrÞ


 �
d2r, ð36Þ

–10 –5 0 5 10
x [a]

–10

–5

0

5

 10

y 
[a

]

0.01

0.1

–0.01

–0.1

σ r
12[Gb/a]

–10 –5 0 5 10
x [a]

–10

–5

0

5

10

y 
[a

]

0.01

0.1

–0.01

–0.1

σ12 [Gb/a]

(a)

(b)

Figure 1. Shear stress obtained with (upper box) and without (bottom box) core
regularization. Here the G :¼	/[2�(1� 
)] elastic constant was introduced.
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where c is a constant. Such an approach was also made in [7]. One can obtain that the
extremum condition �P/��¼ 0 is fulfiled if � satisfies the equation

4�� c242� ¼ �b	�ðrÞ: ð37Þ

As for edge dislocations, the numerical solution of the above equation shows that the
second term of the left-hand side of the equation results in stress regularization in the
vicinity of the dislocation line.

To summarize this section, we have shown that by adding appropriate terms,
depending on the gradient of the stress tensor, to the Gibbs free energy functional,
one can regularize the dislocation core. We have discussed in detail only the simplest
possible ‘isotropic’ core regularization, but one can study more general cases too.
Comparing the present approach with other methods suggested by Aifantis et al.
[8,9], and Lazar [10], although one can find some similarities, the major difference is

that in these works the core region is regularized by spreading out the dislocation
density tensor �ij, while in our analysis the dislocation density tensor remains
proportional to a Dirac delta, as in the classical non-regularized case.

Finally, it should be stressed that the physical justification of the results obtained
above requires further detailed investigations. This is beyond the scope of this paper;
our aim was only to demonstrate that the problem can be treated within the
variational approach in a straightforward manner.

5. Role of elastic anharmonicity

There is quite an extended literature on how to deal with dislocations in the
geometrically and materially non-linear setting [11–16]. Among other things the
stress fields of single straight edge and screw dislocations are analytically determined.

–0.4

–0.2

0

0.2

0.4

0.6

–20 –15 –10 –5 0 5 10 15 20

σ
12

(x
, 0

) 
[G

b/
a]

x [a]

Classical stress field
Stress field with core regularization

0.02

0.1

1
1 10 50

Figure 2. Shear stress along the x axis obtained with and without core regularization
(G :¼	/[2�(1� 
)]).
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So far, however, the interaction energy of dislocations has not been calculated for the
non-linear case. Recently, Nabarro and Brown have suggested that the energy
difference between dipoles with interstitial and vacancy types can play an important
role in the physical properties of PSBs [17,18]. As realized by them, in order to
account for this energy difference one should go beyond linear elasticity. Allowing
a certain quadratic term in the stress–strain relation they were numerically able to
estimate the energy difference between the two types of dipoles [18]. In this section
we show that the problem can be treated in a systematic manner within the
variational approach explained in Section 2.

Before we start our analysis, we have to compare the different possible sources of
non-linearities in dislocation theory. As discussed at the beginning of Section 2,
according to Equation (1), the general form of the total distortion contains the
product of elastic and plastic distortions. This term was neglected in the subsequent
considerations. However, as explained below, elastic anharmonicity plays a much
more important role. Up to quadratic terms anharmonicity can be accounted for by
introducing a quadratic term in the stress–strain relation:

�ij ¼ Lijkl�kl þ Kijklmn�kl�mn, ð38Þ

where Lijkl and Kijklmn are the first- and second-order elastic moduli, respectively.
According to the MD simulations of Chantasiriwan and Milstein [19], for cubic
metals the ratio of the first- and second-order moduli is �¼K1111/L11��10
(�¼�9.8 was reported experimentally on steel by Sommer et al. [20]). In contrast to
this, in Equation (1) the ‘coupling constant’ between the linear and the quadratic
terms is 0.5. Due to this, the non-linear effects related to elastic anharmonicity are an
order of magnitude higher than those connected to the other non-linearity mentioned
above. So, the assumptions needed to derive the variational framework are justified.

Since in the proposed variational method the Gibbs free energy–stress relation
represents the physical properties of the material under consideration, anharmonicity
has to be taken into account by adding cubic and/or higher order terms to the
quadratic G0[�] relation given by Equation (17):

Ganharm½�� :¼ G0½�� þ

Z
Cijklmn�ij�kl�mn þOð�

4
ijÞ

h i
dV, ð39Þ

where Cijklmn is a constant tensor of rank six. In the following, we briefly show that
the anharmonicity leads to an extra term in the interaction energy of two parallel
edge dislocations. The reader can find the detailed derivation in [5]. For simplicity we
consider an isotropic medium and take the following Gibbs free energy

G½�� :¼

Z
�
D

2
ð4�Þ2 þ �a

D2

3
ð4�Þ3

� �
d2r, ð40Þ

where D :¼ (1� 
)/2	 and �a40 is a dimensionless coupling parameter. Since,
according to Equation (24), 4�¼�(�11þ �22)¼ 2p, the anharmonic term given
above is proportional to the third power of the pressure p. So, it represents
‘inclusion–exclusion’ asymmetry. One can find that the other possible cubic terms
in (39) result in quite similar dislocation–dislocation interactions to the one
considered here.
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The corresponding plastic free energy defined by Equation (13) is

P½�� ¼

Z
�
D

2
ð4�Þ2 þ �a

D2

3
ð4�Þ3 þ �½b1@y�ðr� r1Þ þ b2@y�ðr� r2Þ�


 �
d2r, ð41Þ

where b1¼ (b1, 0, 0) and b2¼ (b2, 0, 0) are the Burgers vectors (jb1j ¼ jb2j :¼ b), and r1
and r2 are the positions of the two dislocations, considered as fixed for now.

In order to calculate the interaction energy between two dislocations, we make

use of the property that the plastic free energy extremized by the stress function will

assume the value of the free energy. So, if we start out from the plastic free energy

with two dislocations in fixed positions, extremize, then substitute the equilibrium

stress function, the term that depends on both positions will be just the sought

interaction energy. While the leading pair energy from linear elasticity has long been

known, the anharmonic correction will be determined as follows.
First, we have to calculate the stress function �(r, r1, r2) generated by two

dislocations. One obtains from Equations (14) and (41) that

D42�� �aD
24 ð4�Þ2
� 	

¼ b1@y�ðr� r1Þ þ b2@y�ðr� r2Þ: ð42Þ

Since �a is a small parameter, up to first order in �a, the solution of Equation (42) can

be found as

�ðr, r1, r2Þ ¼ �1ðr� r1Þ þ �2ðr� r2Þ þ �a
ðr, r1, r2Þ, ð43Þ

where

�iðrÞ :¼
bi
b
�0ðrÞ, i ¼ 1, 2 ð44Þ

is the solution of the harmonic single dislocation problem

D42�0 ¼ b@y�ðrÞ, ð45Þ

�0ðrÞ ¼
b

8�D
@yr

2 lnðrÞ: ð46Þ

After substituting Equations (43) and (46) into Equation (42) one can find that if �a is
small then 
 satisfies the equation

4
 ¼ Dð4�1 þ4�2Þ
2: ð47Þ

According to the general expression (15), the plastic free energy (41) at the

extremizing stress function gives the free energy. Substituting Equation (42) into (41)

gives

F ¼ P½�� ¼

Z
D

2
ð4�Þ2 � �a

2D2

3
ð4�Þ3

� �
d2r, ð48Þ

wherein we now understand the equilibrium � field. Up to terms linear in the

coupling parameter �a, the total free energy is

F ¼ F0 þ �aF1, ð49Þ
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where F0 is the well-known energy in the harmonic approximation and

F1 :¼

Z
D4ð�1 þ �2Þ4
 �

2D2

3
½4ð�1 þ �2Þ�

3


 �
d2r: ð50Þ

From Equations (47) and (50)

F1 ¼

Z
D2

3
½4ð�1 þ �2Þ�

3d2r: ð51Þ

This can be rewritten as

F1 ¼ D2

Z
ð4�1Þð4�2Þ

2
þ ð4�2Þð4�1Þ

2
� 	

d2rþ C, ð52Þ

where C is a constant representing the correction to the single dislocation energy.

While this is singular in the present approximation, it does not contribute to the

dislocation–dislocation interaction force. Thus, the V1(r) :¼F1�C interaction

energy correction has the form

V1ðrÞ ¼
ðb1 � b2Þb

2

ð2�Þ3D

Z
y0 � y

jr0 � rj2
y0

jr0j2

� �2

d2r0, ð53Þ

where r :¼ r1� r2 is the relative coordinate of the two dislocations.
The integral in the above energy correction can be calculated analytically. Since

it is not straightforward, we give the detailed calculation in the Appendix. One

finds that

V1ðrÞ ¼
ðb1 � b2Þb

2

16�2D

yð3x2 þ y2Þ

r4
� 2

y

r2
ln

r

r0

� �� �
: ð54Þ

where r0 is the inner cut-off radius. Note that a term is missing from the energy

correction form (and so the extra interaction force) given in [5].
It is useful to summarize some of the properties of V1:

. If the Burgers vectors of the two dislocations are the same, V1 vanishes, so

the non-linearity considered generates extra interaction between dislocations

of parallel Burgers vectors only if their signs are opposite.
. V1 decays as ln(r)/r with a complicated angular dependence.
. V1 is antisymmetric in y.
. V1 is symmetric in x.
. If we take a dislocation and then we put another one with opposite sign

above or below, the interaction energies of the two configurations are not

the same due to the extra interaction term V1. So, as expected, the

anharmonicity introduced recovers the well known fact that the interaction

energy of the interstitial and vacancy type dislocation dipoles are not the

same.

A remarkable consequence of the extra term in the dislocation–dislocation

interaction energy is that it strongly modifies the relaxed dislocation morphology

developing from an initially random dislocation configuration.
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As it can be seen in Figures 3 and 4, in the harmonic case the relaxed
configuration consists of randomly placed dipoles and short walls, while the presence

of the extra interaction term leads to the formation of dense multipoles arranged in a

structure with some periodic character [5].

6. Dislocation–solute atom interaction

Solute atoms can strongly modify the collective properties of dislocations. Among

other things they can lead to plastic instabilities (for a recent review see [21]). In this

section we show that the effect of solute atoms can be easily incorporated into the
variational framework of Section 2. We restrict our considerations to straight edge

dislocations with Burgers vectors parallel to the x axis, but it is straightforward to

generalize the method to 3D.
The Gibbs free energy of a coupled system can always be given as the sum of the

Gibbs free energy of the two uncoupled systems and a coupling term. Therefore, if

we add to the plastic free energy the Gibbs free energy contribution of the solute

atoms then, after extremization in the stress function, we shall arrive at the free

energy of the dislocation–solute system. According to Equation (23), the plastic free

energy of the parallel edge dislocation system considered is

Pd½�, �� ¼

Z
�
1� 


4	
ð4�Þ2 þ b�ð@2�Þ

� �
d2r, ð55Þ

Figure 3. A relaxed dislocation configuration with �a¼ 0 (harmonic case).
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where � is the signed dislocation density (geometrically necessary density, GND),

defined as � :¼ �31/b, which is the only non-vanishing component of the dislocation

density tensor for the dislocation geometry considered.
For the solute atoms we assume that their concentration c is close to the

equilibrium concentration c1. In this case, the Gibbs free energy of the solute atoms

can be given with the quadratic form

Gc½c� :¼

Z
�ðc� c1Þ

2d2r, ð56Þ

where � is a constant (which may depend on c1).
To determine the form of the coupling term we use the well-known fact that

besides the concentration gradient, the pressure gradient also causes solute atom

diffusion. According to the principles of irreversible thermodynamics, the solute

atom current is proportional to the gradient of the chemical potential 	c¼ �G/�c. So,
taking the coupling term in the form

Gcoupling½�, c� :¼

Z
�cp d2r, ð57Þ

where � is constant, the total plastic free energy

P½�, �, c� ¼ Pd½�, �� þ Gc½c� þ Gcoupling½�, c�

¼

Z
�
1� 


4	
ð4�Þ2 þ b�ð@2�Þ þ �ðc� c1Þ

2
� �c4�

� �
d2r ð58Þ

Figure 4. A relaxed dislocation configuration with �a¼ 5 � 10�2L/b, with L being the system
size (anharmonic case).
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obviously gives the right free energy together with the expected form of 	c. It should
be mentioned that (58) results in linear equations for the stress and the solute atom
concentration. Non-linearity can also be treated within the framework proposed, but
it is beyond the scope of the paper.

Since this is mostly a demonstration of the way the variational approach works,
we now restrict our analysis only to static problems. Dynamical aspects of the
interaction between dislocations and solute atoms will be considered in forthcom-
ing publications. One can find from the equilibrium conditions �P/��¼ 0 and
�P/�c¼ 0 that

1� 


2	
42�þ �4c ¼ b @2� ð59Þ

and

�ðc� c1Þ ¼ �4�: ð60Þ

By combining the two equations we get that

1� 


2	
þ
�2

�

� �
42� ¼ b@2�: ð61Þ

A remarkable feature of the above equation is that, apart from a constant multiplier,
the functional form of the stress function � is not affected by the solute atoms.
Moreover, the solute atom concentration is proportional to the pressure caused by
the dislocations. Certainly, the result obtained is not new – it is the well-known
Cottrell atmosphere of solute atoms around dislocation lines [22]. But it illustrates
very well the fact that the coupled system of dislocations and solute atoms can be
treated with the variational framework suggested in Section 2. However, it is
important to mention that the collective dynamics of the coupled system can also be
studied with the variational method. This will be discussed in a forthcoming paper.

7. Conclusions

A variational framework has been presented to determine the stress field and the
interaction energy of dislocation systems. It is demonstrated that the method allows
us to study core regularization problems, the role of anharmonicity and the
dislocation–solute atom interaction. Furthermore, Groma et al. have discussed in
detail how the dynamics of coarse grained dislocation densities can be obtained from
an effective variational free energy [23]. This recognition led to the theory of
Debye-like screening of dislocations in equilibrium [4] and during relaxation [24].
Certainly, as in other fields of physics, one can obtain the same results without using
the variational approach, but this offers a systematic way for the treatment of a wide
range of different problems. It should also be mentioned that other variational
principles can also be constructed, which give the same result [25]. The advantage
of the one presented here is that the variational functional is minimized with respect
to the stress potential. So, it gives equations directly for the stress function from
which the stress can be calculated directly.

Philosophical Magazine 3693

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
I
s
p
á
n
o
v
i
t
y
,
 
P
é
t
e
r
 
D
u
s
á
n
]
 
A
t
:
 
0
6
:
4
2
 
1
8
 
A
u
g
u
s
t
 
2
0
1
0



Acknowledgements

Financial support by the Hungarian Scientific Research Fund (OTKA) under Contract
No. K 67778 and by the Swiss FNRS is gratefully acknowledged.

References

[1] N.M. Ghoniem, S.-H. Tong and L.Z. Sun, Phys. Rev. B 61 (2000) p.913.

[2] D. Rodney, Y. Le Bouar and A. Finel, Acta Mater. 51 (2003) p.17.
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Appendix. Calculation of the anharmonic potential

As explained in Section 5, elastic anharmonicity leads to the extra dislocation–dislocation
interaction energy (53):

V1ðrÞ ¼ ��

Z
y� y0

jr� r0j2
y02

jr0j4
d2r0, ð62Þ

where

� :¼
ðb1 � b2Þb

2

ð2�Þ3D
: ð63Þ

The integral can be evaluated analytically leading to Equation (54). We now give the
derivation.
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Let us first analyze the asymptotes of the integrand. At infinity it decays like 1/r03 and near
r 6¼ 0 diverges like 1/jr0 � rj, so in these cases integration gives a finite result. On the other
hand, near the origin the integrand is proportional to 1/r02, so a lower cut-off r0 has to be
introduced and the integral will exhibit a logarithmic singularity. This is an artificial
singularity, however, because it comes from the core region, where interactions are regular in
reality. The proper treatment would be by core-regularized anharmonic analysis, which is
relegated to later work.

To proceed with the calculation, we notice that (62) is the convolution of two functions,
which can be rewritten as follows

�
y2

r4
¼

1

2

@2

@y2
ln rð Þ �

1

r2

� �
, ð64Þ

y

r2
¼
@

@y
ln rð Þ, ð65Þ

where the lower cut-off r0 is omitted from the logarithms but will be reinstated at the end.
Substitution into (62) yields

V1ðrÞ ¼
�

2
V11ðrÞ þ V12ðrÞ½ �, ð66Þ

with

V11ðrÞ :¼ @y lnðrÞ � @
2
y lnðrÞ ¼ lnðrÞ � @3y lnðrÞ, ð67Þ

V12ðrÞ :¼ �@y lnðrÞ � r�2 ¼ � lnðrÞ � @yr
�2, ð68Þ

where � denotes convolution:

f ðrÞ � gðrÞ :¼

Z
d2r0 f ðr� r0Þ gðr0Þ: ð69Þ

We then recall that the radial logarithm is the Green function of the Poisson’s equation in the
plane, so a convolution like �(r)¼ ln(r)� g(r) is just the solution of 4�(r)¼ 2�g(r). Therefore,
to calculate (67) and (68), we have to solve Poisson’s equation with the inhomogeneous terms
@3y lnðrÞ and �@yr

�2. But since those functions are derivatives of radial functions, it suffices to
solve the radial Poisson equation and differentiate the solution later. The radial solutions
needed for our considerations are

gðrÞ ¼ lnðrÞ ) �ðrÞ ¼
�

2
r2 lnðrÞ � 1½ �, ð70Þ

gðrÞ ¼ �r�2 ) �ðrÞ ¼ �� ln2ðrÞ, ð71Þ

whence we get

V11ðrÞ ¼
�

2
@3yr

2 lnðrÞ, ð72Þ

V12ðrÞ ¼ ��@y ln
2
ðrÞ: ð73Þ

Reintroducing the cut-off r0 into the logarithms and performing the differentiation gives, by
(63) and (66), the leading anharmonic term to the dislocation–dislocation interaction energy:

V1ðrÞ ¼
ðb1 � b2Þb

2

16�2D

yð3x2 þ y2Þ

r4
� 2

y

r2
ln

r

r0

� �� �
: ð74Þ
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