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Based on the cross-correlation analysis of the Kikuchi diffraction patterns, high-resolution electron

backscatter diffraction (HR-EBSD) is a well established method for determining internal stress in the

deformed crystalline materials. In many cases, however, the stress values evaluated at different sam-

pling points have a large scatter of the order of GPa. As demonstrated by Wilkinson et al. [Appl. Phys.

Lett. 105, 181907 (2014)], this is due to the long tail of the probability distribution (P(r)) of the eigen-

stress generated by the dislocations present in the system. According to the theoretical investigations

of Groma and Bak�o [Phys. Rev. B 58, 2969 (1998)], the tail of P(r) is inverse cubic with a prefactor

proportional to the total dislocation density hqi. This paper presents the details of hqi determination

from P(r) contributing to the proper physical understanding of the method. The hqi values determined

on the deformed Cu single crystals show good agreement with the results of X-ray line profile analysis,

granting credibility to the EBSD approach. The availability of spatially resolved stress maps opens fur-

ther perspectives for the evaluation of correlation properties and mesoscale parameters of heteroge-

neous dislocation structures. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4977569]

The quantitative characterization of plastically deformed

crystals in terms of dislocation density by transmission elec-

tron microscopy (TEM) and X-ray diffraction (XRD) was a

very important step in the development of basic models of

crystal plasticity.1 This is especially true in the case of the

composite model2 of heterogeneous dislocation structures,

which postulates a Taylor type3 relation between the local

flow stress and local dislocation density. Accessing local

field quantities, however, requires methods capable of cap-

turing structural heterogeneities at the sub-micrometer scale,

which can be obtained with the TEM, but gathering statisti-

cally significant information usually involves a large amount

of manual work. Therefore, establishing automated charac-

terization methods providing information on the dislocation

density and other microstructural parameters at the meso-

scale could be very useful for corroborating the continuum

theories of plasticity developed during the last decade.4–7

It is the aim of the present work to explore the relevance

and potential of the electron backscatter diffraction (EBSD)

method based on the statistical properties of the local stress dis-

tribution determined by high-resolution electron backscatter dif-

fraction (HR-EBSD).8 To address their physical significance,

the results will be compared to the outcome of discrete disloca-

tion dynamics simulations and X-ray diffraction (XRD) line

profile analysis,9 a well established experimental technique for

characterising dislocation structures. The detailed analysis of

the peak shape allows determining major microstructural

parameters, such as the coherent domain size, the dislocation

density and its fluctuation. As shown by Groma et al.9–12 in the

so-called “strain broadening” setup,9 where the 3D intensity

distribution is integrated over the plane perpendicular to the dif-

fraction vector, the two leading terms of the asymptotic decay

region of the X-ray intensity distribution I(q) can be read as

I qð Þ ¼
1

p2d

1

q2
þ K

4p2
hqi 1

q3
; (1)

where d is the coherent domain size, q ¼ 2½sinðHÞ �
sinðH0Þ�=k; hqi is the average dislocation density and k is

the wavelength of the X-rays. H and H0 are the half of

the scattering angle and the Bragg angle, respectively.

The parameter K is commonly given in the form K
¼ 2j~gj2j~bj2Cg=p, where ~b and ~g are the Burgers and the dif-

fraction vector, respectively. Cg is the diffraction contrast
factor and it depends on the type of the dislocation and the

relative geometrical position between the dislocation line

direction and the direction of ~g. A detailed description of the

contrast factor calculation can be found in Ref. 13. It should

be noted that the inverse cubic decay of the tail of I(q) gener-

ated by the dislocations is the direct consequence of the 1/r
type strain (stress) field developing around a dislocation.

A remarkable feature of Eq. (1) is its independence from

the configuration of dislocations usually described in terms

of the dislocation-dislocation correlations. Certainly, the q
value from which Eq. (1) describes well the asymptotic

region depends on correlations, as it will be exemplified

later. Since the tail of the experimental intensity curve can

be rather noisy, the actual values of the coherent domain size

and the dislocation density can be more accurately evaluated

from the second order restricted moment defined as9,11

M2 qð Þ ¼

ðq

�q

q02I q0ð Þdq0

ð1
�1

I q0ð Þdq0
: (2)

Analysing higher order restricted moments can also be use-

ful;10,11 however, for the analysis presented here, the use of

M2(q) is sufficient. After substituting Eq. (1) into Eq. (2) at

large enough q values, we geta)Electronic mail: groma@metal.elte.hu
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M2 qð Þ ¼
1

p2d
qþ K

2p2
hqiln q

q0

� �
; (3)

where q0 is a constant depending on the dislocation-

dislocation correlation. If the coherent domain size is larger

than of about 1 lm, the first term in Eq. (3) is negligible

besides the second one caused by the dislocations, and the

plot of M2 versus ln(q) becomes a straight line in the asymp-

totic regime q ! 1. Its slope is proportional to the mean

dislocation density. Using this feature, the dislocation den-

sity can be determined with an accuracy of a few percent.

HR-EBSD is a scanning electron microscope (SEM)

based method, which allows determining the stress/strain in a

crystalline material at the length scale of tens of nanometers.

It is based on a cross-correlation method8,14–19 exploiting

small changes in the backscattered Kikuchi diffraction pat-

terns corresponding to a reference point and the actual point

analysed. A detailed description of the technique can be found

in Refs. 14 and 16. It was evidenced by Wilkinson et al.17–19

that local stress in a deformed polycrystalline material can be

unexpectedly high and can vary by as much as 61 GPa. This

unusual behavior is the consequence of the 1/r type long-

range stress field generated by a dislocation. According to the

analytical calculations of Groma et al.20,21 the tail of the prob-

ability distribution density of the internal stress generated by

a set of straight parallel dislocations decays as

P rð Þ ! G2j~bj2Crhqi
1

r3
; (4)

where G is the shear modulus and Cr (in analogy with XRD)

is defined as the stress contrast factor since its value depends

on the type of dislocation, its line direction and the consid-

ered stress component rij.
20 Similarly, to the X-ray line pro-

file case, the tail of the probability distribution is affected not

by the actual dislocation arrangement but only by the aver-

age number of dislocations crossing the unit surface. To

demonstrate this, we took a set of 512 parallel edge disloca-

tions with the Burgers vectors parallel to the horizontal axis.

Initially, the dislocations were placed randomly in a square

region, and then the system was relaxed with an over-

damped dynamics (the velocity of a dislocation is propor-

tional to the stress at the dislocation)22 using the periodic

boundary conditions. For the initial and the relaxed configu-

rations (Figs. 1(a) and 1(b)), the probability distribution of

the shear stress was numerically determined by taking the

stress values generated by the dislocation system at 106 ran-

domly selected points. As shown in Fig. 1(c), the tail of the

distribution is not affected by the relaxation (in agreement

with the theoretical predictions20,21), while the central region

of P(r) becomes narrower in the relaxed state (inset in Fig.

1(c)). It is important to note that for a completely random dis-

location distribution, the half width of P(r) tends to infinity

with the logarithm of the system size, while for the relaxed

configuration this divergence is canceled by the dislocation-

dislocation correlations.20 So, due to stress screening caused

by the spatial correlations, the distribution P(r) becomes

independent from the size of the system.20 Similarly, to

Bragg peak broadening, the tail of P(r) is inverse cubic in the

asymptotic regime. Hence, its second order moment becomes

linear in ln(r) with a slope proportional to the average dislo-

cation density.

Due to the finite volume illuminated by the electrons in

the SEM, a physically correct interpretation of experimental

stress distributions requires averaging the theoretical distri-

butions over the volume illuminated. This introduces a cut-

off in the inverse cubic decay of P(r). As a consequence, the

plot of M2 versus ln(r) deviates from the expected linear

behavior, as demonstrated in Fig. 1(d), showing the second

order restricted moments corresponding to four “spatially

averaged distributions” calculated for circles with diameters

equal to 0.1rdl, 0.3rdl, rdl, and 3rdl, where rdl is the average

dislocation-dislocation distance. The curve without averag-

ing is also shown. As expected, the stress level at the cut-off

is decreasing with an increasing diameter or dislocation den-

sity. Therefore, during the evaluation of real data, the cut-off

introduced by the finite beam size should be considered

in the analysis. Since the characteristic linear size of the illu-

minated volume (of about 10� 10� 50 nm3)23,24 can be of

the same order of magnitude as the average dislocation-

dislocation spacing in a heavily deformed metal (of �30 nm

for q� 1015 m–2), the finite beam size could become a limit-

ing factor for the application of the method.

To check the reliability of the HR-EBSD method for dis-

location density evaluation, subsequent analyses were done

by HR-EBSD and XRD on the same crystal surfaces. The Cu

single crystals of rotated Goss orientation ð011Þ½01�1� were

cut by electrical discharge machining into cuboid shapes and

deformed by channel die compression up to the strain levels

of 6% and 10%. The compression was performed parallel to

the [110] plane normal, while the sample elongated along

the ½1�10� direction, and it was held fixed by the channel walls

along the [100] direction. Before deformation, HR-EBSD

and XRD analyses, the samples were electropolished.

The rotated Goss orientation deforms homogeneously in

channel die compression. According to the band contrast

FIG. 1. (a) Random and (b) relaxed dislocation configuration. (c) Internal

stress distributions obtained for the random (black curve) and the relaxed

(red curve) configurations. In the inset, the central part of the distributions is

enlarged. (d) The M2(r) vs. ln(r) for 4 different averaging box-sizes and

without averaging corresponding to the relaxed configuration.
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map shown in Fig. 2(a), a well defined dislocation cell struc-

ture develops already at 6% with an average cell size of

about 2–3 lm. (At 10% it is somewhat smaller.) The samples

were then characterized by XRD by measuring the 200 line

profile on the [100] surface. The measurements were done

with Cu Ka1
radiation in a Panalytical MRD diffractometer

equipped with a Bartels primary monochromator and a dou-

ble bounce analyser, both made of Ge.

The 200 peaks and their variances M2(q) versus ln(q)

are shown in Figs. 3(a) and 3(b), respectively. The disloca-

tion density is directly obtained from the slope of the lines

fitted to the asymptotic regime. The results given in the sec-

ond column of Table I were obtained using a diffraction con-

trast factor Cg¼ 0.397 corresponding to an equal dislocation

population in each slip system.

The EBSD scans were done with a step size of 100 nm

on a square grid covering an area of 25 lm� 30 lm.

The backscattered Kikuchi patterns were recorded with a

NordlysNano detector of 1344� 1024 pixels. The acquisition

was monitored with the AztecHKL software, which was also

used to calculate the pattern centers necessary for performing

the high-resolution evaluation. The stress at each measure-

ment point was determined with the cross-correlation method

of the Kikuchi patterns proposed by Britton and Wilkinson.16

Since the scanned area is much larger than the characteristic

size of the microstructure (dislocation cells with a size of

about 1 lm, see Fig. 2(a)), the probability distribution of inter-

nal stresses can be considered as a macroscopic quantity char-

acterizing the structure.

The r13 stress component map obtained on the sample

with 6% strain is plotted in Fig. 2(b). In agreement with the

band contrast map (Fig. 2(a)), the cell structure with typical

cell size of 2–3 lm is shown, where long range internal stress

develops in the cell interiors.2 The band contrast and the

stress maps are rather similar for the sample deformed up to

10% strain, but the cell size is smaller of about 1–2 lm.

The probability distributions of the r13 stress component

characterizing the undeformed and deformed samples are

plotted in Fig. 4(a). P(r13) is very narrow for the undeformed

sample, and it broadens with increasing deformation.

Remarkably, the tails of P(r13) extend outside values as

large as 61 GPa. Similar behavior was first reported by

Wilkinson et al. on the deformed polycrystalline Cu and fer-

ritic steel.19 Since one can clearly identify a linear regime on

the M2 versus ln(r13) plots (Fig. 4(b)), the broadening of

P(r13) can only be caused by the presence of dislocations

(other type of stress source would generate different decay in

the tail part20). This reasoning is also supported by the rather

narrow P(r13) distribution corresponding to the undeformed

sample. For stress values larger than about 2 GPa, the second

order restricted moments clearly deviate from the linear

dependence in ln(r13). As discussed above, this is the conse-

quence of the measuring setup and related to the unavoidable

averaging over the volume illuminated by the electron beam.

Nevertheless, the linear regime can be well identified on the

plots presented. (The cut-off is certainly absent on the vari-

ance of the X-ray peaks.) According to Fig. 1(d), the linear

region disappears when the size of the averaging zone equals

the mean dislocation-dislocation spacing. This imposes an

instrumental limit in the application of the method for

heavily deformed samples.

According to Eq. (4), the slope of the line fitted in the

asymptotic regime is proportional to the total dislocation

density. Its determination requires the knowledge of the

stress contrast factor Cr in Eq. (4), which can be calculated

according to Refs. 20 and 21. For the stress component rij

considered in the analysis, one has to evaluate the integral

Crij
¼ 1

G2j~bj2
ð2p

0

rrind
ij r;uð Þ

h i2

du; (5)

FIG. 2. (a) Band contrast map obtained on the sample deformed up to 6%

strain. (b) The r13 stress component map obtained by HR-EBSD on the

same sample. The stress levels indicated are relative values to the stress

level at the center of the scanned area.

FIG. 3. (a) 200 X-ray Bragg peaks corresponding to 0%, 6%, and 10%

strain. (b) The variance M2 vs. ln(q) of the peaks measured on the deformed

samples. The straight lines are fits to the asymptotic regime.

TABLE I. Total dislocation densities obtained by X-ray line profile analysis

and HR-EBSD together with the density of geometrically necessary disloca-

tions (GND) determined from HR-EBSD.

Strain qXRD (m�2) qEBSD (m�2) qGND (m�2)

6% 7.3� 1014 2.3� 1014 1.4� 1014

10% 1.2� 10152 1.3� 1015 2.5� 1014

FIG. 4. (a) The probability distribution of the r13 component at strains of

0%, 6% and 10%. (b) The corresponding variances M2 versus ln(q) for the

deformed samples, with the straight lines fitted to the asymptotic regime.
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where rind
ij is the stress generated by a dislocation with a

given line direction~l and Burgers vector ~b in the xy plane of

the coordinate system, in which the stress tensor is calculated

during the evaluation of the Kikuchi patterns. In Eq. (5),

ðr;uÞ denotes the polar coordinates in the xy plane. (Due to

the 1/r type of decay of the stress field generated by a dislo-

cation, the integral is independent of r.) Since in anisotropic

materials the stress field of a straight dislocation cannot be

always given in a closed analytical form,25 Cr can only be

calculated numerically. Moreover, since in most cases dislo-

cations of different types and line directions can exist in the

same structure, one has to calculate the appropriate weighted

average of Cr corresponding to given ~b and ~l. This issue is

out of the scope of this paper. For simplicity, we use the

value corresponding to an edge dislocation with line direc-

tion perpendicular to the sample surface. In this case,

Cr¼ 1/(8p(1 – �)2) where � is the Poisson number.20

The dislocation densities of the deformed samples are

summarized in the third column of Table I. The qEBSD values

given correspond to the average values obtained from the

stress components r13, r22, and r23. (Due to the deformation

geometry applied, the other two stress components r11 and

r12 are much smaller with much larger error, so they were

not taken into account.) For comparison, the geometrically

necessary dislocation density (GND) is also determined from

the ai3 components of the Nye’s dislocation density tensor

accessible by EBSD.26,27 As expected, the GND density is

always smaller than the statistically stored one. The values

for the latter obtained by XRD or HR-EBSD are in accept-

able agreement. At 10% strain, the difference is within a few

% of relative error, while at 6% strain the HR-EBSD gave

smaller q than the XRD by about a factor of 3. The last dif-

ference can be attributed first of all to the influence of the

larger dislocation cell size at 6% strain, resulting that the vol-

ume scanned during the EBSD measurement may not be

large enough to give a representative mean value for the dis-

location density. Another reason for the difference can be a

change in the main dislocation character and the population

of different slip systems with increasing strain. It seems that

the Cr used is not really relevant for the 6% strain case. The

issue requires further detailed investigations. However, it is

remarkable that the assumption considering only edge dislo-

cations gave good agreement with the XRD results at 10%

strain. This emphasizes the strong physical basis of the pro-

posed evaluation method.

Since, however, HR-EBSD provides maps, like stress,

GND, and orientation, one can determine microstructural

parameters characterizing the spatial distribution of the dis-

locations that are crucial for physically based plasticity

modeling. To demonstrate this potential of HR-EBSD, the

autocorrelation function (ACF) of the r13 stress component

obtained on the two deformed samples is provided (Fig. 5).

As it is shown in Fig. 5(b), the stress ACFs have an elliptical

symmetry and they decay as �lnðr=r0ð/ÞÞ (Fig. 5(c)), where

the length scale parameter r0 depends on the polar angle /.

This means the dislocation-dislocation correlation function

decays faster than a power law,28 but the correlation length

corresponding to r0 is rather large (several lm) and in con-

trast to the cell size it is increasing with deformation. This

finding seems to contradict with the principle of similitude,

but since the “long-range” stress autocorrelation is generated

by the GND walls, the evolution of their spatial arrangement

can lead to increasing autocorrelation length scale. As it is

found, the ratio of the GND and stored dislocation densities

are not constant (see Table I), so there are two “separate”

length scales in the system. More detailed analyses will be

published elsewhere.

In sum, HR-EBSD was traditionally used to determine

the GND density.26,27,29 With the analysis of the tail of the

stress probability-distribution function obtained from HR-

EBSD, the stored, total dislocation density present in the

sample can also be determined. Furthermore, analysing the

statistical properties of the different quantities, like stress

and GND maps, opens further perspectives for the applica-

tion of HR-EBSD in determining mesoscale parameters of

heterogeneous samples. These parameters are crucial for val-

idating the continuum theory of dislocations proposed during

the past decade.4–7
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