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From the traditional viewpoint of continuum plasticity, plastic deformation of
crystalline solids is, at least in the absence of so-called plastic instabilities,
envisaged as a smooth and quasi-laminar flow process. Recent theoretical and
experimental investigations, however, demonstrate that crystal plasticity is
characterized by large intrinsic spatio-temporal fluctuations with scale-invariant
characteristics: In time, deformation proceeds through intermittent bursts with
power-law size distributions; in space, deformation patterns and deformation-
induced surface morphology are characterized by long-range correlations,
self-similarity and/or self-affine roughness. We discuss this scale-invariant
behaviour in terms of robust scaling associated with a non-equilibrium critical
point (‘yielding transition’).
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1. Introduction

According to the traditional paradigm implicit in continuum models of plasticity,
crystalline solids are considered as homogeneous continua which, in the absence of
so-called plastic instabilities, deform under homogeneous loads in a smooth and
spatially homogeneous manner. Fluctuations are supposed to average out above
the scale of a ‘representative volume element’ which is assumed to be small in
comparison with the dimensions of the deforming body. Spatio-temporal deforma-
tion patterning may, according to this viewpoint, occur only if the deformation
process is macroscopically unstable due to some mechanism which produces strain
or strain rate softening. Macroscopic plastic instabilities of this type give rise to
spatio-temporal patterns in the form of stationary or travelling solitary waves
(see, e.g. the Scripta Materialia Viewpoint set edited by Kubin, Estrin and
Aifantis [1]) and to oscillatory and/or chaotic deformation modes (see the reviews
by Zaiser and Hähner [2] and by Kubin, Fressengeas and Ananthakrishna [3]). These
phenomena have been studied in some detail in conjunction with the general enthu-
siasm for nonlinear phenomena in the 1980s and early 1990s, but were generally
looked upon as representing some kind of scientifically interesting, but non-generic
behaviour, out of the ordinary and of limited practical importance.

The paradigm of plastic flow as a smooth process has a counterpart in the work
of materials scientists investigating the micromechanisms of crystal plasticity, viz.,
the motion of the line defects (dislocations) which in a crystal lattice carry discrete
‘quanta’ of slip. Due to the discreteness of dislocations, plastic flow on the
‘microscopic’ scale of individual dislocations is necessarily inhomogeneous in
space and often, due to the presence of localized obstacles, intermittent in time.
However, in line with the continuum paradigm, the prevailing viewpoint was that
microscopic deformation localization and intermittency are irrelevant as soon as
multiple defects are involved, since the incoherent superposition of individual defect
motions would result in a smooth and approximately homogeneous flow. It is an
assumption implicit in much of the materials science work on plasticity that lack of
coherency in the individual defect processes leads to deformation behaviour that is
statistically homogenous on the mesoscopic scale of multiple defects. This assump-
tion is also convenient from a modelling viewpoint, since it allows us to draw direct
conclusions from the properties of individual defects, or from their pair interactions,
on the macroscopic material behaviour.

Recently, however, the traditional paradigm of ‘stable’ plastic deformation as a
smooth and steady flow process has been challenged both from an experimental and
from a theoretical point of view (see, e.g. [4–8]). From these works, a quite different
picture of plastic flow emerges: Instead of the incoherent motion of individual
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defects, one finds coherent bursts of activity with long-range correlations both in
space and in time. Such correlated bursts are detected in situations where the
traditional paradigm leads one to expect to find a smooth and homogeneous flow.
The properties of these bursts also differ from those commonly associated with
plastic instabilities: Instead of coherent spatio-temporal oscillations one finds
random bursts with scale-free size distributions, instead of plastic wave propagation
one sees long-range correlated deformation patterns with self-similar or self-affine
characteristics, and instead of the emergence of characteristic internal length and
time scales one observes scale-free behaviour in space and in time. In short, the
picture is that of critical phenomena commonly associated with phase transitions,
rather than that of coherent nonlinear behaviour.

In the present review we summarize experimental and theoretical work on the
(almost) scale-free fluctuation phenomena that can be observed in deforming
crystals. In the rest of the introduction, we give a brief summary of continuum
mechanics approaches towards crystal plasticity, which mainly serves to introduce
relevant terminology used by the continuum mechanics community. We also discuss
the yielding of a crystal on the dislocation level (dislocation depinning); in this
context we present the reader with a set of phenomena that have been studied by
statistical physicists in the general context of the dynamics of elastic manifolds in
random media, and which will recur in one form or another throughout the subse-
quent chapters. In our section on experimental observations, we discuss in some
detail acoustic emission (AE) measurements which are possibly the most useful
available tool for monitoring the temporal dynamics of plastic flow in situ. We
also discuss the surface-based in situ and post mortem investigation of deformation
patterns based on the study of traces of dislocation motion (slip lines), and the
analysis of deformation-induced changes in the overall surface morphology (surface
roughening). We then discuss the theoretical modelling of flow phenomena in terms
of the dynamics of interacting dislocations, in terms of phenomenological continuum
models describing the evolution of plastic strain above the dislocation scale, and
in terms of phase-field models which in a sense are in between the former two
approaches. We demonstrate that these approaches result in a consistent picture
of the main characteristics of the ‘yielding transition’ which can qualitatively or
semi-quantitatively account for many of the pertinent experimental observations,
though several open questions remain. It is important to note that the present review
does not account for all types of scale-free behaviour in plastically deforming
crystals: We exclude the entire realm of plastic instabilities, in particular the
scale-free statistics of load drops associated with the so-called PLC effect [3]. We
also exclude from our discussion the scale-free defect microstructures which emerge
during deformation of crystals in certain high-symmetry orientations [9, 10] but are
absent under other deformation conditions and may, hence, represent a non-generic
feature.

1.1. Continuum mechanics of crystal plasticity

We first discuss the conventional continuum mechanics approach towards crystal
plasticity. Besides illustrating the pertinent concepts and mindset, this serves to
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introduce a set of notations that will structure our discussion throughout the
present review.

Plasticity, reversible and irreversible deformation Plastic deformation can be loosely
defined as any deformation of a solid body that persists after the driving force
applied to the deforming body is removed. Of necessity this implies changes in
neighbourhood relations between atoms. In general, plasticity is isochoric, i.e. the
volume of the deforming body is not changed. Plastic deformation is always an
irreversible process in the thermodynamic sense, but conversely not every
thermodynamically irreversible deformation process is plastic: viscoelastic behaviour
dissipates energy, even though the initial shape of the body is restored once the forces
are removed (no plasticity), viscous flow of a liquid entails both dissipation and an
irreversible change in shape, but the deforming body is not solid (i.e. it does not
possess a finite yield stress, cf. below). In a plastically deforming solid, we may split
the total strain tensor ! into an elastic and a plastic part. Throughout this paper
we adopt a small-strain formulation, such that an additive decomposition is feasible:

! ¼ !el þ !pl: ð1Þ

In a linearly elastic material the elastic strain is related to the stress D via !el ¼ C%1D
where C is Hooke’s tensor of elastic moduli. If the stress is removed, the plastic strain
!pl remains.

Crystal plasticity, crystallographic slip Plasticity of crystalline solids is constrained
by the fact that any occurring atomic rearrangements must preserve the crystal
lattice structure. (We exclude from our discussion transformation-induced plasticity,
where deformation is due to a stress-driven transition between crystalline phases
with different lattice structures.) This implies that deformation must occur by
shear of adjacent lattice planes such that the displacement of one plane against
the other is by a lattice vector contained in the plane. A set of crystallographic planes
characterized by their common unit normal vector n, and a corresponding lattice
vector b (also called the Burgers vector), constitute a slip system. In most crystals,
deformation is observed on a small number of slip systems only, often corresponding
to the most densely packed planes and lattice directions (e.g. deformation of face-
centred cubic crystals occurs usually on slip systems of the type f111g[110]).

The plastic strain tensor !pl can be built out of the shear strains on the different
slip systems:

!pl ¼
X

i

!ðiÞMðiÞ, MðiÞ ¼ 1

2b
bðiÞ & nðiÞ þ nðiÞ & bðiÞ
h i

: ð2Þ

Here the index i distinguishes the different slip systems, !(i) are the respective scalar
shear strains, and b is the modulus of the Burgers vector (for simplicity assumed
the same for all slip systems). The projection tensors MðiÞ are symmetrized tensor
products of unit vectors in the respective slip plane normal and slip directions.

The driving force for slip on a given slip system is the respective resolved
shear stress "(i), which is the inner product of the stress tensor D and the projection
tensor MðiÞ:

"ðiÞ ¼ MðiÞ ' D: ð3Þ

188 M. Zaiser
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To specify the elastic–plastic material behaviour, one has to provide constitutive
relations which relate the stress to the plastic strain and possibly to the strain rate
and other variables. In crystal plasticity, these are relations between scalar variables
(shear strains, resolved shear stresses). To avoid cumbersome notation, in the
following we adopt a strictly scalar formulation by focusing on shear deformation
on a single slip system. Accordingly, we drop the superscript ðiÞ.

Constitutive relations The simplest elastic–plastic models continue the elastic stress–
strain relation into a relationship between the stress and the strain in the plastic
regime. The basic type of such rate-independent constitutive models is commonly
called ideal plasticity (figure 1, left). In this case, the plastic strain in a material element
remains zero unless the stress reaches a critical value "y (yield stress) and then increases
indefinitely. This corresponds to the assumption of a material that cannot support any
shear stresses above the yield stress: at yield the solid effectively turns into an ideal
fluid; upon unloading it immediately re-assumes the properties of a linear elastic solid,
while the permanent shear deformation remains (dashed line in figure 1, left).

A generalization of this type of constitutive behaviour is to assume that, in the
plastic regime, the stress required to deform a material is an increasing function of
strain (strain hardening). In the stress–strain graph the onset of plasticity in this case
corresponds to a change in slope (figure 1, right). The slope of the stress–strain graph
"ð!Þ in the plastic regime is called the strain hardening coefficient # or, in continuum
mechanics language, the tangent modulus. Again, it is important to keep in mind
that the elastic and plastic regimes not only differ in the slope of the stress–strain
graph, but that the physical processes are fundamentally different (reversible vs.
irreversible deformation), as becomes again evident upon unloading (dashed line
in figure 1, right).

A different class of models considers plasticity as a time-dependent flow process.
Linear viscoplasticity assumes that the shear strain rate _! is zero up to a critical stress
(again the yield stress) and then increases linearly with stress (figure 2):

_! ¼ 1

$

ðj"j% "yÞ signð"Þ, j"j > "y,

0 else:

!
ð4Þ

τ

τy

γγpl

τ

τy

γpl γ

θ

Figure 1. Different types of rate-independent plasticity; left: ‘ideally plastic’ behaviour;
right: plasticity with strain hardening.
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In this equation, the sign function indicates that the direction of shearing is dictated
by the sign of the driving stress, whereas the velocity depends on the excess of the
driving over the yield stress. $ is a viscoplastic rate coefficient. A viscoelastic solid
behaves like a solid for stresses below and like a Newtonian liquid for stresses above
the yield stress (‘yield-stress liquid’).

In a viscoplastic solid, the stress required for deformation is a function of the
deformation rate (‘flow stress’). In particular, if we impose a constant deformation
rate _!0, from equation (4) the stress for steady-state deformation becomes

"fð _!Þ ¼ "y þ $ _!0, ð5Þ

i.e. the flow stress increases with increasing deformation rate. Rate-independent
plasticity is recovered in the limit of small $ ( "y= _!0.

Linear viscoplasticity can be generalized to account for strain hardening, by
assuming that the critical stress at which flow initiates is an increasing function of
the plastic strain, "y ! "yð!Þ in equation (4). Other generalizations may include
nonlinear relationships between stress and strain rate, and the inclusion of additional
variables such as temperature, or of internal variables describing the material
microstructure.

Plastic instabilities and stable plastic flow Under ‘normal’ deformation conditions,
a strain hardening viscoplastic material responds to a homogeneous driving stress
in a spatially homogeneous manner. Under certain conditions, however, small
perturbations of a homogeneous flow mode may become undamped, and one is
dealing with a plastic instability. We consider linear viscoplastic flow with a generic
strain dependence of the yield stress. In the plastic regime we have from equation (4)

_! ¼
" % "yð!Þ

$
, ð6Þ

where " is now understood as an externally applied shear stress which we take
without loss of generality to have positive sign. One may now consider the evolution
of small local perturbations %! of some homogeneous deformation mode !0(t) – for
instance, !0ðtÞ ¼ _!0t for a constant imposed strain rate _!0, or the response !0(t) to

γ2

γ1

γ –> 0

γ

τy τ γ

τ

τy

Figure 2. Linear viscoplasticity; left: strain rate vs. stress; right: stress–strain curves for
driving at different rates _!1 > _!2.
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a stress " ¼ _"t ramped up at a constant rate. The evolution of perturbations is in
either case given by

% _! ¼ % #ð!0Þ
$

%!, # ¼
@"y
@!

, ð7Þ

provided that the external stress is unchanged by the perturbation. Perturbations
become undamped if either the tangent modulus # or the viscoplastic coefficient $
turn negative. The first case is referred to as strain softening, the second as strain rate
softening instability. This terminology can be rationalized from equation (5) for the
flow stress: In case of strain softening the partial derivative @"f=@!j _! and in case of
strain rate softening the partial derivative @"f=@ _!j! become negative.

Plastic instabilities give rise to various kinds of interesting phenomena like non-
linear oscillations, travelling waves, deformation localization, patterning and chaos.
An overview of these phenomena can be found elsewhere [2, 3]. Generally speaking,
instability of the homogeneous deformation mode reveals the presence of internal
length and time scales (for the role of internal length scales in plastic instabilities and
the related problems for constitutive modelling, see, e.g. Aifantis [11, 12]; for the
problem of internal time scales and the relationship between strain rate softening
and Hopf bifurcations, see Hähner and Zaiser [13]).

In the context of the present paper, however, we are interested in collective
phenomena during ‘stable’ plastic deformation. In this context it is useful to come
back to the simplest plasticity model: that of a rate-independent ideally plastic
material. From the point of view of plastic stability/instability, deformation of
such a material is marginally stable both in the strain and strain rate softening
sense, since both the hardening and viscoplastic coefficients are by definition
equal to zero. Hence, fluctuations may become relevant on all scales, and it is not
astonishing that different kinds of critical phenomena may be observed as soon as
one approaches the yield stress. Of course, rate-independent ideal plasticity does
not exist in real materials – but it is not a completely off-the-mark approximation
either: If we measure stresses in units of the shear modulus G, then the characteristic
hardening rates of most crystalline materials are small (typically 10%4 <
#=G < 10%2). The same is true for the rate-dependent contribution to the flow stress,
which is small at least in fcc and hcp metals and for deformation rates accessible in
standard deformation testing. In consequence, deforming crystals can often be envi-
saged as slowly driven non-equilibrium systems whose internal dynamics are char-
acterized by intermittent jumps between metastable near-equilibrium configurations
of the defect microstructure: Most of the time, almost nothing is happening in most
of the crystal volume, while plastic flow occurs through intermittent bursts of activity
which are associated with collective rearrangements in the microstructural pattern
and lead to sudden increments in strain [4, 14]. To better understand the nature of
these rearrangements, it is necessary to envisage plasticity on the level of crystal
dislocations.

1.2. Crystal plasticity on the dislocation level: yield stress
and depinning transition

Dislocations and plasticity The physicist’s approach towards plasticity has always
focused on the elementary mechanisms of plastic flow in a material with a given
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atomic structure, rather than on constitutive equations for the flow of a continuous
medium. The elementary mechanism of crystallographic slip is not the rigid sliding of
lattice planes above each other, but the expansion of a slipped area. The boundary of
a slipped area is a one-dimensional lattice defect: a dislocation. A dislocation line is
characterized globally by the slip plane and by the Burgers vector of the correspond-
ing slip system, and locally by a unit tangent vector t characterizing the line
direction. Depending on the angle between t and b, it is conventional to distinguish
edge (t ? b), screw (t k b) and mixed segments. A shear stress " acting in the disloca-
tion slip system creates a force per unit length on the dislocation (Peach–Koehler
force, [15]). The component of this force in the dislocation glide plane (with normal
vector n) is given by

FPK ¼ "b½t* n+: ð8Þ

This force perpendicular to the dislocation line acts as the driving force for
dislocation glide: it moves the dislocation such as to shear the material in the
direction imposed by the slip geometry and the sign of the stress ".

The lattice around a dislocation is distorted: dislocations possess long-range
stress fields. The stress field of a straight dislocation is given by

"DðrÞ ¼
Gb!ð#Þ

r
, ð9Þ

where # is the angle in the plane perpendicular to the dislocation, r is the vertical
distance from the dislocation, and the function ! has zero average. The stress field of
a curved dislocation can, at least outwith the immediate vicinity of the dislocation
line, be considered as a superposition of stress fields of short straight segments,

"SðrÞ ¼
Gb"ð#,&Þds

jrj2
, ð10Þ

where r is now the vector connecting the segment to the point under consideration,
ds is the length of the segment and " is another angle-dependent function whose
average over the unit sphere vanishes (for explicit expressions, see [16]). The long-
range stresses associated with dislocations or dislocation segments lead in the case of
curved dislocations to self-interactions (which tend to keep the dislocation straight),
and in general to interactions between different dislocation lines. Plasticity on the
dislocation level corresponds to the collective dynamics of a system of interacting
elastic lines under the action of external driving forces.

Leaving for the moment the question of dislocation creation aside (most
crystalline solids contain appreciable densities of dislocations resulting from crystal
growth and preparation history), a crystal will yield plastically if the applied stress is
sufficient for the sustained motion of a generic lattice dislocation. In general, this
motion will in turn increase the dislocation density, as the expansion of dislocation
loops increases the dislocation length contained in the crystal. (The generation of
dislocations ex nihil requires stresses which are orders of magnitude above those
required to move existing dislocations; this is a process which is hardly relevant
for plasticity except in extreme cases such as the deformation of dislocation-free
whiskers.)
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Hence, from the dislocation point of view yielding is the onset of sustained
motion of a generic dislocation: Yielding is dislocation depinning. We will first
consider the depinning of a single dislocation (or a hypothetical population of
non-interacting dislocations), which reduces to the well-investigated problem of
a single one-dimensional elastic manifold moving through a two-dimensional
disordered medium. Even though this picture is not fully realistic (real dislocations
do interact over long distances), it will be useful for introducing relevant concepts
and notations of the literature on depinning transitions.

Depinning transition of a single dislocation We envisage a dislocation gliding in the
z¼ 0 plane. The dislocation is assumed to be on average straight and to run along
the x direction. The Burgers vector is b ¼ bey (edge dislocation). A shear stress " is
applied to the considered volume element from outside and creates an external
driving force acting on the dislocation. If the dislocation line is not compeletely
straight, elastic interactions between different segments will create a stress that
tends to straighten the dislocation; for small perturbations y(x) of a straight line
this stress can be written as

"selfðxÞ ¼
ð
yðxÞ % yðx0Þ
# $

#Dðx% x0Þdx0, ð11Þ

where the stress kernel #D decreases in space like 1=jx% x0j3 (for explicit expressions,
see [17]). In the theory of depinning, it is usual to classify elastic kernels in terms
of their long-wavelength behaviour in Fourier space. A 1/r3 kernel acting on a
one-dimensional manifold scales like jkj2 with logarithmic corrections, which puts
the problem into the realm of local elasticity: This is why the self-interaction of
a dislocation can be represented to a good approximation by a local line tension.

In addition to its self-interaction, the dislocation interacts with other defects
(atomic defects or other dislocations) which create an effective pinning force.
We assume a random defect arrangement which gives rise to a spatially fluctuating
internal stress field %"ðrÞ with zero average and short-range correlations:

h%"ðrÞi ¼ 0, %"ðrÞ%"ðrþ r0Þ
% &

¼ %"2
% &

'jj%ðx0Þ f"ð y0Þ, ð12Þ

where f" is a short-ranged correlation function of characteristic range '?, and 'k and
'? are correlation lengths of the fluctuating stress field in the directions parallel and
perpendicular to the dislocation, respectively. The pinning defects are assumed to be
immobile (quenched disorder).

Moving dislocations experience a friction force due to scattering of phonons and
electrons. Since the effective mass of dislocations is generally small, their motion is
under most circumstances overdamped, i.e. the velocity is proportional to the acting
force. For a straight dislocation with small perturbations, the equation of motion of
the dislocation line becomes

1

$Db
@tyðxÞ ¼ " þ

ð
yðxÞ % yðx0Þ
# $

#Dðx% x0Þdx0 þ %"ðx, yÞ, ð13Þ

where $D is the dislocation drag coefficient. Equation (13) is a variant of the
quenched Edwards–Wilkinson equation describing the motion of an elastic interface
(elasticity mediated through the kernel #D) through a disordered medium

Scale invariance in plastic flow of crystalline solids 193

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
K
a
r
l
s
r
u
h
e
r
 
I
n
s
t
 
f
u
r
 
T
e
c
h
n
o
l
o
g
i
e
 
K
i
t
]
 
A
t
:
 
1
4
:
0
0
 
9
 
D
e
c
e
m
b
e
r
 
2
0
1
0



(characterized by the quenched random field %"ðx, yÞ) under the action of an external
driving force. Since this problem has received extensive attention in the literature
(see the reviews by Leschhorn et al. and by Fisher [18, 19], or the more recent works
of Le Doussal and co-workers [20, 21]), we here only summarize the main results in
dislocation language:

. Below a critical driving stress "c, the dislocation gets asymptotically pinned
(v ¼ h@tyi ! 0 for t ! 1 and " < "c). The magnitude of the critical stress
depends on the statistical properties of the pinning field %", and on the relative
magnitude of the pinning and self-interactions. Practically all the metallurgical
literature on the problem is devoted to evaluating this critical stress for the
various types of pinning fields that may be encountered in different metals and
alloys. Some classical estimates can be found in the works of Labusch, Larkin
and Friedel [15, 22–24]. While the pinning strength of a given disordered
microstructure is of paramount importance for applied metallurgy (dislocation
pinning may determine the strength of the turbine blades in your aircraft), we
will adopt a statistical physicist’s stance and focus on the universal dynamical
properties at the depinning transition, for which the yield stress (being a
non-universal quantity anyway) is of little relevance.

. At the depinning stress "c, a dynamic phase transition occurs from a pinned to
a moving phase. This transition is second-order-like, with the mean velocity of
the dislocation – which plays the role of an order parameter – increasing like

v / ð" % "cÞ( ð14Þ

where ( is called the velocity exponent. Well above the critical stress
(for " , h%"2i1=2), the disorder becomes irrelevant and the dislocation velocity
increases linearly with stress. This situation is schematically depicted in figure 3.

. Near the critical stress the dislocation assumes a self-affine lineshape.
A self-affine curve y(x) is statistically invariant under the transformation
x ! )x, y ! )*y, where * is the roughness exponent. Scale invariance is
delimited by an upper correlation length ' which diverges as one approaches
the critical stress,

' / j" % "cj%+, ð15Þ

with the correlation length exponent +. As a consequence of the self-affine
behaviour, the mean height difference between two points along the line scales
like

jyðxÞ % yðxþ l Þj
% &

/ l*fyðl='Þ, ð16Þ

where the scaling function fy has the asymptotic properties fyðuÞ ¼ 1, u ( 1
and fyðuÞ ¼ u%*, u , 1. Roughening of an initially straight dislocation starts
on small scales, over domains of size l / t1=z where z is called the dynamic
exponent. Near the critical stress, the transient dynamics is described by the
Family–Vicsek scaling form [25]

yðxÞ % yðxþ l Þ
'' ''% &

¼ l*fy
l

tð1=zÞ

( )
, ð17Þ

194 M. Zaiser

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
K
a
r
l
s
r
u
h
e
r
 
I
n
s
t
 
f
u
r
 
T
e
c
h
n
o
l
o
g
i
e
 
K
i
t
]
 
A
t
:
 
1
4
:
0
0
 
9
 
D
e
c
e
m
b
e
r
 
2
0
1
0



which is also observed in a wide class of other problems including the thermal
roughening of elastic manifolds and diverse models of surface growth.

. Near the critical stress, the motion of the dislocation proceeds through
intermittent avalanches during which segments rapidly sweep forward before
they get trapped again. In the pinned phase, release of an avalanche from a
trapped configuration is contingent upon a small increase in the external stress.
In the moving phase, on the other hand, the system never gets completely
trapped and the definition of an ‘avalanche’ therefore requires the introduction
of a velocity threshold. In either case, the avalanches exhibit a power-law size
distribution,

pðsÞ ¼ s%,s fsðs=s0Þ, ð18Þ

where the avalanche size s corresponds to the swept area, ,s is the avalanche
exponent, and the scaling function fs (fsðuÞ ! 1 for u ! 0, fsðuÞ ! 0 for
u ! 1) decays for large u faster than algebraically. The cut-off of the
power-law distribution corresponds to an avalanche of characteristic extension
' in the x direction, hence s0 - '1þ* / j" % "cj%+ð1þ*Þ. The duration of an
avalanche is related to its extension in the x direction through the dynamic
exponent, t / xz, and to its size by t / sz=ð1þ*Þ.

This type of behaviour is found in many physical situations where elastic
manifolds move through some kind of pinning field. Examples include dislocations
[17], vortex lines in superconductors, cracks [19], domain walls in ferromagnets [26],
grain boundaries [27], contact lines in wetting, and sliding interfaces in friction [28].
In the following paragraph, we give scaling relations as well as a ‘catalogue’ of
critical exponents for different dimensionality of the interface and range of its elastic
self-interaction.

Critical exponents and scaling relations for depinning transitions We consider a
d-dimensional interface moving in dþ 1 dimensions (for a dislocation moving on

<v>

(τ−τc)
β

τc τ

Figure 3. Stress–velocity relation for a depinning dislocation.
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its glide plane, d¼ 1). We exclude overhangs, so the interface can be characterized by
a single-valued function. The elastic self-interaction of the interface is characterized
by an elastic kernel #ðrÞ (R 2 dÞ whose Fourier transform scales like jkja for jkj ! 0,
i.e. in real space it decays like jrj%d%a, or possibly faster for a¼ 2. The interface
moves under the action of a generalized force (or stress) " across a time-independent
random force field of zero average and with short-range spatial correlations.

The main characteristics of the dynamics have been discussed in the previous
section for the special case of an isolated dislocation. Numerical values for the
velocity, correlation length and roughness exponents are compiled in table 1,
including results from functional renormalization (Le Doussal et al. [21]) and from
simulations (references cited). We also include values for the mean-field case which
become valid above the critical dimension dc ¼ 2a [19, 26].

In the following we compile some scaling relations that may be useful for the
later discussion. All relations will be motivated by intuitive scaling arguments; for
a rigorous derivation the reader is referred to the literature.

. A relation between the dynamic and velocity exponents is found by noting that
the mean velocity of the interface is governed by the largest jumps, during
which segments of linear extension ' move over distances '*. The time it takes
the interface to reach an (almost) pinned configuration is t / 'z, and
' / ð" % "cÞ%+ in the moving phase. Hence the velocity exponent obeys the
scaling relation

( ¼ +ðz% *Þ: ð19Þ

Table 1. Critical exponents for interface depinning as a function of the parameters d and a;
functional renormalization results (FRG, expansion in " ¼ dc % d Þ after Le Doussal et al. [21];

mean-field results after [26].

d a FRGOð"Þ FRG Oð"2Þ Simulation

Roughness 1 2 1.00 1.43 1.25. 0.05 [18]
* 2 2 0.66 0.86 0.75. 0.02 [18]

3 2 0.33 0.38 0.34. 0.01 [18]
1 1 0.33 0.47 0.34. 0.02 [29]

MF 0

Correlation length 1 2 0.75 0.98 1.00. 0.05 [30]
+ 2 2 0.67 0.77 0.77. 0.04 [31]

3 2 0.58 0.61
1 1 1.33 1.58 1.52. 0.02 [29]

MF 2/d

Velocity 1 2 0.67 0.31 0.25. 0.03 [18]
( 2 2 0.78 0.62 0.64. 0.02 [18]

3 2 0.89 0.85 0.84. 0.01 [18]
1 1 0.78 0.59 0.68. 0.06 [29]

MF 1
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. The avalanche exponent can be related to other exponents by considering the
average susceptibility which is proportional to the mean avalanche size,
- ¼ @hyi=@" / hsi. On the one hand, - / '*='1=+, hence

- / ð"c % "Þ%ð1þ+*Þ: ð20Þ

On the other hand, the mean avalanche size is

hsi / s2%,
0 , s0 / ð"c % "Þ%+ðdþ*Þ: ð21Þ

Combining these relations, we find the exponent relation [26, 32]

, ¼ 2% 1þ *+

+ðdþ *Þ
: ð22Þ

. Additional relations can be found for the relation between size and duration of
an avalanche, and for the relaxation of the mean velocity near the critical
stress. The size of an avalanche of linear dimension x is s ¼ xdþ*, and the
corresponding time scale is t ¼ xz, hence

t / sz=ðdþ*Þ: ð23Þ

For the velocity relaxation near the critical point we find the scaling v / x*%z

and with t / xz we get

v / t2=z%1 ¼ t(=ð+zÞ: ð24Þ

In the following these exponents and scaling relations will appear in different
contexts. In all of these the mean position of the ‘interface’ corresponds to a strain-
like variable (for instance, the mean distance hyi travelled by a dislocation corre-
sponds, for a hypothetical ensemble of non-interacting dislocations of density ., to
the macroscopic strain ! ¼ .bhyi). The word ‘interface’ should be taken with a grain
of salt: whereas a single dislocation clearly is an interface between a slipped and
a non-slipped region, and a dislocation wall is an interface between two regions of
different lattice orientation, the intuitive notion of an interface becomes much more
spurious if one is dealing with a dislocation procession or pile-up. In section 3 we
will even encounter a model where the ‘interface’ coordinates are the Cartesian
coordinates of a volume element in the deforming crystal, and the direction into
which this interface is ‘moving’ corresponds to the local shear strain. The scaling
relations and exponents characterizing the dynamics are unaffected by such semantic
subtleties.

2. Experimental investigation of fluctuation phenomena in plastic flow

2.1. Acoustic emission measurements

2.1.1. Experimental methodology. As dislocations move during plastic deforma-
tion, they lose energy to the phonon and electron systems in the crystal. In many
situations, the resulting drag force is so large that dislocation motion effectively
proceeds in an over-damped manner. If dislocation motions are sufficiently rapid,
the energy loss cannot be exclusively envisaged in terms of dissipation and heat
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generation, but part of the energy is emitted in the form of travelling acoustic waves
which can be detected as an acoustic emission signal. Therefore, acoustic emission
recordings may be used as a tool for monitoring dislocation activity during plastic
deformation.

A major problem in the interpretation of acoustic emission signals is, however,
to establish the relation between the observed voltage record and the underlying
dislocation processes. The transmission function between the acoustic source and
the recorded signal is in general very complicated and, more importantly, the source
characteristics themselves have to be understood and related to the amplitude of the
emitted acoustic wave. Most investigations of source characteristics envisage the
expansion of a compact dislocation loop [33, 34], or a procession of loops emitted
from a common source [35]. Generally it is found that the amplitude of the emitted
acoustic wave is proportional to the velocity v of the expanding loop: hence the
acoustic power, which is the square of the amplitude, is proportional to v2.
In general, however, acoustic emission may be due to the simultaneous motion of
many dislocations or dislocation segments, rather than the expansion of a single
loop. Rouby and co-workers [33, 34] analyse the uncorrelated superposition of
events coming from different sources as a paradigm for a ‘continuous’ AE signal,
as well as a sequence of closely correlated events from one source which they use as a
paradigm for a ‘discrete’ AE burst. In reality, the situation may be more complicated
since the AE signal during a deformation avalanche may be produced by temporally
correlated dislocation motions at different locations which, owing to the long-range
interactions characteristic of dislocation systems, may be distributed according to
complicated spatial patterns with long-range correlations (see section 3.2). For a
burst during which N dislocation segments of characteristic length lmove collectively
at locations close to each other and with a constant velocity v, the peak acoustic
emission amplitude is [36]

A ¼ KNlhvi
r

/ K
l

r
_!: ð25Þ

In this equation, r is understood as the distance from the source to the acoustic
transducer and K is a constant containing material properties (sound velocities) as
well as transducer properties. It is seen from equation (25) that for burstlike emission
the acoustic emission amplitude is essentially proportional to the instantaneous
strain rate.

2.1.2. Acoustic emission in single- and polycrystals of ice. Very systematic and com-
prehensive investigations of the statistics of acoustic emission bursts have been
performed by Weiss and co-workers on ice single- and polycrystals [6, 7, 36–41].
Ice may be considered an ideal ‘model material’ for AE studies of crystal plasticity
for several reasons [38]: (i) Even at comparatively low stresses and temperatures close
to the melting point, plastic flow of ice proceeds by glide of dislocations (in most
other materials, at high temperatures and low stresses diffusional deformation
mechanisms become predominant). (ii) Single crystals of hexagonal ice Ih exhibit
very pronounced plastic anisotropy, as deformation occurs essentially by glide on
basal planes. As a consequence, deformation by dislocation glide on a single slip
system is robust in comparison with metals, where single slip is confined to very
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small strains. (iii) Transparency of the samples allows us to verify that AE activity
is not due to microcracking. (iv) Excellent acoustic coupling can be achieved by
freezing the transducers onto the sample surface.

In their studies, Weiss and co-workers focus on creep at elevated temperatures
(/%10'C) and low stresses (/1MPa). They observe an intermittent acoustic
emission signal composed of discrete AE bursts and systematically investigate the
statistics of the bursts and their temporal and spatial correlations.

Avalanche statistics In their investigations, Weiss et al. characterize the burstlike
AE signal from ice single- and polycrystals both in terms of the peak amplitudes
A ¼ max½AðtÞ+ and in terms of the acoustic energy E ¼

Ð
BA

2ðtÞdt where B denotes a
compact interval over which the AE intensity exceeds a given threshold (of course,
one has to check whether the statistics is robust against changes of the threshold
value). For single crystals, the observations indicate scale-free distributions of burst
amplitudes and energies (see figure 4),

pðE Þ / E%,E , pðAÞ / A%,A , ð26Þ

with exponents ,E - 1:6 and ,A - 2:0 that are approximately independent on stress,
strain, and temperature [40]. The distribution of time intervals $t between AE events
was also investigated. A cumulative distribution Pð$tÞ / $t%1 (i.e. pð$tÞ / $t%2

for the non-cumulative distribution) was reported by Weiss and co-workers in [37]
(insert in figure 4).
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Figure 4. Energy distribution of AE events recorded during creep deformation of ice single
crystals; temperature T ¼ 263K, resolved shear stresses on the basal plane as indicated in the
inset, after Miguel et al. [6]; insert: cumulative distribution of time intervals between AE events
recorded during creep of an ice single crystal at a resolved shear stress of 0.58MPa, after Weiss
et al. [37].
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Investigations on polycrystals show an altogether more complex picture [40, 41].
Unlike single crystals where the amplitude and energy distributions of AE bursts are
scale-free over the entire accessible amplitude/energy range, the burst amplitudes and
energies in AE signals of polycrystals have upper limits which increase with increa-
sing grain size. Furthermore, the avalanche exponents are reduced in comparison
with single crystals (,A - 1:35 in polycrystals). It has been inferred from these
observations that grain boundaries may act as efficient barriers to the propagation
of slip avalanches. The existence of such barriers may lead to substantial stress
concentrations (intergranular stresses), and it has been suggested that such overs-
tresses may explain the observed decrease in the avalanche exponent, as they may
help small avalanches to coalesce into larger ones, up to a scale governed by the
grain size [40, 41]. Even more complicated behaviour has been observed in poly-
crystals with a bimodal grain size distribution containing a few very large grains: In
these polycrystals, a single-crystal exponent ,A - 2 at small avalanche sizes and a
polycrystal exponent ,A - 1:35 at larger sizes have been observed simultaneously.

Spatial patterns and space–time correlation of deformation avalanches By using
multiple acoustic transducers, Weiss and Marsan [7] investigated the spatial location
of acoustic emission ‘events’ in ice single crystals. By recording the arrival times of
the acoustic signal at different locations and using spatial triangulation, they were
able to locate the points of origin of the AE signals emanating from large deforma-
tion events with an accuracy of about 400 mm, limited by the time resolution of the
recording device. They used the correlation integral method to analyse the spatial
pattern of the points of origin of the AE signals (i.e. the points where deformation
avalanches have initiated). Their results indicate a self-similar pattern with a correla-
tion dimension of DF - 2:5. The observed scaling regime extends over about 1.5
orders of magnitude; it is limited from above by the specimen size and from below
by the spatial resolution of the recording technique.

10−3 s 

Figure 5. Acoustic emission signal (amplitude vs. time) recorded during compression testing
of an Al polycrystal; after Imanaka et al. [42].
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The same investigation also revealed a space–time coupling in the avalanche
dynamics: Avalanches that are close in the sequence of events tend also to be closer
than average in space. This observation complements studies of the temporal
correlation of deformation events: An analysis of the temporal correlation function
revealed temporal clustering of deformation events [38] and a more detailed
investigation showed an enhanced ‘aftershock activity’ after big deformation
avalanches, with an average number NA of aftershocks that was found to be
proportional to a power of the avalanche amplitude, NA / A0:6 [39]. These findings
provide evidence for the existence of a coupling between different deformation events
that leads to their clustering both in space and in time.

2.1.3. Acoustic emission in metals and alloys. Acoustic emission studies have been
reported on various pure metals and alloys [33, 34, 42–44]. The observed AE signals
include both discrete bursts and continuous noise, sometimes occurring simulta-
neously in the form of discrete spikes with a continuous background [43].
Unfortunately, in the older literature there exist few statistical investigations of
burst characteristics, e.g. in terms of amplitude or energy distributions. Instead,
the traditional paradigm of plastic flow as a more or less continuous process led
many researchers to focus on the continuous background from which the discontin-
uous bursts were seen as a kind of pathological exception. For instance, Kiesewetter
and Schiller [43] report discrete dislocation bursts superimposed on a continuous
background signal but attribute only the continuous background to dislocation
motion. In line with this practice, most AE studies attempt to establish relations
between plastic flow characteristics and parameters of the AE signal that are
averaged over the fluctuations of the dynamics, such as the mean intensity or, in
case of burst-like signals, the mean burst rate.

Very recently, Richeton et al. have provided a statistical investigation of the
acoustic emission bursts that are generically observed in deformation of hexagonally
close-packed (hcp) metals and alloys [45]. This investigation demonstrates that AE
bursts in single crystals of Cd and ZnAl exhibit scale-free energy distributions with
exponents ,E - 1:5 that are very similar to those observed in ice single crystals. Also
other findings, such as the observation of temporal correlations between AE bursts,
were analogous. This result is remarkable in several respects: (i) The experiments on
hcp single crystals were conducted in tension at constant crosshead velocity, which is
a quite different loading mode from the constant-stress creep conditions under which
the ice results were obtained. (ii) The same scale-free distribution of burst energies
was found in hardening stage I (deformation by dislocation glide on a single slip
system), in hardening stage II (preferential deformation on a single slip system, but
strong forest hardening because of additional dislocation activity on secondary slip
systems), and for crystal orientations where deformation proceeds mainly by
twinning. These findings demonstrate a remarkable robustness of the scale-free
behaviour of AE signals in plastically deforming crystals and indicate that
intermittent ‘crackling’ noise [46] may be a universal signature of deformation by
crystallographic shear (slip or twinning).
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2.2. Deformation-induced surface patterns

Plastic deformation leads to characteristic surface phenomena which can be used to
monitor the flow process and gain information on plastic flow patterns. Along the
lines of intersection between the active slip planes and the surface, moving
dislocations leave behind them atomic-scale surface steps (‘slip lines’) which can
be considered as records of the dislocation movements which have produced
them. Characterization of plastic deformation using surface micrographs is an
‘old’ experimental technique which dates back to the 1950s. With the advent of
transmission electron microscopy, surface-based techniques fell somewhat out of
favour, since dislocation motion near free surfaces is inevitably affected by surface
effects – for instance, the presence of a free surface modifies the stress field such that
dislocations near surfaces experience image forces and may annihilate at the surface,
leading to the formation of a soft dislocation-depleted surface layer with a width of
a few (bulk) dislocation spacings. The problem of surface-induced artefacts is most
significant if one wants to study small-scale features (arrangement and motions
of individual dislocations or dislocation groups) but may be less critical if one is
looking for scale-free features.

As far as scale-free patterns in plastic flow of solids are concerned, surface-based
techniques have one distinct advantage: Surface investigations give the possibility
to characterize deformation-induced surface patterns from the atomic up to the
macroscopic scale in terms of a single type of experimental information (surface
height, positions of surface steps). Bulk techniques operating on different scales,
on the other hand, have to cope with the difficulty that the different techniques
(e.g. transmission electron microscopy and X-ray topography) yield qualitatively
different types of information. Data obtained by different techniques can therefore
not be simply stitched together to yield a comprehensive multiscale characterization.

In view of the availability of experimental techniques covering features from the
atomic to the macroscale, and the simplicity of compiling information from different
scale regimes into a comprehensive picture, surface techniques seem particularly
suited to monitor the multiscale organization of plastic deformation through
different stages of the deformation process and to detect scaling laws and scale-
free features. This may be done by looking at the distribution of slip lines on the
surface, which give local information on the deformation process in terms of the
positions where individual dislocations have left the surface producing units of slip,
or by looking at surface profiles which yield the corresponding integral information
about the global slip pattern.

2.2.1. Slip-line patterns. Slip lines emerging under single-slip conditions form
striated patterns of parallel lines (figure 6), and it was suggested already in the
1980s that the points of intersection of the slip lines with a line drawn normal to
them might form some kind of randomized Cantor set. This proposition was
followed up by Sprusil and Hnilica [47] and Kleiser and Bocek [48]. Sprusil and
Hnilica [47] tried to deduce a fractal dimension by determining the mean slip line
spacing from micrographs of different magnification. This is methodologically
spurious, as discussed in [10] in relation with the fractal analysis of dislocation
cell patterns. Kleiser and Bocek [48], on the other hand, provided a systematic
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investigation using various techniques (gap width distribution, box counting, and
correlation integral) to determine the fractal dimension of slip line patterns.
Their findings may be summarized as follows:

. Slip lines on the surface of a Cu single crystal that were generated within
a narrow strain interval (0:59 < ! < 0:69) exhibit a statistically self-similar
pattern over a range of scales between typically 0.06 and 2 mm. The
set of intersection points with a normal line has a fractal dimension of
D - 0:4%0:7, depending on the method used.

. Slip lines accumulating over a larger strain interval from the beginning of
deformation form a more or less homogeneous pattern without clear evidence
of self-similar behaviour.

These findings indicate long-range correlated fluctuations in the flow process
which, however, persist only over limited intervals of time (or strain). The investiga-
tions of Kleiser and Bocek, and Sprusil and Hnilica, were based upon the analysis of
optical surface micrographs dating from the 1950s and 1960s. A problem with these
micrographs is that they do not allow us to quantitatively resolve the height of the
slip steps, i.e. the number of dislocations that have exited the crystal along a given
slip line or, equivalently, the local strain concentration. The observed long-range
correlations in the slip-line pattern can therefore not be directly translated into
correlations in the strain pattern. A semi-quantitative analysis was provided by
Kleiser and Bocek who estimated the slip step height from the width of slip lines
visible on surface micrographs and used this to ‘weight’ the lines. Fractal dimensions
of the resulting weighted patterns were somewhat higher than those of slip-line
patterns with all visible lines given equal weight. A more quantitative analysis
could nowadays be provided by using atomic-resolution AFM to determine the
height and spacing of surface steps, but this remains still to be done.

2.2.2. Slip-line kinematography. By in situ optical observation of the surface of
a plastically deforming crystal (so-called slip-line kinematography), it is possible to
gain information about the dynamics of plastic flow. An overview of experimental

Figure 6. Slip lines on the surface of a Cu-30 at% Zn single crystal deformed in tension
at 77 K to a strain of 19.4%. Courtesy of H. Neuhäuser.
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methods can be found in the review by Neuhäuser [49]. Because of the necessity of
keeping in focus a small surface window which is imaged with high magnification,
the technique is not suited for studying the evolution of large-scale deformation
patterns, but it can give useful information about the temporal evolution of slip
lines or slip-line clusters (slip bands).

Clustering of slip is pronounced in alloys exhibiting so-called planar slip where
dislocations tend to move in large processions (pile-ups). In this case, one is dealing
with the dynamics of linear or almost linear dislocation arrays, rather than indivi-
dual dislocations. Scale-free behaviour has been observed in the growth kinetics of
surface steps, where the growth rate has been found to decay in inverse proportion
with the time elapsed from the onset of step growth (figure 7, [50]).

For a moving pile-up consisting of roughly equally spaced dislocations, the slip
step growth rate is proportional to the pile-up velocity. Since often only a small
number of slip steps are growing at a time [49], one may therefore attempt to relate
the observed time dependence of slip step growth to the velocity relaxation of a single
pile-up. The double-logarithmic plot in figure 7 indicates relaxation of the growth
rate (the pile-up velocity) according to v / t%1.0:1 over six decades.

According to the relations given in the introduction, a planar dislocation array
in a three-dimensional crystal falls into the class d ¼ 2, a ¼ 1, i.e. the depinning
transition of such arrays exhibits mean-field behaviour. For the velocity relaxation
near the critical point one then expects according to equation (24) and table 1 an
exponent (=ð+zÞ ¼ 1, which is in line with the experimental data. The length of the
scaling regime may be taken as an indication that driving of the dislocation arrays
occurs at stresses very close to the critical one.
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Figure 7. Growth rate of slip steps on the surface of Cu-30 at% Zn deformed at room
temperature as a function of the time passed after growth has started; after [50]. The line
is a power law with exponent %1.

204 M. Zaiser

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
K
a
r
l
s
r
u
h
e
r
 
I
n
s
t
 
f
u
r
 
T
e
c
h
n
o
l
o
g
i
e
 
K
i
t
]
 
A
t
:
 
1
4
:
0
0
 
9
 
D
e
c
e
m
b
e
r
 
2
0
1
0



2.2.3. Surface roughening in single- and polycrystals. Long-range correlations in
the pattern of surface steps can be detected indirectly through analysis of surface
profiles, even if the experimental resolution is not sufficient to resolve individual
surface steps. The relation between one-dimensional surface profiles evolving from
an initially smooth surface, and the plastic distortion at the surface, is straightfor-
ward: If we use a local coordinate system such that the x direction corresponds to
the profile direction and the y direction is normal to the average direction of the
deformed surface, then for small deformations the derivative yx ¼ @y=@x of the
profile y(x) is related to the component /pyx of the plastic strain tensor by

@y=@x ¼ /pyxðrÞ % h/pyxi ¼: %/pyxðrÞ: ð27Þ

By looking at an appropriately oriented surface and under single-slip conditions,
this can be directly translated into the shear strain fluctuation %!.

Correlations in the plastic strain pattern can therefore be detected by surface
profile analysis. In particular, if the strain fluctuations %/pyxðrÞ exhibit power-law
correlations this may lead to the emergence of self-affine surface profiles with
roughness exponent * > 0:5 [8], as discussed below.

Self-affine surface morphology Several recent investigations have been devoted to
self-affine scaling of the surfaces of plastically deformed metals. Zaiser et al. [8]
applied a combination of atomic force microscopy (AFM) and scanning white-light
interferometry (SWLI) to quantitatively characterize the surface of Cu polycrystals
over a range of scales between 10 nm and 2mm. Cu polycrystals of 99.9% nominal
purity were plastically deformed at room temperature, and two-dimensional surface
maps were determined at various degrees of deformation up to an engineering strain
of 23% (tensile stress 215MPa). The sequence of surface investigations was ended
at the onset of macroscopic deformation localization (necking).

Multiple one-dimensional profiles were obtained from the surface maps in the
directions both parallel and normal to the tensile axis. Two typical AFM and SWLI
profiles are shown in figure 8. Roughness exponents were obtained by plotting mean
height differences hjyðxÞ % yðxþ LÞji vs. the separation distance L as shown in
figure 9. Typical double-logarithmic plots exhibit linear scaling regimes extending
between 0.05 and 5 mm for the AFM and between 0.5 and 50 mm for the SWLI
profiles. The upper end of the SWLI scaling regime (the upper correlation length)
was found to be strain-independent; it coincides with the mean grain size of the
polycrystalline aggregate. Roughness exponents deduced from the slope of the scal-
ing regimes were similar for AFM and SWLI profiles, indicating continuous scaling
over almost four orders of magnitude. The exponents were checked by also applying
a wavelet analysis method proposed by Simonsen et al. [51] to the surface profiles.
Both techniques revealed a roughness exponent decreasing from an initial value close
to unity, during a strain interval of about 5%, towards an asymptotic value of
* - 0:75. Surface profiles taken in the directions normal and parallel to the tensile
axis were found to yield similar exponents.

Self-affine scaling of deformed polycrystal surfaces is also evident from the
probability distributions of surface height differences. Distributions pLð$yÞ of height
differences $y :¼ yðxÞ % yðxþ LÞ can be collapsed by re-scaling pLð$yÞ ¼
pL0 ððL=L0Þ*$yÞ with a roughness exponent * - 0:75 (figure 10).
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The evolution of self-affine surface roughness was also studied on KCl single
crystals deformed in compression [52]. Alkali halides offer the advantage that very
smooth initial surfaces can be produced by cleavage. Deformation experiments
on [100]-oriented crystals revealed a typical three-stage hardening curve where
deformation at small strains (Stage I) proceeds in single slip with a comparatively
low hardening rate, whereas at higher strains multiple slip systems become active
and the strain hardening coefficient increases (Stage II, see figure 11). Surface
characterization was done throughout these two hardening regimes using SWLI.
Profiles taken in Stage I (figure 12, left), did not show any limits to the scaling regime
below the profile length of 1.5mm. The roughness exponent * - 0:65
determined from the profiles is somewhat lower than what is observed in polycrystals
and does not depend appreciably on strain. Roughness exponents *q were also
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Figure 8. Surface profiles of a Cu polycrystal taken at / ¼ 9:6%; top: AFM profile; bottom:
SWLI profile; the x direction is parallel to the direction of the tensile axis; roughness plots
corresponding to these profiles are shown in figure 9.
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determined from higher-order correlation functions scaling like hjhðxÞ % hðxþ
LÞjqi1=q / L*q . As expected for self-affine scaling, exponents *q, 1 0 q 0 4, were
found to be approximately independent of the order q of the correlation function.

In Stage II, on the other hand (figure 12, right), the profiles have a more complex
structure with a local roughness exponent * - 0:7 on small scales which on larger
scales possibly crosses over to an exponent of about * - 0:5. At the same time, the
roughening of the surface accelerates markedly (open data points in figure 11).
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Figure 9. Roughness plots (mean height difference vs. distance along profile) for AFM and
SWLI profiles obtained from the as-polished surface and after deformation to strains of
9.6 and 17.8%; the profiles for / ¼ 9:6% are shown in figure 8.
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Figure 10. Scaling collapse of height difference distributions obtained from AFM and SWLI
profiles of Cu polycrystal surfaces (/ ¼ 9:6%); insert: distributions normalized to unit variance
for L ¼ 40 nm (dashed line), L ¼ 5 mm (full line) and L ¼ 160 mm (dotted line).
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The self-affine scaling of surface profiles y(x) observed in Cu polycrystals and
after Stage I-deformation of KCl single crystals implies that the underlying stochas-
tic process %/pyx ¼ @y=@x% h@y=@xi has long-range spatial correlations along the
direction of the profile:

%/pyxðxÞ%/pyxðx0Þ
% &

/ x% x0
'' ''2*%2- x% x0

'' ''%0:3...%0:6
: ð28Þ
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Figure 11. Stress–strain curve and rms surface roughness of a KCl single crystal deformed in
compression at room temperature in [100] orientation; full line: stress–strain curve (compres-
sive stress vs. engineering strain), open circles: rms surface roughness as determined from
four profiles with length 1.5mm.
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Provided that the plastic strain itself has the characteristics of a point process (i.e. if
it is comprised of discrete and localized events), this power-law decay of the correla-
tion function implies a correlation dimension of D - 0:5 for the distribution of such
events along the line of the profile, and of D - 2:5 in three-dimensional space. This
appears to be in line with the observations of Kleiser and Bocek on slip-line patterns,
and with those of Weiss and Marsan on the spatial distribution of slip events [7, 48].

Dynamics of surface roughening In a large class of problems including the thermal
roughening of elastic manifolds, the dynamic roughening of an elastic interface
driven through a random medium, and diverse models of surface growth, the rough-
ening dynamics can be described by the Family–Vicsek scaling, equation (17). In this
case, roughening starts locally, over domains of size ' / t1=z where z is the dynamic
exponent. The correlation length ' grows in time until it hits the system size, whereas
the magnitude of the roughness on scales below the correlation length remains
constant in time.

The existing investigations of deformed single- and polycrystal surfaces, how-
ever, indicate a different growth kinetics, which may be more appropriately described
by the concept of anomalous scaling [53, 54]. For anomalous scaling, the local
roughening is described by

yðxÞ % yðxþ LÞ
'' ''% &

¼ t%L*loc fy
L

tð1=zÞ

( )
, ð29Þ

and the global roughness of the surface grows like t*=z where *, *loc, and % are related
through % ¼ ð* % *locÞ=z.

In their investigations on Cu polycrystals, Zaiser et al. found the self-affine
scaling regime to be delimited by a strain-independent upper correlation length of
the order of magnitude of the grain size, indicating that the correlation length may
be an intrinsic material property (the grain size) rather than being governed by the
dynamics of the roughening process. This idea was corroborated by Wouters et al.
[55] who used confocal microscopy to investigate the surface morphology of poly-
crystalline Al-Mg alloys of different grain size. On scales below the grain size, they
observe self-affine scaling with Hurst exponents * / 0:85–0.9 slightly above those
reported by Zaiser et al., whereas above this scale they find a scale-independent value
of the rms surface roughness. In the framework of anomalous scaling, equation (29),
this can be formally expressed by setting z!1 while keeping % finite.

From the data of Wouters et al. [55], one deduces a growth exponent % - 0:8
(figure 13). Curves pertaining to different grain sizes LG can be collapsed by
re-scaling the surface height in proportion with LG (insert in figure 13).
Measurements on KCl single crystals reveal during Stage I a similar growth
exponent % - 0:8, whereas during Stage II the growth exponent is somewhat larger
(% - 1–1.5).

2.3. Deformation of micron-size samples

The heterogeneous and intermittent nature of plastic flow on microscopic and meso-
scopic scales is not readily apparent in deformation experiments on macroscopic
crystals where, on scales above the fluctuation correlation length, the incoherent
superposition of deformation events from different parts of the specimen leads to
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a more or less smooth stress vs. strain, or strain rate vs. time, signals. Because of this,
the avalanche-like character of deformation on smaller scales is not usually evident
from the recordings of standard tensile or compressive tests.

Recently, however, advances in machining have allowed Dimiduk and
co-workers to prepare compressive specimens with diameters down to about 1 mm
(for a discussion of specimen preparation methodology, see [56]). They performed
compression tests on ultra-small monocrystalline specimens of pure Ni [57–59] as
well as Ni-base superalloys [56, 57] and the Ni3Al intermetallic. Testing was carried
out in a standard nanoindentation system with a flat indentation tip acting as a
compression platen. Compression was performed in a particular type of load con-
trol, where the load is increased as long as the total (elastic þ plastic) deformation of
the specimen falls below a target value which increases linearly in time, and is kept
constant otherwise. This driving mode makes it possible to directly observe large slip
avalanches, which in a displacement-controlled test would be stopped by the load
drop that goes along with a sudden increase in strain. From a theoretical point of
view, it may be noted that this loading mode closely resembles the ‘quasi-static
driving’ often applied in cellular automaton simulations of systems with intermittent
avalanche dynamics (for examples, see sections 3.1 and 3.2): the load applied to the
system is slowly increased as long as the activity of the system is zero, and is held
constant during an avalanche. Stress vs. time and displacement vs. time curves
resulting from such tests are shown in figure 14. It is seen that the displacement
(i.e. the plastic strain) increases in discrete steps; each strain step is followed by
a stress plateau which lasts until the actual strain of the specimen is matched by
the ‘target strain’ which increases linearly in time.

In microtesting experiments carried out on specimens initially oriented for single
slip, deformation was found to proceed in simple shear on a single active slip system
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Figure 13. Anomalous surface roughening of polycrystalline Al-Mg, grain sizes
LG ¼ 90:1 mm (squares), 68.1mm (circles), 44.9mm (up triangles), 30.8 mm (down triangles);
insert: scaling collapse obtained by scaling the surface width in proportion with LG; after
Wouters et al. [55].
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up to comparatively large strains (! > 15%), leading to an extended Stage-I
behaviour. At the same time, the deformation characteristics differ dramatically
from those of bulk samples:

. Intermittency of plastic deformation becomes evident as plastic flow proceeds
in irregular bursts separated by quasi-elastic loading intervals. During the
deformation bursts, the plastic strain rate increases from near zero to very
large values.
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Figure 14. Compressive deformation of microsamples of pure Ni (top) and Ni3Al (bottom);
shown are stress vs. time and displacement vs. time curves as recorded in microtesting
experiments (for details see text). Courtesy of D. Dimiduk.

Scale invariance in plastic flow of crystalline solids 211

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
K
a
r
l
s
r
u
h
e
r
 
I
n
s
t
 
f
u
r
 
T
e
c
h
n
o
l
o
g
i
e
 
K
i
t
]
 
A
t
:
 
1
4
:
0
0
 
9
 
D
e
c
e
m
b
e
r
 
2
0
1
0



. As the stress is kept constant during each deformation burst, the stress–strain
curves assume a shape reminiscent of a random ‘devil’s staircase’ with an
irregular sequence of steps of widely varying magnitude. We note that a similar
step-wise increase of deformation with increasing stress may be observed
in bulk samples on a local level, e.g. by monitoring the growth of slip bands
[49, 60].

. The flow stress of small samples is larger than that of bulk specimens and
increases as the specimen dimensions decrease. This size effect cannot be
attributed to the presence of strain gradients and ‘geometrically necessary’
dislocations, which have become a commonplace explanation for size effects
in plasticity (for an overview, see, e.g. [61]): Owing to the single-slip simple-
shear geometry, no geometrically necessary dislocations accumulate in the
deformation experiments under consideration. One has therefore to look for
statistical explanations of the observed size effect.

. The burst-like character of deformation becomes more evident as the specimen
dimensions decrease. At the same time, the stochastic nature of the flow
process leads to increasing variations between deformation curves of different
specimens, even if these have been machined out of the same single crystal
and therefore share a common processing history.

The ‘devil’s staircase’ nature of the stress–strain curves obtained from micron-
sized samples is confirmed by statistical analysis. This reveals a scale-free distribution
of step sizes (strain increments $!) with an exponent ,! - 1:5–1.6 [59]. The scaling
regime is limited to about two orders of magnitude in step size, since smaller events
are obliterated by the mechanical noise of the experimental setup, but above the
noise threshold the power-law scaling is very convincing. Since plastic deformation
is almost completely dissipative, the strain increment during a strain burst can be
directly translated into the dissipated energy by multiplying it with the stress,
$E ¼ "$!Vs where Vs is the specimen volume. Neglecting the (small) stress increase
due to hardening, we may therefore compare the exponent of the strain increment
distribution observed by Dimiduk et al. and the energy exponent observed in AE
recordings from deforming ice and hcp metals. This works out very well, as both
exponents are between 1.5 and 1.6, indicating that both distributions may be
governed by the same underlying physical processes.

3. Theoretical approaches

Different theoretical approaches have been used for investigating collective phenom-
ena in plastic flow on microscopic and mesoscopic scales. These approaches differ in
the way the deformation state is represented; however, as we shall see, the main
results obtained from different approaches fit themselves into a consistent picture of
plastic yielding as a non-equilibrium phase transition. In the following we shall
discuss (i) models which describe plastic flow in terms of the motion of discrete
lattice dislocations (dislocation dynamics); (ii) phenomenological models which
describe plastic deformation in terms of the evolution of shear strain on
crystallographic slip systems, and account for the influence of the underlying
dislocation dynamics in terms of fluctuations in the local stress–strain relationship
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(stochastic continuum models); (iii) phase-field models which take an intermediate
position as they describe plasticity in terms of shear strain on crystallographic slip
systems, but resolve the strain on a scale where individual dislocations can be
identified as localized gradients of the strain field. Each of these models can be
used to describe heterogeneity and avalanche phenomena in plastic flow, and the
available results appear to be mutually consistent.

3.1. Dislocation dynamics

The most straightforward approach towards modelling plastic flow in crystalline
solids on microscopic and mesoscopic scales is to investigate the stress-driven motion
of interacting lattice dislocations. Individual dislocations or linear dislocation arrays
interacting with randomly distributed obstacles may be treated within the general
framework of elastic manifold depinning (see the introduction). In particular, it has
been shown by Moretti and co-workers [27] that planar arrays of dislocations of the
same sign (pile-ups or small-angle grain boundaries) exhibit long-range elasticity,
with an elastic kernel #P which in Fourier space scales in proportion with the
modulus of the wavevector, #P / jkj for jkj ! 0. This implies that the motion of
such arrays, depending on whether one is considering rigid or flexible dislocations,
according to the terminology introduced in section 1.2 is in the class a ¼ d ¼ 1,
or a ¼ 1, d ¼ 2. Simulations of the motion of a one-dimensional array of rigid
dislocations through a pinning field reported by Moretti et al. indeed show
exponents similar to those given for the a ¼ d ¼ 1 case in table 1. Interestingly,
this seems to be true irrespective of whether the dislocations are arranged in an
array perpendicular to their direction of motion (a grain boundary), or form a
procession on the same slip plane (a pile-up) – even though in the latter case long-
range correlations are present in the disorder as the dislocations move one after
another through the same pinning field. For the physically realistic case of a planar
array of flexible dislocations (a ¼ 1, d ¼ 2) one expects mean-field behaviour.
Observations of the dynamics of such arrays via slip-line kinematography are
consistent with this expectation (section 2.2.2).

For the dynamics of more general dislocation systems consisting of dislocations
of different signs and/or moving on different slip systems, the depinning framework
cannot be directly applied. One therefore has to rely on numerical simulations
(section 3.1) for investigating the dynamic evolution of such systems under
externally applied loads.

3.1.1. Simulation methods. Two-dimensional (2D) dislocation dynamics idealizes
the dislocation system as a system of straight parallel lines. The simulations therefore
essentially correspond to molecular dynamics simulations of particles moving in a
plane. Three-dimensional (3D) dislocation dynamics, on the other hand, simulates
the evolution of a system of flexible and reactive lines in three spatial dimensions.
Both approaches have to cope with the fact that the dislocations are endowed
with long-range ð1=rÞ stress fields which cannot easily be truncated, and that the
simulations therefore tend to be computationally expensive.

2D dislocation dynamics Two-dimensional dislocation dynamics is conceptually
simple: Dislocations are envisaged as charged point particles in a plane.
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Their motion is driven by the stress applied from outside to the deforming body, and
they interact through long-range stress fields. If dislocation climb is neglected, the
motion of these ‘dislocation particles’ is confined to the lines of intersection between
the slip planes of the respective crystallographic slip systems and the simulation plane.

In most dislocation dynamics simulations, dislocation motion is assumed to
occur in an over-damped manner. If dislocation glide is governed by electron and
phonon drag forces, this leads to a linear relationship between the Peach–Koehler
force FPK in the glide plane, and the dislocation glide velocity. The glide component
of the Peach–Koehler force can be written as [cf. equation (8)]

FPKðrÞ ¼ egsb"ðrÞ: ð30Þ

Here eg is a unit vector pointing in the dislocation glide direction, the product sb of
the sign s ¼ eg½t* n+ of the dislocation and the modulus b of its Burgers vector can
be interpreted as the ‘charge’ of the 2D point particle representing the dislocation,
and "ðrÞ is the local resolved shear stress in the dislocation slip system. Assuming a
linear force–velocity relationship and considering dislocations of a single slip system
only, one gets the system of equations

$@txi ¼ si " þ
X

k6¼i

sk"Dðri % rkÞ
" #

, ð31Þ

where $ is the dislocation drag coefficient, the slip direction has been chosen to be
the x direction, " is the externally applied shear stress, and "DðrÞ is the stress field of
an individual dislocation. For an edge dislocation (b ¼ bex) one has

"ðrÞ ¼ Gb

2pð1% +Þ
x x2 % y2
+ ,

r2
+ ,2 : ð32Þ

where + is the Poisson number of the material. The local shear strain rate created
by the dislocation system is

_!ðrÞ ¼ b
X

k

sk@txk%ðr% rkÞ: ð33Þ

Simulations assuming a linear relationship between stress and dislocation
velocity are very common both for 2D and 3D dislocation systems. However, it is
important to note that experimental results on dislocation velocities show a much
more complicated picture. As discussed in detail in the overview by Nadgorny [62],
the dislocation velocity increases linearly with stress only in the high-stress regime,
whereas at low stresses a strongly nonlinear (exponential) stress dependence is
observed. For the dynamics of dislocation systems this is important, since at not
too high applied stresses the motion of dislocations is strongly intermittent: The
dislocations spend most of the time in low-stress configurations, which therefore
control the mean velocity, and experience high stresses only during intermittent
jumps between such configurations. The popularity of linear stress–velocity relation-
ships has much to do with the fact that strongly nonlinear relationships increase the
numerical stiffness of the simulations and may easily render their computational cost
prohibitive. However, an easy and computationally efficient expedient for mimicking
the effect of a strongly linear stress–velocity relationship is to use extremal dynamics
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or automaton models where the dislocation moves (on the time scale considered)
instantaneously to the next stable position whenever the stress exceeds a given
threshold, and remains stationary otherwise. Results from such simulations will be
discussed in the following, and compared to those obtained from simulations which
assume linear stress–velocity laws.

Another important issue in 2D dislocation dynamics concerns the problem of
dislocation multiplication. In deforming crystals, the total dislocation density (line
length per unit volume) usually increases with increasing deformation, since the
expansion of curved dislocation loops goes along with an increase in line length.
Such ‘dislocation multiplication’ is important for two reasons: (i) In crystals with
very low initial dislocation density, the proliferation of dislocations at the onset of
deformation may lead to a transient softening. (ii) At larger dislocation densities, on
the other hand, increasing the dislocation density increases the amplitude of the
fluctuating internal-stress field in the deforming crystal and the strength of config-
urations in which dislocations mutually trap each other. The flow stress then
increases according to the Taylor relationship, equation (34): the system exhibits
strain hardening. Since loop expansion cannot occur in a system of straight lines,
there is no straightforward method to account for dislocation multiplication in 2D
dislocation dynamics. Researchers have tried to solve the problem by defining
different kinds of phenomenological rules for introducing new dislocations into
the system. However, as dislocations carry long-range stress fields, the creation of
a new dislocation may discontinuously change the stress everywhere in the system,
and thereby introduce all kinds of artefacts into the dynamics. To remedy this
problem, several things can be done: (i) Dislocations should be introduced in pairs
of opposite sign, since dislocation multiplication must conserve the total Burgers
vector of the dislocation system. (ii) By placing the dislocations of such a pair close
to each other, the stress discontinuity can be reduced. (If they are placed too close,
however, because of their strong mutual attraction they will never become separated,
and therefore contribute little to the dynamics.) (iii) By using different phenomen-
ological rules, and comparing the outcomes, one may try to ensure that the results of
a simulation do not depend crucially on the details of the dislocation multiplication
rule.

A similar but less serious problem occurs if dislocations of opposite sign are
allowed to instantaneously annihilate if their spacing falls below a certain cut-off
distance. Computationally this is a ready expedient for reducing the computational
stiffness of the simulations, since one avoids integrating the dynamics of
configurations with large interaction forces. It is also physically less problematic
than introducing dislocation multiplication since: (i) the total Burgers vector is
conserved by definition in this process; (ii) the stress discontinuity due to the
annihilation is small since the dislocations are close anyway; and (iii) the process
is physically motivated, since straight edge dislocations of opposite sign have been
observed experimentally to annihilate below distances of about 4b [63].

Another issue concerns initial and boundary conditions. In most simulations
discussed in the following, periodic boundary conditions were imposed to mimic
bulk behaviour. Initial conditions may be prescribed by distributing dislocations
or dislocation sources according to some given statistical rule. In doing so it is
important to note that a completely uncorrelated, statistically random initial
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distribution of dislocations is unphysical since it implies an elastic energy density
which diverges logarithmically with the system size [64]. One way to circumvent this
problem is to use an initially random distribution but then, before studying the
plastic flow dynamics, carry out a relaxation step at zero applied stress until the
elastic energy of the system has stabilized. The relaxation of an initially random
dislocation system is in itself an interesting, if somewhat academic, topic as it follows
a slow dynamics governed by non-trivial power laws [65]. More interesting in view
of the explanation of experimental observations is the subsequent evolution of the
plastic deformation rate under constant applied stress, both in view of the
creep behaviour and in view of the observation of intermittent avalanche-like
dynamics (sections 3.1.2 and 3.1.3).

In most 2D dislocation dynamics simulations discussed in the following sections,
the number of dislocations in a simulation has either been conserved, or a steady
state with low rates of multiplication and annihilation (i.e. an almost conserved
dislocation number) was reached and the influence of different rules for dislocation
multiplication has been tested. One may therefore expect that the results of these
simulations represent generic features of the dynamics of interacting dislocations
and are not too heavily influenced by artefacts of the simulation technique.

3D dislocation dynamics Three-dimensional dislocation dynamics simulations is a
science of its own. For a detailed discussion of such simulations, the reader is
referred so some topical reviews [66, 67]. Problems similar to 2D are the long-
range interactions between dislocation segments which cannot be truncated, and
which in 3D make these simulations computationally very expensive. New problems
arise from the necessity to describe a system of flexible lines with non-conserved line
length, the need to maintain the connectivity of these lines, and the fact that two
intersecting dislocations of different slip systems may react to create segments of
a third slip system. For the scope of the present review, 3D dislocation dynamics
simulations are of limited interest since the computational cost associated with such
simulations has until now precluded their application to systems that are
sufficiently large to detect long-range correlations and scale-free behaviour. Even
though large systems have been studied in ‘one-off’ simulations, a proper statistical
analysis of scale-free fluctuation phenomena in plastic deformation which involves
the simulation of a large ensemble of systems has not yet been attempted. It may be
expected that this situation will change in the near future, as the problem lends itself
to ‘trivial parallelization’ on multiple computers, and standard computers may soon
become powerful enough to run 3D dislocation dynamics simulations of appreciable
size within acceptable time limits. At the same time, experimental observations can
now be made on scales that are directly accessible to 3D simulation (see section 2.3
on micron-sized samples), allowing for a direct experimental validation of simulation
results.

Scaling relations for dislocation systems Before discussing simulation results, it is
useful to recall some general scaling relations which apply if the motion of disloca-
tions is mainly controlled by their mutual interactions, rather than by lattice effects
(Peierls stress) or by interactions with atomic defects or with precipitates. The stress
field created by a dislocation in 2D scales like 1=jrj, and that created by a dislocation
segment of length ds in 3D like ds=jrj2. We now consider a dislocation arrangement
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which is in (metastable) equilibrium at some external stress " and decrease all
distances by a factor ). Since the dislocation density . is for a 2D dislocation system
defined as the areal density of intersection points with a plane normal to the
dislocation lines, and for a 3D dislocation system as the line length per unit volume,
this operation in either case increases the dislocation density by a factor )2.
Evidently, the new dislocation arrangement is in equilibrium at the stress )".

More generally speaking, if a dislocation arrangement of density . is in
equilibrium at the stress ", then an otherwise statistically equivalent arrangement
of density .0 is in equilibrium at the stress "ð.0=.Þ1=2. The same argument applies
to loss of (meta)stability at some critical stress (yield stress) "c: the yield stress of
a dislocation arrangement scales in proportion with the square root of dislocation
density, as expressed by Taylor’s relation

"c ¼ 0Gb
ffiffiffi
.

p
: ð34Þ

The scalar pre-factor 0 depends on the nature of the ‘yielding transition’. For a single
dislocation interacting with the stress fields of dislocations with density . threading
its glide plane, yielding corresponds to the depinning transition of a weakly pinned
elastic line [17]; if the dislocation can react with the threading ‘forest dislocations’,
these are much stronger obstacles, and yielding may correspond to invasion percola-
tion [68]; if we have a 2D system of straight interacting dislocation lines, the onset
of plastic flow has been discussed in analogy with a jamming transition [69] (see next
section). In either of these cases, the critical stresses for depinning/percolation/
unjamming fulfil the Taylor relationship.

Some other scaling relations are also straightforward. Assuming that dislocation
creation and annihilation are not prominent, the shear strain can be understood as
the product of dislocation density and mean glide path, ! ¼ .bL. Consider now
a rearrangement in the dislocation system which produces a strain increment $!
in a system of linear extension Ls and dislocation density .. Trivially, a similar
rearrangement in a statistically equivalent system of size Ls=) and density )2. pro-
duces a strain increment )$!, since the glide path decreases like .%1=2. We consider
now the case where Ls is large enough such that boundary and finite-size effects are
not important, and omit the re-scaling of the system volume. In this case, for the slip
event $! in the system with density . there is still an equivalent event in the system
with density )2.. Referring the strain increment to the entire system, this event
now produces the total strain increment $!=)d%1 where d 2 f2, 3g is the system
dimension. The same scaling property holds for parameters such as the average,
the median, or the ‘largest’ and ‘smallest’ events in an arbitrary event size
distribution.

These scaling relations (often referred to as ‘laws of similitude’ in the metallur-
gical literature [14]) may seem trivial, but they have important consequences. They
allow to deduce the behaviour of dislocation systems of different densities from a
single set of simulations by means of simple scaling transformations. We use this in
the simulations reported in sections 3.1.3 and 3.2.2 where we give lengths, stresses
and strains in the respective ‘natural units’ .%1=2, Gb.1=2, and b.1=2. Finally we shall
use them, together with our simulation results, to obtain estimates of the magnitude
and observability of dislocation avalanches in macroscopic deformation experiments
(section 4.1).
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3.1.2. Relaxation and creep of two-dimensional dislocation systems. Miguel et al.
[69, 70] studied the creep relaxation of 2D dislocation systems consisting of equal
numbers of dislocations of a single slip system, assuming a linear stress–velocity law.
Periodic boundary conditions were imposed for the stresses and dislocation motions,
the dislocations were initially placed at random and the initial configuration was
relaxed at zero internal stress. A constant shear stress was then applied and the
evolution of the shear strain rate d!=dt /

P
i sivi was monitored.

While the creep dynamics in individual simulations is strongly intermittent and
characterized by irregular bursts [70], after averaging over many individual simula-
tions a coherent picture emerges: During a transient after application of the external
shear stress, the creep behaviour is characterized by power-law relaxation of the
strain rate, with a relaxation exponent close to 2/3 ( _! / t2=3, see figure 15).
Accordingly, the creep strain increases in time as ! / t1=3. After the initial transient,
the deformation behaviour bifurcates depending on the applied stress: Below a
critical stress, the deformation rate relaxes exponentially towards zero (the system
gets jammed) whereas above the critical stress, the deformation rate becomes asymp-
totically constant. Power-law relaxation regimes of appreciable length can be found
over a wide range of stresses. These findings compare well with Andrade’s old
observation of a ‘universal’, i.e. material-independent ‘primary’ or transient creep
regime [71, 72] during which the creep strain increases like ! / t1=3, and which is
followed by a ‘secondary’ regime during which the creep rate is roughly constant.

Above the critical stress the system reaches an asymptotically constant creep
rate. This statement is, however, correct only in the sense of a statistical average
over many systems. In an individual simulation, the strain rate undergoes large
fluctuations, and it has been attempted to relate these fluctuations to the acoustic
emission bursts observed in ice single crystals that we have discussed in section 2.1.
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Figure 15. Strain rate relaxation of a 2D dislocation system for different applied stresses;
stresses in units of Gb

ffiffiffi
.

p
; the solid line is the best linear fit of the 1¼ 0.1 curve and yields

d!=dt / t%0:69. After Miguel et al. [69].
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Dislocation avalanches in creep deformation In several papers, Miguel et al.
investigated the possibility of explaining experimentally observed AE signals in
terms of the intermittent bursts of dislocation activity observed in their creep
deformation simulations [5, 6]. In addition to the strain rate, they monitored the
sum V ¼

P
i jvij of the absolute velocities of the dislocations. Since the friction

force in the overdamped dynamics was assumed proportional to velocity, V is
proportional to the energy dissipated per unit time by the dislocation system.
One observes an intermittent and burstlike V(t) signal on top of a continuous
background. Provided that AE recordings provide a faithful representation of
the dissipation characteristics of dislocation systems, it should be possible to relate
the statistics of the simulated dissipation bursts to those of the experimentally
observed AE signals.

To eliminate the continuous background, Miguel et al. used two methods:
In one paper [5], a simple thresholding procedure was used to split the V(t)
signal into discrete bursts B, and the energy dissipated during a burst was
obtained as E /

Ð
BVðtÞdt. The cumulative energy distribution obtained in this

manner was observed to decay with an exponent ,E % 1 - 0:6, which is in good
agreement with the experimental observations discussed in section 2.1. In a
second paper [6], the procedure was slightly different since only dislocations
with velocities above the velocity corresponding to the externally applied stress
were included in the evaluation of V. Since such ‘fast’ dislocations move in the
direction imposed by the applied stress (this is not true for ‘slow’ dislocations,
as will be discussed below), the value of V evaluated with the velocity threshold
is in fact a proxy for their contribution to the overall strain rate. The acoustic
energy was then defined as the square of V, which again lead to a power-law
distribution with an exponent ,E - 1:8 which is in acceptable agreement with
experiment.

An interesting feature in the creep simulations of Miguel et al. is the presence of
two physically distinct contributions to the strain and energy dissipation rates: (i) A
major part of the dislocations at each moment is organized into slowly drifting multi-
dislocation configurations (dipoles and multipoles). Dislocations of different signs
form clusters which drift slowly into one or the other direction, depending on their
net Burgers vectors and on the presence of stress gradients. Dislocations trapped in
such clusters do not necessarily move in the direction imposed by the external stress.
Since the clusters mostly have small net Burgers vectors, and their motion tends to be
slow, they contribute little to the acoustic emission signal and even less to the strain
rate. However, because of their large number such slowly moving dislocations still
dissipate an appreciable amount of energy. (ii) The strain rate and acoustic emission
signals are governed by small numbers of dislocations which break free from the
slowly moving configurations and move rapidly under the action of external and
internal stresses until they become trapped again. The rapid motion of one
dislocation changes the stress everywhere in the system and may help other
dislocations to break free. This mechanism is at the core of the observed avalanche
dynamics. However, a quantitative analysis of the avalanche motion is complicated
by the fact that the distinction between ‘slow’ and ‘fast’ dislocations requires the
introduction of some artificial threshold. That such a threshold is somewhat
arbitrary can be seen from the fact that the distribution p(v) of the dislocation
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velocities itself exhibits a power-law scaling regime, pðvÞ / v%2:5 [6]. (Interestingly,
this simulation result has received direct experimental confirmation in a recent
investigation of Pertsinidis and Ling [73], who monitored the motion of edge
dislocations during shear deformation of colloidal crystals.)

The problem of slowly moving dislocation configurations results partly
from the assumption of a linear relationship between stress and dislocation
velocity. Experimental investigations (for an overview, see the work of
Nadgorny [62]) demonstrate that the velocity of dislocations is a linear function
of stress only in the regime of high stresses, whereas at low stresses the velocity
is governed by the interaction of dislocations with atomic defects, or with the
Peierls potential of the crystal lattice, and therefore becomes a strongly nonlinear
(exponential) function of the locally acting stress. This implies that multipole
configurations, in which each dislocation experiences only a quite small stress,
may be effectively immobile on the time scale of the experiment. Dislocation
dynamics simulations with strongly nonlinear stress–velocity laws are computa-
tionally inconvenient, but the qualitative effect of a strong nonlinearity in the
stress–velocity relationship can be easily assessed by using models with extremal
dynamics (only the dislocation with the largest stress is allowed to move) or
automaton models (dislocations move with unit velocity once the stress exceeds
a threshold value). The results of such simulations indicate that the avalanche
dynamics remains more or less unchanged, whereas the slowly moving configura-
tions become ‘frozen’ and transform into effectively immobile trapping
configurations [74].

3.1.3. Stepwise deformation curves and critical behaviour at yield. In a creep test
the external stress is kept constant and the strain rate signal is recorded. During
usual tension or compression tests, on the other hand, the applied stress is slowly
increased from zero, and the stress–strain curve is recorded. There is a distinction
between deformation-controlled tests where the stress is increased such as to main-
tain a given imposed deformation rate, and the stress is recorded as a function of
time (strain), and stress-controlled tests where a constant stress rate is imposed and
the strain is recorded. The distinction is, however, immaterial if one considers the
deformation of a small volume embedded into a macroscopic crystal; in this case the
local conditions always correspond to those in a stress-controlled test since local
fluctuations of the deformation rate do not affect the stress applied from outside to
the macroscopic deforming body.

The behaviour of dislocation systems during stress-controlled deformation
testing was investigated by Zaiser et al. [74]. As in the simulations of Miguel and
co-workers, deformation on a single slip system with equal numbers of positive
and negative dislocations was considered and periodic boundary conditions were
imposed. Also similar was the choice of initially random dislocation positions and
subsequent relaxation of the dislocation system before an external stress was applied.
However, an automaton technique was used for the dynamics: Dislocations were
moved simultaneously on a discrete grid according to the sign of the locally acting
stress, conditional on the requirement that the sign of the stress experienced by
a given dislocation did not change during a move. The external stress was increased
adiabatically slowly, i.e. an external stress increment was applied only after all
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dislocation activity had ceased. Alternatively, an extremal dynamics was used where

only the dislocation with the largest stress was moved at a time, thus mimicking a

strongly nonlinear stress–velocity relationship where all dislocations are practically

at rest on the time scale of the fastest moving one. The dislocation number was

conserved, i.e. neither dislocation multiplication nor annihilation were taken into

account.
Stress–strain characteristics were determined by simultaneously recording the

stress and the total strain ! ¼ ðb=L2
s Þ
P

i siLi, where L2
s is the simulated area, si

is the sign of the ith dislocation and Li ¼ xi % xi, 0 is its (if necessary periodically

continued) glide path. Simulations were terminated at a prescribed maximum strain.

Results are shown in figure 16 where stress and strain are given in the respective

‘natural units’ for a dislocation system (cf. our discussion of scaling relations above).

It is seen that the stress–strain curves assume a staircase-like shape similar to the

experimental curves of micron-sized specimens discussed in section 2.3. Also in

agreement with the experimental observations reported in that section is the fact

that there is substantial scatter between different simulations. This scatter does not

represent any differences in the material properties but simply reflects the outcome

of different initial positions of the dislocations. Only after averaging over many

simulations, can a smooth stress–strain characteristics be obtained, and it becomes

evident that the strain diverges logarithmically as the stress approaches a critical

value "c (yield stress, see insert of figure 16). The logarithmic divergence corresponds

to a horizontal asymptote in the stress vs. strain graph, i.e. the model does not
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Figure 16. Stress–strain curves in simulated stress-controlled tests on systems of size
32* 32 . (1024 dislocations); insert: average stress–strain behaviour obtained by averaging
over 100 simulations.
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display hardening. (This is to be expected, since no dislocation multiplication
mechanism was introduced.)

The statistical distribution of critical stresses obtained from different simulations
of statistically equivalent systems depends on system size. This is illustrated in
figure 17 which shows probability distributions of yield stresses obtained from
ensembles of systems of area L2

s ¼ 8* 8=. to L2
s ¼ 64* 64=. corresponding, for a

typical dislocation density of . ¼ 1012 m%1, to sizes of 8* 8 to 64* 64 (mm2). It is
seen that the width of the distributions increases with decreasing system size,
indicating an increasing scatter in the deformation behaviour. At the same time,
the average yield stress increases for smaller systems. It is important to note that
this size effect in the simulations is of a purely statistical nature and does not relate to
surface effects or effects of dislocation sources, as periodic boundary conditions were
used and a conserved number of dislocations was assumed. Both the increasing
scatter and the increase in strength with decreasing system size match the observa-
tions in deformation of micron-sized specimens reported by Dimiduk et al. [57, 58],
although the magnitude of the size effect is underestimated.

The behaviour in the individual simulations is characterized by large steps in the
stress–strain curves (dislocation avalanches). The statistics of these avalanches has
been investigated as a function of stress. Avalanches were characterized in terms of
the total slip length increment Lav ¼

P
i si$Li where $Li is the difference between

the positions of the ith dislocation before and after the avalanche. This makes it
possible to directly compare simulations of systems of different area – the total strain
increment $! ¼ bLav=L

2
s , on the other hand, is inversely proportional to the simu-

lated area L2
s . Avalanche size distributions p"ðLavÞ were determined over narrow

stress intervals centred around different stresses ". Results are shown in figure 18
for $ ¼ ð1% "="cÞ ¼ 0:2, . . . , 0:8.

One observes power-law distributions of dislocation avalanche sizes with
a common exponent , - 1:4. Whereas this exponent does not depend on stress,
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the maximum avalanche size increases like ð1% "="cÞ%1=1 with 1 - 0:5 as the stress
approaches the yield stress. Accordingly, distributions pertaining to different stress
levels obey the scaling form

p"ðLavÞ ¼ L%,
av fL

Lav

$1=1

( )
: ð35Þ

These distributions can therefore be collapsed by re-scaling Lav ! Lav$
1=1 (figure 18,

right). It is also seen that power-law scaling is quite robust as scaling over more than
three decades persists even at stresses that are just one fifth of the critical stress. This
observation of robust scaling behaviour quite far from a critical point has also been
made in other systems exhibiting avalanche dynamics [75].

In our model, the work Vs"$! which is done by the external stress " during
an avalanche is completely dissipated. The proportionality between the energy
dissipation and the strain increment (or equivalently the total slip length covered
by dislocations during an avalanche) suggests a comparison between the avalanche
exponent , obtained from the present simulations and the energy exponent ,E
observed in the statistics of AE bursts. With , - 1:4 and ,E ¼ 1:5–1.6 this compar-
ison works out quite satisfactorily. The avalanche exponent , ¼ 1:4 also compares
well with the exponent ,! ¼ 1:5–1.6 of step size distributions from stress–strain
curves of micron-sized samples [59].

At this point, we note that some caution is required when bursts from
different parts of the stress–strain curve are added up. To illustrate the problem,
we consider the integral distribution of avalanche sizes along the stress–strain curve
as obtained from our simulations. This integral distribution is related to the stress-
dependent distributions (which correspond to small stress intervals centred around
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Figure 18. Distributions of dislocation avalanche sizes measured in terms of the total slip
distance covered by dislocations during an avalanche; right: collapse of distributions obtained
for different sized if size is re-scaled by Lav ! Lavð1% "="cÞ2.
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specific stress levels) via

pintðLavÞ /
ð
p"ðLavÞd" / L%ð,þ1Þ

av : ð36Þ

Each of the distributions p" has the same exponent , but a different cut-off. The
integral distribution pint, on the other hand, exhibits no cut-off but a modified
avalanche exponent ,þ 1 which by itself does not characterize the critical behaviour
– rather, it combines two different exponents characterizing (i) the scaling regime
of the avalanche size distribution and (ii) the scaling of its cut-off. This behaviour
has been explicitly demonstrated in [74]. Of course, our consideration applies to a
hypothetical non-hardening material and real materials with finite hardening
coefficients may behave differently. Nevertheless it illustrates the dangers incurred
when information is added up which pertains to different states of the system
(i.e. to different separations from its critical point).

The behaviour of conserved two-dimensional dislocation systems with
automaton or extremal dynamics under slow loading can be summarized as follows:
(i) The strain diverges logarithmically as the stress approaches a critical value (yield
stress). (ii) The response of the system to an increasing stress is characterized by
an irregular sequence of strain bursts with power-law size distribution. (ii) This scale-
free behaviour is manifest already at stresses well below the yield stress and persists
up to a maximum burst size which diverges at yield. (iii) The exponents characteriz-
ing the critical behaviour (avalanche exponent , - 1:4, divergence of the maximum
burst size like ð" % "cÞ%2) have approximately the values expected for mean-field
depinning (see the introduction), even though the main ingredients of depinning
models (dynamics of an elastic manifold, quenched disorder) are absent in the
simulations.

To better understand the type of critical behaviour we are dealing with, it is
useful to look at an apparently quite different class of models which operate on a
scale where individual dislocations cannot be resolved and plastic deformation
is described in terms of the evolution of a continuous plastic strain field.

3.2. Models of microstrain evolution

Dislocation dynamics directly traces the motion and collective dynamics of defects
during plastic flow. Randomness, heterogeneity and stochastic behaviour in
dislocation dynamics models stem from the probabilistic choice of initial conditions
for the otherwise deterministic evolution of a discrete dislocation system. An
alternative approach towards modelling collective phenomena in plastic deformation
consists in the adaptation of continuum plasticity models to include microstructural
heterogeneity and randomness in a phenomenological manner.

3.2.1. Constitutive equations. As discussed in the introduction, continuum
mechanical constitutive equations connect the stress, plastic strain, and strain rate
in a material. Such models operate on scales above the ‘microscopic’ scale where
individual dislocations may be resolved. Accordingly, stress and strain must be
considered as mesoscopic fields which are space dependent on a scale which is
above the dislocation spacing, but small in comparison with the macroscopic

224 M. Zaiser

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
K
a
r
l
s
r
u
h
e
r
 
I
n
s
t
 
f
u
r
 
T
e
c
h
n
o
l
o
g
i
e
 
K
i
t
]
 
A
t
:
 
1
4
:
0
0
 
9
 
D
e
c
e
m
b
e
r
 
2
0
1
0



dimensions of the deforming body. Stresses associated with individual dislocations
are not resolved, but enter the formulation implicitly since dislocation interactions
determine the local yield stress of the material and its evolution with strain.

Deformation heterogeneities and internal stresses In the following we focus on the
bulk behaviour of materials which are heterogeneous and random on microscopic
and mesoscopic scales but homogeneous on the macroscopic scale. In this case the
problem of evaluating the stress state of the material can be split into two parts: (i)
Tractions applied from outside to the surface of the deforming body, or displace-
ments prescribed on the surface of that body, create an ‘external’ stress D which we
consider space-independent over the region of interest. (ii) Because of heterogeneities
in the material properties, plastic deformation may in general proceed in a spatially
heterogeneous manner on mesoscopic scales. Deformation heterogeneities give rise
to eigenstresses Dint. (A special case of such eigenstresses are actually the stresses
associated with dislocations, where the heterogeneity corresponds to the boundary
of a slipped area.) Provided that surface effects can be disregarded over the region
of interest, the internal stress tensor can be written as a functional of the plastic
strain field,

DintðrÞ ¼ %!0 !pðrÞ % h!pi
# $

þ
ð
!1ðr% r0Þ!pðr0Þd3r0, ð37Þ

where h!pi is the average plastic strain. Explicit expressions for the Green’s functions
!0 and !1ðrÞ have been given by Zaiser and Moretti for solids of arbitrary symmetry
[76]. The special case of an incompressible isotropic material was considered by
Picard et al. [77] where also the effect of boundaries was investigated.

In the following we consider the special case of an isotropic material deforming
in plane strain on a single slip system. The slip planes are normal to the y axis, slip
occurs in the x direction, and the strain field is assumed to be independent of z. This
is equivalent to the deformation geometry investigated by 2D dislocation dynamics
in the previous section. Plastic deformation is here completely characterized by the
shear strain ! ¼ 2/pxy ¼ 2/pyx. The internal resolved shear stress in the considered slip
system is given by [76, 78]

"intðrÞ ¼
G

2pð1% +Þ

ð
!ðr0Þ 1

ðr% r0Þ2
% 8ðx% x0Þ2ðy% y0Þ2

ðr% r0Þ6

" #

d2r0

þ G

4ð1% +Þ
½h!i% !ðrÞ+, ð38Þ

or, in Fourier space,

"intðkÞ ¼ % G

pð1% +Þ
!ðkÞ

k2xk
2
y

jkj4
: ð39Þ

Regarding these expressions, two points may be noted: (i) The elastic kernel is not
positive definite in real space. (ii) Strain fluctuations with wavevectors parallel to
the x or y directions do not give rise to internal stresses. The implications will be
discussed below.
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Constitutive equations: viscoplastic flow of a random material To relate the stress
to the evolution of the strain field !ðrÞ, we adopt a linear viscoplastic constitutive
relation of the type discussed in the introduction. The evolution of the local shear
strain ! is given by [cf. equation (4)]

$@t! ¼ j" þ "intj% "yð!,r2, rÞ
+ ,

signð" þ "intÞ, j" þ "intj > "yð!,r, rÞ,
0 else:

(

ð40Þ

Here " is the externally applied resolved shear stress, "int is the internal shear stress
due to deformation heterogeneities, and "yð!,r, rÞ is the local yield stress.
Randomness and heterogeneity in the material microstructure and microstructure
evolution are taken into account in a phenomenological manner by allowing for a
stochastic dependence of the yield stress on space and strain. Furthermore, internal
length scales associated with the material microstructure can be taken into account
by allowing the yield stress to depend on the second gradient of strain [12, 78].

In plastically deforming crystals, the local yield stress reflects the fine-scale
dynamics of the interacting dislocations on scales below the spatial resolution of
the mesoscopic model. For this case, Zaiser and co-workers [76, 78] proposed to
relate "y to the fluctuating internal stress field created by the dislocations in the
deforming crystal. This led to the following constitutive relation for the deformation
resistance:

"yð!,r, rÞ ¼ %C
@2!

@x2
þ %"ðr, !Þ: ð41Þ

The fluctuating stress %"ðr, !Þ is associated with the ‘microscopic’ stress field created
by individual dislocations. For a two-dimensional system of straight parallel
dislocations of density ., it has the approximate correlation properties

h%"i ¼ 0, %"ðr, !Þ%" rþ r0, ! þ ! 0+ ,% &
¼ %"2

% &
f" r0='", !

0=!c
+ ,

, ð42Þ

where h%"2i - G2b2., '" - 1=
ffiffiffi
.

p
is the correlation length of the fluctuating stress

field created by the dislocations, and f" is a non-dimensional correlation function
with characteristic ranges '" and !c in its respective arguments. The ‘correlation
strain’ !c - b

ffiffiffi
.

p
was estimated as the strain accomplished when all dislocations

move by the average dislocation spacing (for details see [76, 78] and references
therein). Hardening may be introduced into the model by allowing the dislocation
density and, hence, the amplitude h%"2i of local stress fluctuations to increase with
local strain. In particular, linear hardening corresponds to a quadratic increase of
dislocation density with stress and strain. The term C!xx in equation (41), in which
C - G=., stems from the short-range interactions between discrete dislocations
moving on close slip planes (for derivation of this term, see Groma et al. [79]).
This second-order gradient term scales in Fourier space like k2!ðkÞ and is,
hence, on large scales irrelevant in comparison with the long range elastic term,
equation (39). However, the second-order gradient term has a decisive influence
on the small-scale morphology of the deformation patterns, as it breaks the symme-
try existing in the kernel in equation (38) between the x and y directions, and
suppresses deformation heterogeneities in the direction of dislocation glide.
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This turns out to be crucial for describing striated deformation patterns similar to
the slip-line patterns observed in experiment.

The dynamics of the constitutive model specified by equations (38)–(42) exhibits
a transition between a pinned and a moving phase, which corresponds to the
depinning of an elastic manifold described by the equation

$@t! ¼ " þ "int þ C!xx þ %"ð!, rÞ: ð43Þ

To see the analogy, we assume without loss of generality that the applied stress "
in equations (40) and (43) is positive and note that, apart from initial transients
due to initial conditions, the local strain in both models increases monotonically
under a positive stress. Hence, under a constant or increasing applied stress
both equations yield the same asymptotic dynamics. In the hypothetical case of
columnar disorder where the fluctuating stress %" is a function of x and ! only, !
becomes independent on y, the internal stress "int vanishes, and elasticity is
controlled by the second-order gradient term. In this case, the model becomes
formally equivalent to the motion of a 1D manifold with local elasticity (a¼ 2) in
a disordered medium. In the general case considered in the following, %" depends
on both x and y, and the elastic behaviour is on large scales governed by
the long-range kernel of equation (38). Since a¼ 0 for this kernel, irrespective
of space dimensionality one expects mean-field behaviour of the depinning
transition.

We note that, even though part of the above discussion is specific to fluctuating
internal stresses generated by crystal lattice dislocations, the general form of our
equations is generic and can be applied to any material: The term %"ðr, !Þ – which in
general may have non-zero average – statistically represents microstresses on the
scale of the discrete elements whose dynamics governs plastic deformation, and
the coupling term C!xx (more generally ½rCr+!) approximately describes short-
range interactions on the scale of the size or spacing of these discrete elements.
It is therefore not astonishing that the present constitutive formulation has many
similarities with models of the plastic flow of amorphous solids and ‘yield-stress
liquids’ as proposed by Barat et al. [80], Bulatov and Argon [81], and Picard et al.
[82]. The model of Barat et al. generalizes ideally plastic behaviour to a material with
random microstructure and microstructure evolution; the main difference with the
present model – apart from the assumption of an extremal dynamics instead of linear
viscoplasticity – is a different deformation geometry (plane vs. antiplane shear). The
models of Bulatov and Argon, and Picard et al. on the other hand, use slightly
different constitutive models for which yielding is associated with a strain softening
instability.

3.2.2. Avalanche dynamics and surface morphology evolution.
Stress–strain curves and slip avalanches Stress–strain curves obtained from simula-
tions of the continuum model detailed in the previous section are shown in figure 19.
In this and in the following figures, length, stress, and strain are again measured in
the respective ‘natural units’ 1=

ffiffiffi
.

p
, Gb

ffiffiffi
.

p
, and b

ffiffiffi
.

p
for a dislocation system. In the

case of simulations with hardening, the hardening coefficient d"=d! is accordingly
measured in units of G, and the dislocation density . entering these scaling factors
is understood as the initial density. All simulations are carried out with periodic
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boundary conditions. It is seen from figure 19 that the simulated stress–strain graphs
exhibit the same staircase-like characteristics as those observed in 2D dislocation
dynamics simulations (figure 16). In the absence of hardening, the strain diverges at
some critical stress "c where the stress–strain curve reaches a horizontal tangent.
Averaging over many stress–strain curves shows that the susceptibility - ¼ @!=@"
of the plastic strain diverges according to - / ð"c % "Þ%1, in the same manner as
for the discrete dislocation model discussed in section 3.1.4 and in line with the
expectation for mean-field depinning.

Close to the critical stress, the stress–strain curves have the structure of a ‘devil’s
staircase’ where the step sizes (sizes of slip avalanches) obey a scale-free distribution.
Figure 20 shows distributions of step sizes $! obtained over narrow stress intervals
(width 0.01 in scaled variables) and at various distances from the critical stress. As
one approaches the critical stress, the power-law scaling pð$!Þ / $!%, with , - 1:4
extends over a larger and larger range of scales, with the maximum size of the slip
avalanches diverging like ð"c % "Þ%2.

This behaviour is almost identical with that observed in the 2D dislocation
dynamics simulations reported in section 3.1.4 (figure 18) and again the avalanche
exponent , may be favourably compared with the exponents deduced from deforma-
tion of micron-scale samples and from AE measurements. In fact, not only the shape
of the distributions but also the absolute avalanche sizes are practically the same
if one uses the relation $! ¼ bLtot=L

2
s with Ls ¼ 256.%1=2 to convert between data in

figures 20 and 18. This makes it plausible that both models, though conceptually
different in their formulation, not only belong to the same universality class but
describe the same physical reality.

Figure 21 shows avalanche size distributions determined for different
hardening rates and stresses above the critical stress (macroscopic yield stress) of
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Figure 19. Stress–strain curves as obtained from simulation of a system of size 128* 128
with zero hardening (lower curve) and with non-dimensional hardening coefficient of
3:5* 10%3 (upper curve); insert: detail of the same stress–strain curves.
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a non-hardening system. It is obvious from figures 19 and 21 that hardening does not

fundamentally change the stepwise morphology of the stress–strain curves or the

power-law statistics, but eliminates the largest avalanches which, in a non-hardening

system, occur at stresses close to the critical stress. In this sense, hardening

suppresses the critical behaviour associated with the critical stress "c, but neverthe-

less leaves many of the scale-invariant properties of the dynamics unchanged.
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Figure 20. Probability distributions of slip avalanche sizes (probability density pð$!Þ vs.
strain increment $!) as obtained from an ensemble of systems of size 256*256; left: distribu-
tions corresponding to different stresses; right: universal distribution obtained by re-scaling
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The fact that the avalanche exponent , - 1:4 is not changed by hardening compares
well with the observations of Richeton et al. [45] on single crystals of hcp metals:
During hardening stages I and II, the energy exponent ,E - 1:5 was found to remain
unchanged in spite of strongly differing hardening coefficients.

According to figure 21, in a strain-hardening system, the size of the largest slip
avalanches is inversely proportional to the hardening coefficient. This can be easily
understood from a scaling argument. With an avalanche exponent of , - 1:5, the
average strain $! in an avalanche follows the relation h$!i / $!1=2

max. Due to hard-
ening, each avalanche raises the critical stress by a small amount $"c / #h$!i, which
implies that the external stress (which cannot instantaneously follow) lags behind
the current critical stress by a similar amount. Finally, the maximum avalanche size
follows the scaling relationship $!max / ð"c % "Þ%2. Combining these relations, it
follows directly that $!max / 1=#. We note that a very similar observation was
made by Zapperi et al. regarding the influence of a demagnetizing factor on the
motion of domain walls driven by an applied magnetic field through a disordered
ferromagnet [26].

The hardening coefficients used in figure 21 (#=G ¼ 0:002, . . . , 0:032) tend to be
above the range of hardening coefficients observed in single-slip deformation experi-
ments on metal single crystals (#=G ¼ 10%4, . . . , 5* 10%3); the reason for this is
simply that for smaller hardening coefficients the cut-off of the simulated avalanche
size distributions becomes independent of #, since it is then limited by the system size
and not by the intrinsic dynamics of the system.

The stress–strain curves and avalanche statistics obtained from the time-
continuous equation (40) are very similar to those obtained in [76, 78] from an
automaton version of the same model, where the strain on the sites of a grid of
unit mesh length was increased by a unit amount, and a new randomly chosen yield
stress was assigned to that site, whenever the local stress exceeded the local yield
stress. (The only perceptible difference between both models is that in the automaton
model the critical stress is ca 20% higher for the same yield stress distribution.)
However, the time-continuous model gives access to additional information in
terms of the distribution of peak strain rates _!max ¼: A (evidently, a strain rate is
difficult to define in an automaton model). Again, one observes a power law
pðAÞ / A%,A with ,A - 2, in good agreement with the peak amplitude distribution
of AE bursts in ice (section 2.1). Irrespective of the hardening rate, no cut-off to the
scale-free behaviour is apparent (figure 22).

Slip pattern and surface roughening Numerical simulation of the continuum model
defined by equations (40)–(42) yields strongly anisotropic, striated strain patterns
(figure 23) with strong correlations in the x direction (the direction of the slip plane)
but weak correlations in the normal direction. This can be readily understood by
looking at the elastic interactions in Fourier space: The Fourier transform of the
elastic kernel is zero along the kx and ky directions, see equation (39). While fluctua-
tions along the kx direction are damped due to the second-order gradient term in
equation (41), those along the y direction are not. The model is, hence, capable of
representing at least qualitatively the slip anisotropy which in real crystals is a direct
consequence of the glide motion of dislocations on slip planes.
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To compare with experimental findings (cf. section 2.2), one may integrate the
strain profile along the y direction for some fixed x ¼ x0 to obtain a displacement
profile along the corresponding plane normal to the slip direction:

yðxÞ ¼
ðx

0
½!ðxÞ % h!i+dx: ð44Þ
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Figure 22. Probability distribution of peak strain amplitudes A ¼ _!max obtained for different
hardening rates. The distributions can be well approximated by a power law, pðAÞ / A%2.
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Assuming that surface-specific effects can be neglected (near a free surface, the elastic
interactions are modified by the surface boundary conditions which are not taken
into account in our model), the morphology of such simulated ‘surfaces’ may be
compared with that of real ones.

Analysis in terms of self-affine roughness was performed by studying the height–
height correlation function and the power spectrum of the simulated surfaces [76].
The results can be summarized as follows (see figure 24):

. The surfaces are self-affine up to a correlation length which is proportional
to the size of the simulated system. They can be characterized by a strain-
independent roughness exponent * - 0:7.

. Increasing the total strain leads to growth of the profiles but does not change
the roughness exponent or the correlation length (which is anyway determined
by the system size). At large strains, the rms surface roughness on a given scale
grows as the square root of strain.

. The numerical value of the roughness exponent compares well with the experi-
mental observations, whereas the growth exponent of about 0.5 is slightly
below the exponent of 0.8 observed during the single-slip deformation
Stage I of KCl single crystals.

As discussed in section 2.2, self-affine surface roughness with a non-trivial
roughness exponent * > 0:5 points towards long-range correlations in the strain
fluctuation pattern, with a strain fluctuation correlation function which decays like
r2*%2. To elucidate the nature of such correlations in our simulations, it is useful
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Figure 24. Mean square height difference vs. horizontal distance for surface profiles obtained
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to investigate the spatial distribution of slip in an avalanche. A greyscale image of
the slip distribution in a large avalanche is shown in figure 25. The slip distribution
on small scales is characterized by striations parallel to the x axis. At the same time,
long-range correlations are visibly evident both in the x and in the y directions.

These correlations can be quantified by calculating the correlation integral
CðRÞ ¼

Ð
jr%r0 j<Rh$!ðrÞ$!ðr0Þid2ðr% r0Þ. A power-law increase CðRÞ / RD of the

correlation integral with non-integer D points towards a fractal pattern. From
figure 26 one sees that linear scaling is approximately observed in large avalanches,
with an apparent dimension of D ¼ 1:7. Since the overall strain pattern is
governed by the largest avalanches, this corresponds to a decay of the strain–strain
correlation function like r%0:3 which is consistent with a roughness exponent
around 0.7.

3.3. Phase-field models

Phase-field models have an intermediate position between dislocation-based and
continuum approaches towards plastic flow modelling. Similar to continuum
approaches, the plastic deformation state is described by the evolution of strain
variables. However, the strains are resolved on a ‘microscopic’ scale on which
individual dislocations appear as localized gradients in the shear strain fields on
the respective slip systems. The evolution of the local shear strains is derived from
an elastic energy functional which includes not only long-range elasticity but also the
Peierls energy of the crystal. The Peierls energy reflects the periodic structure of the
atomic lattice and ensures that, in a stress-free crystal, the local shear strains take
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Figure 25. Strain distribution in a typical avalanche in a system of size 128* 128 (greyscale
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discrete values corresponding to displacements by multiples of the Burgers vectors
of the respective slip systems.

Due to the description of the lattice strain on a quasi-atomic scale, the distinction
between the stress (or the elastic strain) and the plastic strain becomes meaningless:
Both quantities are described by the same variable, namely the relative displacement
between two slipping lattice planes divided by their separation. We discuss in some
detail the model proposed by Koslowski et al. [83, 84], who consider deformation on
a single slip system and have applied their model to avalanche phenomena. This
model envisages the two-dimensional distribution of slip on a single slip plane z¼ 0
in a three-dimensional continuum. (It is important to note that phase-field models
are not restricted to single slip or planar systems. Phase-field modelling of multiple
slip in three spatial dimensions, and the relation with 3D dislocation dynamics, has
been discussed by Katchaturyan and co-workers [85]. The numerical simulation of
such models is at present, however, computationally even more expensive than 3D
dislocation dynamics simulations.)

Starting out from a continuous elastic–plastic shear strain field and a piecewise
parabolic Peierls potential, Koslowski et al. [84] derive a formulation in which the
plastic deformation field !ðx, yÞ is represented as an integer-valued field with time-
discrete dynamics. The deformation field at time iþ 1 is obtained from the field
at time i by minimizing the incremental work function

W ½!ðx, y, iþ 1Þj!ðx, y, iÞ+ ¼ E ½!ðx, y, iþ 1Þ+ % E ½!ðx, y, iÞ+

þ
ð
fðx, yÞj!ðx, y, iþ 1Þ % !ðx, y, iÞjdxdy ð45Þ
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Figure 26. Correlation integrals of the strain distribution in avalanches of different size; the
straight line has slope D¼ 1.7.
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where E ½!ðx, y, iþ 1Þ+ is the elastic energy functional which in the presence of
an external stress field "ðrÞ is given by

E ½!+ ¼ Gb2

4

ð
K

1þ Kdp=2
j!ðkÞj2 þ "ðkÞb!ðkÞ

1þ Kdp=2

! .
d2k

ð2pÞ2
: ð46Þ

Here, "ðkÞ and !ðkÞ are Fourier transforms of the fields "ðrÞ and !ðrÞ, dp is the
interplanar spacing, and

K ¼
k2yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2x þ k2y

q þ 1

1% +

k2xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q : ð47Þ

The term f(x, y) in equation (45) denotes the energy that is dissipated in changing the
strain at the point (x, y) by a unit amount; it plays the role of a local obstacle strength
which in [84] was assumed as a sum over randomly distributed point obstacles.

A detailed derivation of this model, starting from a continuous strain field and an
energy functional with a piecewise parabolic Peierls potential, is given in [83]. Here
we exclusively discuss the avalanche dynamics exhibited by the model as addressed
in [84]. As an initial condition, Koslowski and co-workers in that paper assume a
strain- and dislocation-free crystal under zero external stress. By increasing the
external stress by small amounts and carrying out a sequence of minimization
steps of the work functional given by equation (45), they demonstrate that the
ensuing time-discrete dynamics exhibits a series of strain bursts with scale-invariant
size distribution, with an approximately stress-independent exponent ,! - 1:8 for
the distribution of strain increments.

While this is in itself an interesting finding and compares reasonably well with
experimental observations, one objection may be raised against the procedure
applied in these calculations. The discrete dynamics defined by equation (45) samples
a sequence of energy minima but does not tell how the system gets from one mini-
mum to another. That this may be a problem can be seen immediately by envisaging
the moment when, under an increasing applied stress, the very first dislocation
appears in the system. This happens as soon as the energy of a dislocation loop,
trapped at obstacles somewhere in the system, falls below that of the dislocation-free
crystal – a situation bound to be happen sooner or later since the loop, once created,
reduces the elastic energy of the system by an amount proportional to the applied
stress times the loop area. However, since the initial configuration is a dislocation-
free crystal and only one slip plane is considered, dislocation sources do not exist and
the loop has to be created ex nihil. It is easy to demonstrate that this process requires
to overcome an energy barrier of prohibitive height, unless the applied stress is close
to the theoretical shear strength of the ideal crystal. The model of Koslowski et al.
does not ‘see’ this problem since it samples energy minima irrespective of the
existence or non-existence of a path connecting them.

In spite of this flaw, the model has several interesting features. Spatial and
temporal coarse-graining of the discrete-time dynamics given by equations
(45)–(47) leads to

@!ðx, yÞ
@t

¼ %E 0ð!Þ
%!

þ fðx, y, !Þ ð48Þ
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where the coarse-grained energy functional E 0 is given by

E ½!ðx, yÞ+ ¼ Gb2

4

ð
Kj!ðkÞj2 þ "ðkÞb!ðkÞ
/ 0 d2k

ð2pÞ2
: ð49Þ

Equation (48) is the equation of motion of a two-dimensional manifold with long-
range elasticity (the interaction kernel scales in proportion with the wavevector
modulus k) moving through a random medium as characterized by the random
dissipative force f. As discussed in the introduction, this model (a ¼ 1, d ¼ 2) is
in the universality class of mean-field depinning. In fact, the motion of a two-
dimensional pile-up of flexible dislocations as studied by Moretti et al. [27], which
was found to be in the same universality class, can be treated within the framework
of Koslowski et al. by using as initial condition for the strain field a constant strain
gradient. The avalanche exponent observed by Koslowski and co-workers is some-
what above the value , ¼ 1:5 expected for mean-field depinning. The reason for this
difference is not completely clear – it may be that Koslowski et al. include in their
statistics events from the microplastic region well below the yield stress, which
leads to an apparent increase of the avalanche exponent (cf. the discussion after
equation (36)). It could also be that the difference is simply due to a technicality,
since in [84] a linear instead of logarithmic binning procedure is used.

The model of Koslowski et al. provides a conceptual bridge between dislocation-
based and strain-based models. As it stands, the model needs to introduce quenched
disorder (the random dissipative force f(x, y)) in order to obtain metastable
dislocation configurations. It remains a task for future work to generalize the
model to more than one slip plane and investigate the possibility of self-pinning of
the dislocation system in the absence of quenched disorder, which characterizes the
discrete dislocation dynamics simulations discussed in section 3.1.

4. Discussion and conclusions

From the experimental and theoretical considerations discussed in the present
review, a picture of crystal plasticity emerges which is at variance with the traditional
paradigm of plasticity as a laminar flow process. The key elements of this picture
may be summarized as follows:

(1) Plastically deforming crystals can under usual experimental conditions be
envisaged as slowly driven non-equilibrium systems. The notion of ‘slow’
requires, however, some specification. This will be discussed in detail below.

(2) The dynamics of these systems is governed by the presence of a critical point
marking a non-equilibrium phase transition (‘yielding transition’) of the
dislocation system where, at a critical applied stress, the dislocations pass
from a pinned/jammed to a moving phase.

(3) Critical behaviour manifests itself in terms of strongly intermittent dynamics
with bursts of activity (‘deformation avalanches’) separated by quiescent
intervals. The sizes of the avalanches obey scale-free distributions, character-
istic of the intermittent ‘crackling noise’ associated also with other dynamical
critical phenomena [46]. Both the spatial and the temporal distribution of the
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avalanches are characterized by long-range correlations (spatial clustering,
emergence of ‘aftershocks’). There are indications that the spatial distribu-
tion of slip events follows fractal patterns [7, 48]. Scaling properties can also
be observed in surface patterns where a self-affine surface morphology
emerges during deformation.

(4) Observations of scale-free behaviour can be made on a wide class of metals
and alloys. Details of crystal structure and alloy composition seem to be
largely irrelevant – for instance, in the present review we find that the
same model (section 3.2) can explain experimental observations made on
ice, alkali halides, pure fcc metals, and superalloys. This robustness may
indicate universality associated with the behaviour near the ‘yielding
transition’. Many of the theoretical and experimental results compiled in
the present review indicate that this critical behaviour could simply be in
the universality class of mean-field depinning.

It is obvious that this picture of plasticity owes a lot to the recent availability of
convincing experimental data, in particular to the very comprehensive investigations
of AE activity in ice carried out by Weiss and co-workers [6, 7, 36–41]. Given the fact
that this as well as most of other experimental work reported in the present review
uses techniques that have been available for decades, one may ask why the intriguing
collective behaviour that can be observed during plastic deformation of crystals has
escaped the attention of the physics and materials science communities until very
recently.

4.1. Why has it not been seen before?

Some general observations A first and obvious response to this question leads us
into the field of sociology (and psychology) of science. People tend to look for
phenomena which they expect and understand, in other words, phenomena for
which there is a conceptual and interpretative framework. A good scientist reports
what he sees, but in the absence of such a framework, it is only too likely that some
observations may not be followed up. In fact, jumps of the local strain which closely
match the ‘staircase-shaped’ stress–strain curves of micron-scale samples (see section
3.1.3 and references) have been reported in the 1970s [60] and possibly even earlier.
The experiments discussed in section 2.2.1, which demonstrated fractal slip patterns,
date from the mid-1980s [48]. But only since the late 1980s has a conceptual frame-
work been developed in which avalanche dynamics, crackling noise, and scale-free
statistics are perceived as fairly general phenomena which are characteristic of a
wide class of driven non-equilibrium systems. In the absence of such a framework,
occasional observations of large fluctuations and scale-free behaviour reported in the
materials literature remained unexplained and to some extent inconsequential.

In case of acoustic emission measurements, the situation is further complicated
by the space and time scales involved. In the following it will be demonstrated that,
depending on strain rate, hardening rate and dislocation density such measurements
may yield either discrete or continuous AE signals, or a superposition of both, in
spite of the fact that the underlying dynamics on microscopic and mesoscopic scales
is the same in either case. Given the lack of explanation of ‘crackling’ signals, it is
therefore quite natural that early research has usually focused on the continuous AE
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as discussed in section 2.1.3. Even in cases where the crackling nature of the signal
cannot be overlooked, as in the example shown in figure 5, no statistical analysis was
performed since scale-free noise statistics were not considered a relevant or topical
issue. In the opinion of the present author, however, continuous and discontinuous
AE signals recorded during deformation of metals and alloys relate to the same
fundamental physical processes which in ice single- and polycrystals give rise to an
intermittent ‘crackling’ noise. We will show in the following why in metals
discontinuous AE is often masked by an overlapping of signals emanating from
different deformation bursts which is caused by the effect of a finite driving rate.

Deformation rate effects and the transition from discrete to continuous AE signals In
plastic deformation of metals, one often observes transitions between discrete and
continuous acoustic emission signals, as well as the simultaneous occurrence of both
(spikes above a continuous background), cf. section 2.1.3 and figure 5. In this case,
the continuous part of the signal may simply stem from the superposition of acoustic
waves originating from independent bursts at different locations in the specimen.
To assess the conditions under which this may occur, we consider a strain-rate
controlled deformation test and define two critical strain rates: Above a critical
strain rate _!1, the average time between two events falls below the mean event
duration and a continuous background appears. At a second critical strain rate
_!2, the magnitude of the continuous background becomes of the same order of
magnitude as the characteristic amplitude $!max of the largest bursts. Above this
rate, crackling noise becomes altogether unobservable. If we make the simplifying
assumptions that bursts occur uncorrelated in time, and the amplitudes of subse-
quent burst are statistically independent, these two critical strain rates can be esti-
mated as

_!1 ¼
h$!i
tr

, _!2 ¼
$!max

h$!i
_!1 ¼

h$!maxi
tr

: ð50Þ

Here tr denotes the effective duration of a burst as recorded by the acoustic trans-
ducer. Because of reflections at the specimen surfaces, this duration is in general
longer than the actual duration of the burst. A lower estimate for tr is therefore given
by the characteristic time for acoustic wave propagation, tr 2 c=Ls where Ls is the
characteristic size of the specimen and c the longitudinal sound wave velocity. We
finally note that, for stress controlled experiments, critical stress rates can be defined
as _"1=2 ¼ # _!1=2 where # is the strain hardening coefficient or the inverse susceptibility,
# ¼ ð@h!i=@"Þ%1.

For a power-law burst size distribution with exponent 1 < , < 2 and upper
and lower cut-off $!max and $!min, the average strain increment in a burst is

h$!i ¼ 2% ,

,% 1
$!2%,

max$!,%1
min : ð51Þ

It is easy to see that, for a truly scale-free distribution where the upper cut-off
diverges, the burstlike signal can always be observed. On the other hand, our
investigation in section 3 has demonstrated that the distribution of event sizes is
usually truncated at some large cut-off size. Such a cut-off in reality always exists.
It may be due to intrinsic reasons (the stress is below the yield stress, or the material
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exhibits strain hardening, cf. section 3.2). It may also result from the effects of finite
grain size, or simply from the finite size of the deforming specimen.

Here we focus on the situation which is most relevant for assessing the observa-
bility of intermittent AE bursts in conventional deformation experiments, namely a
single crystal of macroscopic dimensions which is deformed in strain rate control.
(In polycrystals, the maximum event sizes are expected to be smaller and therefore
bursts may be more difficult to observe.) We consider the upper critical strain rate _!2
which according to equation (50) depends on the maximum event size only. At lower
strain rates, superposition of events may affect the statistical characteristics
of the AE signal even though the ‘crackling’ nature of the signal is still manifest.
For a discussion of these effects the reader is referred to the work by White and
Dahmen [86].

We consider large events as a cascade of elementary ones, $!max ¼ Nmax$!min.
If plastic flow is controlled by dislocation interactions, the volume occupied by the
smallest events is expected to be of the order of .%3=2 and the strain produced within
this volume to be of the order of b.1=2 where . is the dislocation density (one
dislocation segment moves by one ‘wavelength’ of the internal stress field, cf. the
scaling relations discussed in section 3.1.1). The strain produced by an ‘elementary
event’ within the macroscopic volume Vs of the deforming body is then given by
$!min ¼ b=.Vs. The number Nmax does not depend on the dislocation density . but
is, as discussed in section 3.2, inversely proportional to the strain hardening
coefficient: Nmax ¼ CG=#. From the simulation results of section 3.2 we obtain the
estimate C - 50.

Throwing together all these relations, we can estimate the critical strain rate
below which intermittent ‘crackling’ noise can be observed. We find that

_!2 -
CbcG

#VsLs.
: ð52Þ

We consider a Cu specimen with typical dimensions Ls - V1=3
s - 5 mm, Burgers

vector length of b ¼ 2:5 Å, and typical dislocation densities and hardening coeffi-
cients in hardening stages I and II. In Stage I, #=G - 5* 10%4 and . - 1012 m%2

which yields a value _!2 - 2:5* 10%4 s%1 which is well within the usual range used
in deformation tests. In Stage II, on the other hand, typical dislocation densities are
one or two orders of magnitude larger and the hardening coefficient increases by up
to a factor of 10, #=G - 5* 10%3 and . - 5* 1013 which leads to a critical strain
rate _!2 - 5* 10%7 which is well below the usual experimental range. These estimates
compare well with observations of Imanaka et al. [42] who observed burstlike AE
during the initial loading of a Cu single crystal of high purity and very low initial
yield stress (" < 1MPa) which after deformation to a flow stress of about 3MPa
(corresponding to a tenfold increase in dislocation density) gave way to a continuous
AE signal. The observation of crackling noise in hcp metals, where Stage II
dislocation densities and hardening rates tend to be lower than in fcc metals, fits
into the same picture, as does the fact that Weiss et al. made their observations on
ice single crystals with extremely low initial dislocation densities (. / 108 m%2).

These estimates indicate that observability of burstlike AE induced by disloca-
tion plasticity can under usual experimental conditions not be taken for granted even
in fcc metals where dislocation mobilities are high. The situation may be different in
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deformation by twinning, where the elementary events are much larger, and/or in
the presence of plastic instabilities. However, our estimates also demonstrate that
macroscopically continuous AE signals need not be at variance with an intermittent
avalanche dynamics on mesoscopic and microscopic scales which, in the case of the
simulation data of figure 21 on which our estimate is based, exhibits scale-free
behaviour over five orders of magnitude in avalanche size.

4.2. Open questions, doubts and prospects

In this review we argue that scale-free fluctuation patterns in crystal plasticity repre-
sent critical behaviour associated with a non-equilibrium critical point (‘yielding
transition’). However, critical behaviour is by definition confined to an isolated
point in parameter space: critical phenomena are not generic. Furthermore, a
plastically deforming crystal is not actually in a steady state: Since plasticity leads
to microstructural changes (dislocation multiplication, strain hardening), ongoing
deformation requires an continuously increasing stress. Hence, in strain hardening
materials (i.e. in most crystalline solids) the point of yielding, in the sense of sus-
tained flow under constant stress, is actually never reached: If the yield stress marks
a critical point, the system chases the ghost of that point as each stress increment
leads to plastic activity which in turn, due to the ensuing microstructural changes,
moves the point of yielding towards higher and higher stresses.

There are two ways to reconcile these observations with the fact that, as demon-
strated in this review, scale-free fluctuations are a fairly general feature of crystal
plastic flow:

(i) Several authors have adopted the notion of self-organized criticality (SOC).
SOC in the context of plasticity means that there is some mechanism which ensures
that the evolving dislocation system settles into a state where the applied stress
corresponds precisely to the momentary yield stress. Indeed, the model discussed
in section 3.2 of the present review is closely related to a model proposed by Bak and
co-workers for describing the ‘self-organized critical’ dynamics of shearing processes
at earthquake faults [87]: The SOC model of Bak et al. actually implements an
automaton version of the continuum model in section 3.2, with a particular choice
of the hardening coefficient. This observation, however, rather than advocating the
concept of SOC for plasticity, indicates that the model of Bak et al. is actually not
evolving towards a truly critical state (cf. the discussion of hardening in section 3.2).
The fact that Bak et al. in [87] do not find any intrinsic limits to the scaling regimes of
their avalanche size distributions has the simple reason that their system sizes are too
small. As a consequence, they find scaling over two decades, whereas our results in
section 3.2 even for large hardening coefficients indicate robust scaling over four
decades before the intrinsic cut-off proportional to the hardening coefficient becomes
manifest.

(ii) The concept we prefer is that of ‘robust scaling’: the dynamics of a system
may exhibit scaling behaviour associated with a critical point even if the system is not
very close to that point in parameter space. Our investigations have revealed several
examples of such robust scaling – see, e.g. the avalanche size distribution in figure 18,
where scaling behaviour over almost four decades is observed at stresses that are just
20% of the critical stress.
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If plastically deforming crystals are not in a truly critical state, this has the
important implication that, in sufficiently large samples, fluctuations will finally
average out. In terms of the acoustic emission, we have demonstrated that small
uncorrelated AE events from different parts of the crystal may superimpose to
produce the continuous AE background commonly observed in AE experiments
on metals and alloys. Similarly, in macroscopic deformation experiments the
superposition of many small and uncorrelated strain increments obliterates the stair-
case-like structure of the stress–strain curves that is blatantly manifest from small
samples. Another implication of a possible absence of true criticality is that spatial
correlations in the plastic flow pattern may have a finite range, above which the
traditional homogenization methods of continuum mechanics can be successfully
applied. In fact, it may be wise to make the modest claims of ‘nearly critical’ or
‘robust critical’ behaviour, as opposed to SOC, in order to avoid the impression that
the methods of continuum mechanics (including homogenization methods and the
use of conventional constitutive equations in crystal plasticity) as used during the
last 200 years were completely off the mark.

When it comes to predicting plasticity on the micron scale, as for instance in
microelectromechanical systems, however, these caveats do not hold and conven-
tional constitutive equations, which imply deterministic materials behaviour, may
indeed be quite inadequate to account for plastic behaviour which on these scales is
intrinsically controlled by fluctuation phenomena.

Several observations still remain vexatious:

(1) In the creep experiments on ice, changing the stress over a wide range leaves
the energy distribution of AE bursts virtually unchanged, and no indication
of a cut-off can be found over more than 6 decades in energy. Moreover, the
same distribution seems to govern the AE burst energies in different creep
regimes during which the average creep rates differ by orders of magnitude.
No presently available model seems capable of reproducing or understanding
this extremely robust behaviour. The ‘SOC viewpoint’ would of course be
that, whatever the stress, the system is self-organizing towards its critical
point. However, a physically motivated model which provides a mechanism
for such self-organization in a dislocation system has yet to be formulated.

(2) The interpretation of AE experiments hitherto relies on extremely simplistic
models assuming compact sources. The theoretical investigations, on the
other hand, indicate that the acoustic source during a ‘slip avalanche’ may
have a complicated structure: owing to the long range of elastic interactions,
dislocations may move in a correlated manner in spite of being widely
separated, and the effective source may be a fractal dust rather than a com-
pact object. One may ask whether the simplistic assumptions underlying the
current interpretation of AE measurements affect the results, in particular
the avalanche exponents. To clarify this point, one might investigate how the
predictions of an AE source model based on one of the models described in
section 3 would differ from those based on a simple coherent or incoherent
superposition of compact sources as assumed in the analysis of previous
experiments.
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(3) All presently available models are formulated for single crystals and simple
deformation geometries, where the plastic strain and strain rate can
effectively be treated as scalar fields and the stress as a scalar driving force.
The same holds for many of the available experiments, which have been
conducted on single crystals deforming in single-slip geometries. The behav-
iour of more general models which necessarily have to take into account
the tensorial nature of stress and strain may be substantially different, as
the dimensionality of the order parameter of the ‘yielding transition’ (i.e. the
strain rate) is evidently an important issue for any kind of critical behaviour.
There is experimental evidence for differences between single and multiple
slip in the acoustic emission signals recorded during deformation of ice poly-
crystals, which differ substantially from those recorded during single crystal
deformation: Not only does the size distribution of acoustic emission events
in polycrystals exhibit a grain size dependent cut-off, but also the avalanche
exponents are quite different from those for single crystals. There may be
different reasons for these observations: (i) Grain boundaries may act as
dislocation obstacles, and the blocking of slip at grain boundaries may
cause strong kinematic hardening, as well as overstresses in adjacent grains.
This is especially pronounced in ice where the activation of other than basal
slip systems is difficult. (ii) In polycrystals (with the possible exception of ice),
multiple slip systems operate simultaneously in most grains. To assess the
respective influences of grain boundaries and multiple slip, both specific
experiments (e.g. on single crystals deforming in symmetrical multiple slip)
and corresponding theoretical models are needed.

(4) Many aspects of the avalanche statistics seem to be consistent with mean-
field depinning, and the results obtained from simulations of discrete
dislocation as well as of continuum models (section 3) point into the same
direction. This is not unexpected owing to the long-range nature of the elastic
interactions. However, the applicability of the depinning framework, and
indeed the very existence of a unique depinning threshold (yield stress), is
in no way guaranteed since the lack of positive definiteness of the interaction
kernels prevents the application of Middleton’s ‘no passing’ theorem for
proving the existence of a unique threshold [88].

(5) An important question concerns the relations between the spatial and
temporal structure of plastic flow. It is obvious that mean-field arguments
by definition cannot tell us anything about the spatial structure of a process.
The investigations discussed in section 3.2 indicate that the strongly
anisotropic structure of the elastic kernels, which follows from continuum
elasticity, may be crucial for the properties of strain patterns. Several
questions remain unanswered: How can the observed spatio-temporal
clustering of slip avalanches be explained? Can the existing models reproduce
the fractal distribution of avalanche loci in a macroscopic sample as
proposed in [7]? Is there a theoretical explanation of the observed surface
roughening beyond the coincidence of experimental and simulation results?

A further issue which creates complications is the fact that the present
models tend to over-simplify the properties and the evolution of the crystal defect
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microstructure during deformation. The applicability of the depinning framework
hinges on the presence of a statistically homogenous field of quenched disorder with
short-range correlations. In the present context this translates into the assumption of
a disordered and evolving, but at the same time statistically stationary dislocation
microstructure. This assumption is acceptable in the sense that on the typical strain
scale of individual slip avalanches the microstructure does not change a lot, and on
the strain scale where it does change, the slip avalanches are truncated due to the
ensuing hardening as discussed in section 3.2. Complications arise, however, from
the following observations: Not only the dislocation density and the amplitude of the
internal-stress fluctuations increase during deformation, but at the same time the
characteristic ‘wavelength’ of the dislocation microstructure, and the correlation
length of the stress fluctuations, decrease in proportion with the dislocation spacing.
In the model of section 3.2, only the amplitude growth has been considered while the
spatial ‘shrinking’ of the pinning field has been neglected. Another complication
stems from the fact that, under certain deformation conditions, dislocations may
arrange into fractal patterns, with a fractal dimension that increases during deforma-
tion [9, 10]. This implies that the pattern of local yield stresses may itself possess
long-range correlations, and these correlations may not be stationary.

Many of the observations and models discussed in this review are not confined
to crystal plasticity, but apply to any kind of shear flow. Hence, it is not unexpected
that the models discussed in the present review bear close relations to models used in
other contexts. A prominent example is the model of Bak and co-workers of
earthquake dynamics [87] which is analogous to the continuum plasticity model of
section 3.2. Another example is the amorphous materials plasticity model by Roux
et al. [80] which considers a different deformation geometry (anti-plane instead of
plane shear) but can be translated into crystal plasticity language in a straightforward
manner: The model corresponds to the antiplane shear of a 2D crystal lattice with two
symmetrical slip systems, while the other characteristics are essentially the same as in
the model of section 3.2. It is hoped that future systematic investigations of these and
related models will yield a unified picture of the irreversible deformation of
both crystalline and amorphous solids, which allows to analyse and classify both
the universal and the materials and geometry-specific features of plasticity.
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