

Diszlokációlavinák Zn egykristályokban: földrengések a mikronos skálán

Ispánovity Péter Dusán

ELTE TTK Budapest, Anyagfızikai Tsz.

Közreműködők

ELTE TTK, Anyagfizikai Tanszék

Ispánovity Péter Dusán, Ugi Dávid, Péterffy Gábor, Dankházi Zoltán, Tüzes Dániel, Vida Ádám, Groma István

EMPA Thun, Svájc Laboratory for Mechanics of Materials & Nanostructures Kalácska Szilvia

Károly Egyetem Prága, Dept. of Materials Physics

Michal Knapek, Máthis Krisztián, Frantisek Chmelík

Vázlatos felépítés

Földrengések

Empirikus törvények

Kísérleti összeállítás

Mikrooszlopok kialakítása Mikrooszlopok deformációja AE mérések

Háttér

Mikromechanika Deformációs lavinák Akusztikus emisszió (AE)

Mérési eredmények

Feszültség-deformációs görbe

AE jelek analízise

Mi köze a mikrooszlopoknak a földrengésekhez?

Mi a földrengés?

- A földrengés előtt belső rugalmas erők épülnek fel
- Maradandó alakváltozás során felszabadul a rugalmas energia
- Rugalmas hullámok formájában távozik

A 2019. évi Ridgecrest földrengés

- 2019. július 4-5.
- Richter skála szerinti 7,1-es földrengés
- Az elmúlt 20 év legerősebb földrengése Kaliforniában
- Los Angelestől 200 km-re
- Mély földrengés: 10 kmrel a felszín alatt

Utórengések

- Utórengések száma:
 - 3 nap alatt kb. 4000
 - 6 hónap alatt kb. 40000
- Térbeli kiterjedés:
 - 50 km-es hosszon voltak utórengések
 - az elmozdulás mértéke kb. 20 cm

- Utórengések rátája *n*(t)
 - n: egységnyi idő alatti utórengések száma
 - t: főrengés óta eltelt idő
- Omori-törvény: $n(t) \sim 1/t$

Fundamentális empirikus törvények

- Gutenberg-Richtertörvény:
 - $P(E) \propto E^{-\tau}$
 - Exponens ~1,6
- Produktivitási törvény • $n(t) \propto E_{
 m ms}^{eta}$
 - E_{ms} a főrengés energiája
 - Exponens ~0,5

time after mainshock (days)

 10^{-1}

 10^{0}

 10^{1}

 10^{2}

10⁻²

 10^{-3}

10

 10^{-4}

Helmstetter, PRL, 2003

Kristályplaszticitás a mikronos skálán

- Mikron méretű minták (mikrooszlopok)
 - Méreteffektusok
 - Nagy, véletlenszerű deformációs ugrások
 - Megjósolhatatlan deformáció

8

Csikor et al., Science, 2007

Deformációs/diszlokáció lavinák

- Véletlen deformációs ugrások
- Hatványfüggvény szerinti eloszlás: $P(s) = As^{-\tau}e^{-s_0}$
 - τ : lavina-exponens (\approx 1,5)
 - s₀: levágás (cutoff) (≈100 nm)
- Ok: diszlokációk kollektív, lavina-szerű mozgása

D. M. Dimiduk et al., Science, 2006

Akusztikus emisszió (AE) mérése

- Akusztikus jelek detektálása a minta felszínén piezoelektromos detektorral
- A detektált jel
 - jellemző a forrásra és a detektorra is
 - függ a forrás és a detektor távolságától
 - lehet folytonos vagy szaggatott

hcp egykristályok akusztikus emissziója

- AE jég, Cd és Zn mintákon
 - $P(E) \propto E^{-\tau_E}$
 - $\tau_E \approx 1.6$ (AE jel energiája)
 - $\tau_A \approx 2.0$ (AE jel amplitúdója)
 - Nincs levágás
 - Robosztus exponensek
 - Az események kiindulópontjai egy fraktált alkotnak
- Nyitott kérdés
 - Nem ismert, hogy az AE jelek milyen kapcsolatban vannak a lokális deformációval

Weiss et al., PRB (2007)

11Weiss et al., Science (2003)

Miguel et al., Nature (2001)

Célkitűzés

- Cél: összekapcsolni a mikrooszlop összenyomási és az AE kísérleteket
 - Bizonyítani az AE és a deformációs lavinák közti korrelációt
 - Értelmezni az AE jeleket a deformációs ugrások tulajdonságainak függvényében
 - Megérteni, hogy az AE jelek hogyan függenek a deformációs mechanizmustól

Mikrooszlop faragása

- 20keV-es fókuszált Ga⁺
 ionokkal bombázzuk a felületet
- Módszerek
 - Felülről lefelé ill. oldalról
 - Opcionális amorf Pt réteg

Zn mikrooszlopok

Minta:

- Bazális síkra orientált Zn (hcp) egykristály
 - nincs keresztcsúszás ill. ikresedés
- Egyszeres csúszás a bazális síkon

Mikrooszlop:

- Átmérő 8-32 μm
- Négyzet keresztmetszet

'Nanotest' in situ deformációs platform

- In situ deformáció a SEM vákuumkamrában
- Precízió
 - xy: 0.5 μm
 - z: 1 nm
 - erő: 1 μN
- Maximum 10 μm
 elmozdulás z irányban
- Változtatható
 rugóállandó (jelenleg
 1 mN/μm vagy 10
 mN/μm)
- Mintavétel: 200 Hz

'Nanotest' in situ deformációs platform

- In situ deformáció a SEM vákuumkamrában
- Precízió
 - xy: 0.5 μm
 - z: 1 nm
 - erő: 1 μN
- Maximum 10 μm
 elmozdulás z irányban
- Változtatható
 rugóállandó (jelenleg
 1 mN/µm vagy 10
 mN/µm)
- Mintavétel: 200 Hz

'Nanotest' in situ deformációs platform

- In situ deformáció a SEM vákuumkamrában
- Precízió
 - xy: 0.5 μm
 - z: 1 nm
 - erő: 1 μN
- Maximum 10 μm
 elmozdulás z irányban
- Változtatható
 rugóállandó (jelenleg
 1 mN/μm vagy 10
 mN/μm)
- Mintavétel: 200 Hz

In situ videó: deformáció + AE események

CH (

- Csak diszlokációcsúszás figyelhető meg a bazális síkon
- Korreláció a feszültségesések és az AE jelek között
- Számos AE esemény detektálható egy feszültségesés alatt
- 19 Gyakorlatilag nincsenek AE jelek a rugalmas szakaszokban

- Csak diszlokációcsúszás figyelhető meg a bazális síkon
- Korreláció a feszültségesések és az AE jelek között
- Számos AE esemény detektálható egy feszültségesés alatt
- 20 Gyakorlatilag nincsenek AE jelek a rugalmas szakaszokban

- Csak diszlokációcsúszás figyelhető meg a bazális síkon
- Korreláció a feszültségesések és az AE jelek között
- Számos AE esemény detektálható egy feszültségesés alatt
- ²¹ Gyakorlatilag nincsenek AE jelek a rugalmas szakaszokban

- Csak diszlokációcsúszás figyelhető meg a bazális síkon
- Korreláció a feszültségesések és az AE jelek között
- Számos AE esemény detektálható egy feszültségesés alatt
- 22 Gyakorlatilag nincsenek AE jelek a rugalmas szakaszokban

Gutenberg-Richter-törvény

- Az egyedi AE jelek energiájának eloszlása:
 - $P(E) \propto E^{-\tau}$
 - Exponens ~1,6
- Jó egyezés a tömbi mintákon végzett AE mérésekkel
 - Azonos exponens
 - Rövidebb skálatartomány
- Földrengések esetén
 - *τ* ≈1,6

Várakozási idők eloszlása

- Bi-modális eloszlás
 - $P(t_{\rm w}) = \left(At_{\rm w}^{-\alpha} + a\right)e^{-t_{\rm w}/t_0}$
 - Közeli jelek: ugyanabból az eseményből
 - Távoli jelek: egymást követő eseményekből
- A lavináknak nincs kitüntetett időskálája, de a véges ráta miatt max. kb. 100 ms-ig tudjuk megfigyelni őket
- Közeli jelek:
 - Skála-független eloszlás
 - Független a deformációs rátától
 - Exponens ~1,2
- Távoli jelek
 - Exponenciális levágás
 - Függ a deformációs rátától
 - Poisson-szerű

24

<u>Utórengések</u>

- Egy nagy magnitúdójú jel után számos "utórengés" figyelhető meg
- Legnagyobb jel esetén kb. 120 utórengés
- Az utórengések rátája és átlagos amplitúdója időben csökken

Omori-törvény

- Utórengések rátája
 - $n(t) \propto \frac{1}{t^p}$
 - Exponens ~1,1
 - Három nagyságrenden át kb. 100 ms-ig
 - Hosszabb idők esetén konstans ráta
- Produktivitási tv.
 - $n(t) \propto E_{\rm ms}^{\beta}$
 - Exponens ~0,5

Földrengések vs. diszlokációlavinák

	Földrengések	Diszlokációlavinák
Mechanizmus	Elcsúszás/repedés	Diszlokációmozgás
Kiterjedés	Síkban	Síkban
Tipikus méret	m	nm
Tipikus kiterjedés	km	μm
Tipikus idő	perc-hónap	ms-s
Méreteloszlás	Gutenberg-Richter	Gutenberg-Richter
Utórengések	Omori-tv. + Produkt. tv.	Omori-tv. + Produkt. tv.

Miért jó ez?

- Elsőként sikerült AE jeleket detektálni mikoronos méretű próbatestek esetén
 - Új in situ mérési eljárás
- Feltártuk az akusztikus emissziós jelek kapcsolatát az őket keltő lokális deformációval
 - Lehetőséget az az akusztikus jelek gyakorlati alkalmazásának továbbfejlesztésére tömbi minták esetén
- Az AE jelek a magas mintavételezés miatt alkalmasak a diszlokációlavinák finomszerkezetének vizsgálatára
 - Elméleti statisztikus fizikai modellek ellenőrzése/kidolgozása
- További tervek:
 - Bonyolultabb szerkezetű kristályok (ponthibák/besugárzás, fcc)
 - Amorf szerkezetű anyagok

Összefoglalás

- Zn mikrooszlopok in situ összenyomása
 - Deformáció diszlokációmozgással
 - Méreteffektusok
 - Lavina-szerű deformáció
- A lavinák során feszültségesések és AE jelek
- Kvalitatív egyezés a földrengésekkel
 - Síkbeli terjedés
 - Skálafüggetlen méreteloszlás
 - Utórengések csökkenő rátával

