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Motivation

Large stochastic fluctuations arise
during the deformation of small (few
um) crystalline samples
Makes predictable deformation
impossible
Power-law distributions characterize
intermittency

[(170] |

The question of universality is still I
[111] 112
open

What physical processes affect the
critical behaviour and how?
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Intermittency in experiments on crystalline plasticity
Acoustic emission
Micropillar experiments

Nanoindentation pop-in events

Simulations
Discrete dislocation dynamics

Stochastic models

Simple 2D dislocation model
Anomalous system size behaviour

Extended cryticality



Crystal plasticity

Shear stress
#

Dislocations
Linear lattice defects
Carriers of plasticity
They move due to shear stress

They generate long-range shear
stress field:
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Dislocation patterns

Multitude of observed dislocation
patterns

Fractal, periodic, etc.

Crucial impact on plastic properties

May lead to strain localization and
failure of the material

H Mughrabi, F Ackermann, K Herz, STP675, 1979
H Mughrabi, T Ungdr, W Kienle, M Wilkens, Philos Mag, 1986 ' !




Relevant lenght scales

Atomic scale =
Dislocation reactions and mobility

Dislocation pattern
Scale proportional with 07'/2: principle of similitude
Quenched disorder

Precipitates, point defects (solute atoms, vacancies, etc.)

Grain size

Dislocations typically cannot penetrate boundaries
Specimen size

Comments

>

Thermal activation is not relevant at low
temperatures

Dislocation motion is dissipative

Small scales
typically
lead to

hardening of

the specimen



Stress-strain response

Smooth curve for bulk samples
Large number of dislcoations
Microplasticity
Deformation before yield

Work hardening

Dislocations may multiply,

o=F/A

annihilate and react during
deformation

0.2l% e=l/L

Pattern formation



Microplasticity

30}

Torsion of Cu (fcc) and Zn (hcp) tubes

Deformation sensitivity: 107
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Crackling during bulk plasticity

Zn single crystal (hcp)

‘the strain curve of zinc crystals is not smooth, but consists of
individual more or less sharp cracks’
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Fig. 1. Die Versuchsanordnung. Fig. 2. Sprunghafte Dehnung eines Zinkkristalls bei 800 C,

[Becker, Orowan (1932)]



Acoustic emission

Acoustic Emission Signals

Detection of acoustic waves on Chan: 1 Sel: 53 Index 53 14 11:4352556.4534 Time [ys|
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Spatial clustering of avalanches

With more (4) detectors the
origin of the acoustic signal A 5

can be located g el B
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Effect of grain size

Polycrystalline ice

= 1
Cutoff decreasing with grain size :
Bimodal distribution due to secondary 1071
triggering across boundaries T
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HCP vs FCC materials

Acoustic signal of fcc f 0000, .
. o s 10" f° : |
materials is mostly . %&% S A
. . =X B
continuous interrupted > 107k 0
. ‘B 3 Q
with only few bursts g 10°f 00’ %, Vo
. = 3 * “e  q
In fcc materials forest s 0t R SN
N
dislocations and junctions § : NN . 70y _5.=1.40
; g 10°F ® e ENERE
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- \. T.'E 150 oa
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Energy (aJ)

[Weiss et al, PRL (201 5)]



Conclusions of AE

Relation between measured quantites and parameters of strain
bursts somewhat unclear

Time resolution for large samples or large strain rates may be
a problem.

Clear sign of criticality for bulk samples

Exponents suggest non-universal behaviour for different materials

Internal length scales
No cutoff is detected for single crystals - no information on length scale

System size dependence has not been studied - AE only detectable for

large samples



Micropillar compression

Compression using a nanoindentor

device
Flat punch diamond tip a
Voice coil
The device contains a spring for
displacement measurement
L Capaciti
Machine stiffness comparable to sample —1 = di‘:,?;'cte“,/ﬁem
stiffness sensor

Diamond
flat punch

Sample
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Micropillar compress{mjcn

| SR

Zn pillar oriented for
single slip

Diameter: 8 um
Height: 24 um

Displacment rate:
10 nm/sec

Sudden activity on
different slip planes
(strain bursts, dislocation

avalanches)

Unpredictable and
localized both in time and
space




Micron-scale crystal plasticity

Size effects: smaller pillars are
harder

Stochasticity: smaller pillars are
more random
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D. M. Dimiduk et al., Acta Mater., 2005



Strain burst statistics

Previous investigations

Strain burst sizes are power-law
1000 : : :

distributed:
L
P(s) o< s 7 f(s/s0) 3 1O :
=
7: avalanche exponent g 10 .
=
So: avalanche cut-off S 1y |
f: cutoff function (e.g. flx) =exp(-x)) ?, 01| |
Ke)
Experimentally measured exponents: § 001 | o
T=1.5,20,1.3
0.001 ! ! !
0.1 1 10 100 1000

Event size (nm)
Dimuduk et al., Science, 2006

Friedman ef al., PRL, 2012
Zhang et al., EPL, 2012



Mean-field depinning

Compression of 7 Mo pillars
Diameter: 800 nm

+ 0.4 to 0.5 of max Stress

Stress-binned statistics

0.5 to 0.6 of max Stress

0.6 to 0.7 of max Stress

Scaling function:
D(S, 7) ~ S~ fs(S(z, — 7)'/7)

Mean field exponents obtained

0.7 to 0.8 of max Stress

1200 |

Complementary Cumulative Distribution C'(s)

1000 |
1. Nb 868 nm, 2 nm/s

E 800 - 2. Mo 800 nm, 10 nm/s 3
< 3. Au 250 nm, 0.1 nm/s 10 - n =
P 4. Ta 400 nm, 2 nm/s 10 ) .10 10
@ 600 [, slip size s (nm)
5 4

400

criticality slope
200

. : . . : : [Friedman et al, PRL (201 2)]
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Issues with micropillarexperiments

Small number of events: large statistical errors
Yield stress of individual pillars strongly fluctuates

Very few avalanches in the elastic regime

The I‘eSUH'S are Vel‘y SenSiTive 1200_‘ <123> Rene N5 single crystal, 10-um diameter
to experimental details

High-lateral-stiffness
platen

1000

System size

For nanopillars new 800 -
r Low-lateral- High-lateral- Low-lateral-stiffness
stiffness platen stiffness platen platen

defromation mechanisms

—
o

600 -

Parallel tip and sample surface

Engineering stress (MPa)

Surface degradation duew to FIB

400

Deformation and sampling rate
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[Uchic, Shade, Dimiduk, Ann. Rev. Mater. Sci. (2009)] Engineering strain



Low angle grain boundary
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[Imrich et al., Acta Mater. (2014)]
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Effect of microstructure

Avalanche distribution unaffected by original dislocation structure

Sampling rate affects the exponent

1
’s,\ Pure Ni, 20 pm, 10* s™, 500 Hz
.\\\.\ — o~ Stage Il (269)
N
N — o— Stage lll, (110)
0.01 ‘»)

internal structure
is not limiting max.
event size

1E-8

100 1000
Event Size s (nm)
[Maass, Derlet, Acta Mater. (2018)]



Effect of irradiation

unirradiated

Self-ion irradiated <111> Ni: T o
Smoother response for small doses |

Large fluctations for high doses

10 —
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[Zhao et al, Acta Mater (201 5)]



Nanoindentation: pop-=in events

First pop-in events in Mo

Weibull distribution
describes well the pop-in
stresses

QO
L& L b g
1 \ 1 / 1L
Highly Stressed Zone /
i i

1 1 L

[Phani, Johanns, George, Pharr, J. Mater. Res. (201 3);
Derlet, Maass, J. Appl. Phys. (2016)]




Conclusions of experiments

Clear sign of critical behaviour
Power-law distributions

Technologically important to understand small-scale deformation

Internal scales seem to affect the avalanche distribution
Grain boundaries, quenched pinning

Measured data suffer from
Small datasets

Experimental difficulties

Too small samples

One cannot conclude regarding universality



Discrete dislocation dynamics:(DDD)

3D DDD simulations on Al

Mean-field exponent P(s) < s~ f(s/s0)
Behaviour of the cut-off: o i
bE
S0 oc
LO+T)
,\10'1
2 —
b: Burgers vector R A
< L:O.5um: load control 3
E: Young modulus 10°3 o L=0.5pm, stra?n control o
v L=0.8um, straln/;:ontrol
L: system size 0 — SRR
©®: strain hardening B R T R
102 107! 10°
I': effective stiffness of the S=sL(I+0)/(Eb)

machine-sample system

[Csikor et al, Science, (2007)]



Edge dislocations
in single or multiple
slip systems

Sources and obstacles

[Papanikolaou, Song, van der Giessen, J. Mech. Phys. Solids (2017)]
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Weak sources (left): cutoff dependent on sample size

Size effect; larger events for thin samples, T =1.5

Strong sources (right): constant cutoff

No size effect; event distribution independent of size; T =1.9

———— 0.125um
o —— =8
| w=0.25um 4 ——+—— o=16

-2
107E —— =32

[Papanikolaou, Song, van der Giessen, J. Mech. Phys. Solids (2017)]



Representation of inhomogeneities

The microstructure of the material is
inhomogeneous

Dislocation patterns
Random impurities

Grain structure

in space

Representing internal disorder

Via a local yield threshold

RVE size comparable to the scale of disorder

Deformation will always occur at the ‘weakest’
site




Stochastic plasticity model

Simple local shear deformation:
Shear stress increases above the local yield threshold
Plastic deformation: Slip along a single plane
The local yield threshold changes due to the changed microstructure

The slipped cell generates 1/r? type elastic stress (Eshelby inclusion problem)

o

. .‘3.

cos(4(p)

o, (x,y)=

I"

Zaiser, Moretti, J. Stat. Mech., 2005
Talamali et al., PRE, 2011




Stress field of a dislocation dipole

cos(2
Shear stress field for large distances: o,,(x,y)= (2 ?)
r




Depinning in the stochastic model

Cutoff divergence as external stress (7_,,) tends to the
critical threshold (7)

‘I_ 100 ARRARLL | T N/\(-) 102§ T AL | LEELELELRARL | LEELELELRARL | T """§
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Dislocation density is constant: no patterns

Length of RVE? Is there an internal correlation length?

[Zaiser, Moretti, JStat (2005)]



Avalanches during depinning

— Avalanche size s is the
P(s) ocs77f(s/s0) area swept

The size distribution

0 \\\ depends on the force (F)
—> NN and system size (L)
2107 [1=1 — \ :
SRR o The cutoff s, diverges at
o F[12e B\ force F = F .
P et \\\ ¢
T e N so(F) o< |F - Rl
10 10 10 10 102 S0 X c
The average avalanche
S O NE size (s) diverges at F_
10° AN f P L=2 rii . . .
o RN ; e Hyid Finite size effects near
10 : lL=8 o ﬂ%‘ '
§|0-2_ =1 — \ :\"}IO' ; “""’j E FC:
|0:3 ll::ﬁ - \ f 3 “ﬁt"“i ] o 1
10* E | g — \ : e {esstestl®® ] FC<L) = FC(OO) + alL
10° F| T — : [ ’
1078 b "\-m, eed 10 i Mean-field case:
10 10 10 0. 02 03 04 05 06 0.7 0.8

F T=1.5



2D dislocation models

2D DDD

Parallel edge dislocations in single slip

Periodic boundary conditions

Number of dislocations: N

Sign of dislocations: s. = T 1

Stress-field of an individual
dislocation: O,y

0.5 -10

0.25
Overdamped motion:
S o0 -1
N ~
:bi = 8; |Oext + g Sjo-a:y(ri — r])] 025 1
i=1 0.5 0.1

-0.5 -025 0 025 0.5
x/L




Problem formulation

Energy of a straight edge dislocation: £=GHT2 Inl/ric
G=u/4w(1—v), L: crystal size, r,: core radius, b: Burgers vector

Energy density of N randomly positioned straight
edge dislocations:

The stored energy density is system size dependent

The width of the Bragg peaks is also proportional to
In(L)

Dislocation systems cannot be
completely random: there must be

M. Wilkens, 1969 . .
spatial correlations






Small-scale configurations

Equilibrium dislocation
configurations are not random:

they are characterized by
short-range ordering

Equilibrium positions of a
dislocation pair:

Opposite sign: IT
dislocation dipole

Same sign:
dislocation wall




|

Spatial correlation fU/“:Cfions‘u WAk

Spatial correlation functions: dislcoation density around a
randomly chosen dislocation :

d,_: relative of the opposite sign dislocations

d..: relative of the same sign dislocations, d, . (0,y)oc |y | ™'

-5 =25 0 25 5 -5 =25 0 25 5

[M. Zaiser et al., PRB, (2002)]



(Debye-)screened stress/field

Elastic energy density of a random dislocation arrangment is
superextensive

Local correlations screen the average stress around each
dislocation

urandom Tscreened

[Groma et al., PRL, (2006)]



Relaxation from a random initial state

Ly Average absolute velocity:
T J—
. A F (o)) < t7*, a =~ 0.87
4
T T » | . .
T, i The cut-off t_ diverges with
T4 system size
10° 1
10° - Fitteddata e
107
210'2

4 N =128, t °¥ exp(-t/83) —
107 F N=512, 7% exp(-t/185) =
| N=2048, 7087 exp(~t/360)

107" 10° 10" 10? 10°
t

F. F. Csikor et al., JSTAT, 2009; P. D. Ispdnovity et al., PRL, 2011



Velocity distribution &-scaling

P(v,t): Distribution of dislocation velocities v at time t
Inverse cubic tail (from theory as well)

Tends to a O-function as t

Scaling property:  P(v,t) =t*f(t%v) = (Jv(t)]) o t*

10
10° F 1
107 |
-2
10 F t: 0.4 .
“: 3l t=1
L 107 | t=2 x 1
-4 t=4 a
107 F t=10
-5 t=20 o
107 t=40 o 1
10'6 L t=100
. [ Approx. master function
10‘ " P N P " | L PR " PR L A"
10*  10% 102 10"  10° 10" 10°
v-t?

P. D. Ispanovity et al., PRL, 2011






Strain rate evolution

-1
. 10
Strain rate:
. _ 2 |
(Andrade creep law) 22403 |
~ —— N=128,t,=55
0 ~ 0.64 107 N=512, t; = 110
i . — N=2048 t =230
cut-off diverges with
sytem size Re
102 ....... ——
10; .
. o 4 o . 107 F
Velocity distribution: o |
<} o |
B h h o d "\"' 102 F + (=2 + =2
oth the symmetric an 103 b« t=4 =4
. 104 | *x t=10 x t=10
asymmetric part follows L 220 © t=20
10° }
scqlmg 1o7 - o =80 M o t=80
107" = : -
10% 102  10° 1072
P. D. Ispdnovity et al., PRL, 2011 vtP




Relaxation at different set-ups show slow, power-law relaxation
everywhere below the yield stress

The cut-off time diverges with the system size

The velocity distributions obey simple scaling relations

Il

There is no time scale in the system (except for the scale due to
finite system size)
The system behaves as if it was critical everywhere below the

yield stress



Single slip
plastic quasi-
static shear in
2D

10 15 20

.25 1.5 1.75 2




Strain burst distributions

Avalanche size s is the total area swept 7 o —
System size: [ = v N ; r—r,_l ;
5 YPII[O%:| 15 20
107!
102 | e
107 | ]
Q [ a
IO_4 - 3
10° | e
S
Dependence on the applied Dependence on the system
stress (N = 4096) size (0,,, = 0.316)

Ispdnovity, Laurson, Zaiser, Groma, Zapperi, Alava, PRL, 2014



Cutoff scaling

Strain burst size distribution:
P(s) o s " exp(—s/sq)

Cutoff scaling:
S0 (O-exta N) X NB eXp(Uext/UO)

Parameters:
Avalanche size exp.: T = 0.97 oS e e AL
-3 -2 -1 0
System size exponent: § = 0.36 0 0 el 0
s'=s/ (N> exp(o,,/0.12))

Stress scale: 0

Ispdnovity, Laurson, Zaiser, Groma, Zapperi, Alava, PRL, 2014



Comparison of models

- e |s"'exp(-s'/o.45) - |_j

\

\.

10° - 10° - 10°
exp(0,,,/0.07)) s'=s/ (N3¢ 10.12))

ext ext

0.36

s’=s/(N exp(o

, |s"' exp(-s702) — |1

10°
10.12))

s’=s/(N 044 exp(T ¢

Continuous model CA model with ED CA model with RD

Model 1t p o

Continuous 0.97£0.03 0.36%0.04 0.07£0.01
CA with ED 1.00+0.03 0.36+0.02 0.116x0.004
CA with RD 1.021+0.01 0.441+0.01 0.122+0.002

7=1.0
p=0.4




Average avalanche shape

Avalanche shape

following the Eshelby
directions

1/r decay

No cutoff in the
avalanche shape

0.05
0.04
0.03
0.02
0.01

o

-0.01

Ispdnovity, Laurson, Zaiser, Groma, Zapperi, Alava, PRL, 2014




Non-depinning behayiour

|

Pinning . Jamming
[
— 2 (N

* In the thermodynamic limit 5, —
at every applied stress
2
* - The length scale s, is due to a e
[| N=128 = -0
. Ll N=256 4 >l
system size effect GlNams| A
. . 'Y FIN=1024 e
* - There is scale-free behaviour but no | ©  [|n=a06 o] " 2=
[ A A
critical point oL . ::{:::,%;;f,,

. . . WP o5 =
Compatible with AE measurements IS P IPRere—
on pure hcp materials Te

2
o)X \UCU-/) - Uext) <8> x L & eXp(Jext/UO)

(y)=L""exp(o,,/0,)



Further evidence
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[Ovaska, Lehtinen, Alava, Laurson, Zapperi, PRL (2017)]



Effect of quenched pinning

= A
:::J Strong pinning, non-critical dynamics
A new length-scale leads to: £
h LA R R AR RN RN ]])
jamming — pinning — Gaussian dynamics |8
S [Pinning
A gap in the local threshold distribution a Sustained plastic flow
Jammed
Conventional DDD _ External stress
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ext ext
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[Ovaska, Laurson, Alava, Sci. Rep. (2015)]




Pure dislocation systems exhibit extended criticality

There is no correlation length associated with dislocation structure

Slow relaxation

The avalanche size diverges at every applied stress level

Plastic yielding in general cannot be described in terms of a
depinning transition

Robust: recovered in 3D simulations as well

This picture may be compatible with experiments on pure hcp or
fcc materials

Introduction of internal length scale changes the picture

Depinning or Gaussian fluctuations



Outlook

Questions
How does the transition from jamming to depinning happen?
System size dependence
s it possible to get into extended crytical region by loading?
What influences the exponent?
How does strain hardening and other phenomena affect universality?
How to go to higher scales? What is the RVE?

Work in progress
Implementing finite boundaries
New algorithms to allow for larger systems/less numerical noise
Get closer to experiments: multiple slip, Peierls stress
Local yield threshold distributions



Statistical analysis of stress-strainfcurves

Stress values for a
given plastic strain

level

Distribution of these
stress values




Average stress-strain curves
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There is only a negligible size effect!



Stress sequence statistics

The stress-strain curve is a T
sequence of discrete stress and

strain values:

T: shear stress at the ith event S T

v shear strain at the ith event

Distribution of strain increments >y
Ay, =vy.— v, has been discussed Vi

What is the distribution of 7.2



Distribution of 7,

For larger systems stress
=8 = L=226 = values get smaller:

L=11.3 = L=32
<17(1)> «1/L

=16 w=

Cumulative distribution
is a Weibull:

0 I 2 3 |7 T v
(T)L" O (7,)=1-exp _(Il)

0 0.1 0.2 0.3

o(7)

Shape parameter: v=14



Background of the Weibull distribution

A chain consists of independent links

If the asymptotic (T — 0) failure
distribution of one link is:

T VIT

) — P<r>=<1>'<r>=—(—)

Ty \ Ty

P(1) = (

Ty

then the failure distribution of the chain
of M links is

1 (™Y
OVt =1-exp| -
) p( M())




(T(i)
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Mean:

Standard deviation:
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Stress sequence

What about the statistics of 7,2
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Size dependence

How does the number of links M
depend on the system size?

Assumption: M o [*

If links are homogeneously

distributed, then & = 2.
A\ /v
<t(i)>zl_0 S _ T, F1v
M L§/V

Fromthe fit §/v=12=>&=1.2"

1%
The numer of links grows

subextensively with the system
size

(T(i)

0.1

[[L=113 =

=8 = |=226 =
L=32

L=16 ==




Plasticity model

Stresses T, are an independent

random sequence drawn from T
a Weibull distribution with
shape parameter 0.

Strain increments are S
independent random variables

with finite moments: _r'_’_,_

I Average stress-strain curve: <‘L’> X (2—2)<)’>

Standard deviation of stresses: At o L <)/>




Average stress-strain curves
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Distribution of stress values at a given strain

Stresses at a given strain for different realizations are
normally distributed

The standard deviation decreases with increasing system
size
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Conclusions, outlook, acknowledgements

Conclusions

The concepts of the stochastic model of Zaiser are in agreement
with 2D DDD

A simple plasticity model of independent avalanches gives a
good description of the microplastic part of the stress-strain
curves

A method has been proposed to set the yield threshold
distribution in the stochastic model (multiscale modelling)
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