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1. present

Crystals primarily deform through the motion of dis-
locations. This sole fact can provide key explanations
for the magnitude and character of uniaxial and shear
strength, as well as the plastic crystalline behavior.
While this is an undeniable fact, it has been relatively un-
known whether the patterns that such dislocation ensem-
bles may form, as they move, can influence the magnitude
and/or character of crystalline mechanical strength and
plastic behavior. It has been postulated that the tran-
sition between Stage II and Stage III hardening regimes
in metals is associated to dislocation patterning, grain-
boundary formation and dislocation cell walls(see for ex-
ample, Refs. [1]),[2], [3].[4][5][6][7].

It has been also observed that yielding due to mechan-
ical fatigue is preceded by the formation of complex dis-
location patterns that have been labeled as “vein struc-
tures”, typically observed in TEM after multiple thou-
sands of fatigue cycles [8], [9], [10]. Such vein structures
have been postulated to be dominated by dipolar dislo-
cation walls, namely the formation of aligned structures
of many opposite-signed dislocations which strongly at-
tract but may not annihilate, since they are located in
nearby but different slip-planes. Such dipolar disloca-
tion walls have been observed in TEM studies of fatigued
metals, but their dynamic origin is as much unknown as
the origin of the vein structures. However, as soon as
they emerge, it is clear that their highly stable character
(due to the very strong, attractive dislocation-dislocation
interactions) would hinder further homogeneous motion
of dislocations and eventually lead to strain-localization
through the formation of persistent slip bands (PSB).[11],
[12]. The way with which such a remarkable transition se-
quence (homogeneous plasticity to dipolar walls and vein
structures to PSBs) takes place during persistent fatigue
remains unknown. While this is a clear example of emer-
gent patterning in a non-equilibrium setting, and there-
fore interesting to understand and correlate with other
analogous statistical phenomena, it is also vital to char-
acterize such patterns in order to predict the number of
cycles required for mechanical failure.

Dipolar dislocation walls have been naturally observed
in an explicit example of mechanical deformation: that
of monotonically increasing shear of 2D discrete edge dis-
location dynamics in an initially random dislocation en-
semble. Such walls have been observed to be emergent at
high strains, beyond cc % strain, and also at quite large
overall net dislocation densities. The mechanical stabil-
ity of such walls is so high that no dislocation can further
cross through in this system.[13][14][15].

While the emergence of dipolar dislocation walls has

been observed in a special example of 2D discrete
dislocation dynamics simulations, their dynamical ori-
gin has not been clear. It has been postulated that
their origin is associated with the contribution of back-
stress terms in continuum dislocation dynamics: Back-
stress terms are typically associated with asymmetric
tension/compression behavior in crystal plasticity [16],
and effects such as the Bauschinger effect, and they
represent the key ingredients in theories of kinematic
hardening.[17], [18] In dislocation dynamics, such terms
are naturally connected to any dynamical terms in the
equation of motion (for dislocation densities) that are
not locally proportional to the density – then asymme-
tries are expected to emerge.[14], [19]. While there are
several theories of kinematic hardening, the functional
form of backstress, as well as overall signs of fitting coeffi-
cients, are regarded as material parameters, independent
of the basic behavior of the system. Furthermore, no
connection of such parameters and their signs has been
identified with emergent crystal plastic behaviors, such
as dipolar dislocation walls.

In this paper, we elucidate the origin of such dipolar
walls in the context of a precise continuum counterpart
of dislocation dynamics. We develop a stochastic contin-
uum framework, in which such walls emerge in a direct
correspondence with the discrete ones, and we further es-
tablish basic constitutive rules for having such emergent
walls in continuum dislocation plasticity theories. The
key ingredient is a particular form of a backstress term
in the continuum dislocation dynamics that contains a di-
mensionless prefactor. We show that dipolar wall forma-
tion only occurs if this parameter falls in a certain range.
Our results, therefore, shed new light on the origin of the
backstress as well as its role in dislocation patterning of
bulk single crystals, and provide a successful multi-scale
description of the dynamics.

Modeling the evolution of discrete dislocations in a
medium [called discrete dislocation dynamics (DDD)] has
become a state-of-the art methodology in the last few
decades both in 2D [] and 3D []. Whereas the first class
considers a model system that is a strong simplification of
a realistic network of curved dislocations, advantages of
2D models lie in their superior speed and accuracy that
allows studying larger ensembles and/or strains, while
still preserving the basic physics of dislocations. On the
other hand, a higher scale model describing the evolu-
tion of continuous dislocation density fields that is de-
rived from microscopic considerations using a rigorous
coarse graining procedure currently only exists for 2D sin-
gle slip configurations[], although significant steps have



TABLE I. Summary of the units of dimensionless quantities.

Quantity Unit

Distance (x) ρ
−1/2
0

Stress (τ) Gbρ
1/2
0

Strain (γ) bρ
1/2
0

Time (t) MGb2ρ0

Dislocation density (ρ, κ) ρ0

been made in 3D, too []. In addition, a proper description
of patterning and its physical origin is still lacking even
in the relatively simple 2D models. So, before engaging
in understanding complex 3D patterning phenomena in
the present paper we restrict ourselves to 2D problems.

We consider, therefore, a configuration of straight par-
allel edge dislocations in single slip. This system is ef-
fectively 2D and we track the motion of dislocations in
the z = 0 plane. To mimic an infinite crystalline medium
periodic boundary conditions (PBC) are applied at the
borders of the square shaped simulation area of size L×L.
The x axis is chosen to be parallel both with the disloca-
tion slip direction and one of the edges of the simulation
cell. In this case the Burgers vector of the dislocations
can be written as bi = sib, where b = (b, 0), b is the mag-
nitude of the Burgers vector, si = ±1, and 1 ≤ i ≤ N ,
with N being the total number of dislocations. We pre-

scribe that the system is neutral (
∑N

i=1 si = 0) and de-
note the position of the dislocations as ri = (xi, yi). Dis-
location motion is assumed to be overdamped, so equa-
tion of motion of discrete dislocations can be written as:

ẋi(t) = si

τext +

N∑
j=1,j 6=i

sjτind(ri − rj)

 ; ẏi(t) = 0,

(1)
where τind denotes the stress field of an individual posi-
tive (si = +1) dislocation (the double sum accounts for
the periodic images introduced by the PBC):

τind(r) =

∞∑
i,j=−∞

(x− iL)[(x− iL)2 − (y − jL)2]

[(x− iL)2 + (y − jL)2]2
, (2)

and τext is an external load. Here and in the rest of
this paper dimensionless units are used by normalizing
quantities with the units summarized in Table I. In the
definitions ρ0 stands for the average dislocation density
in the system, G = µ/[2π(1 − ν)] is an elastic constant
containing the shear modulus µ and the Poisson ratio ν,
and M is the dislocation mobility.

The discrete simulations are started from a ran-
dom (thus non-equilibrium) configuration of dislocations.
First, a relaxation step is performed, that is, Eq. (1) is
solved for each dislocation at zero applied stress, then τext

is increased in a quasistatic manner, allowing relaxation
at constant stress every time a strain avalanche sets on
(for details see []). The typical evolution of the configura-
tion can be seen in the left column of Fig. 1(a). At zero

stress specific local (low energy) configurations can be
observed: Opposite sign dislocations organize into short
dipoles whereas those of identical sign form short verti-
cal walls. As the applied stress increases the distribution
becomes increasingly heterogeneous with the dominance
of long dense vertical walls. A closer look to these walls
reveals their asymmetric dipolar nature induced by the
positive external stress: Positive dislocations tend to be
found on the left side, while negative dislocations popu-
late the right side of the walls. Just before yielding con-
figurations typically consist of a single straight merged
dipolar wall. One concludes that this is the strongest
configuration that can be formed in this 2D system. The
stress-strain curve corresponding to this process is seen
in Fig. 1(b). For a detailed analysis of its features and
size dependence the reader is referred to Refs. [].

We now continue with introducing the continuum the-
ory that aims modeling the DDD simulations described
above. We start from the theory of Groma and co-
workers that has been derived from Eq. (1) using a rigor-
ous coarse graining procedure []. The recently revisited
form of the evolution equations that govern the evolution
of continuous density fields ρ±(r, t) are as follows:

∂tρ+ = −∂x
{
ρ+

[
τext + τsc + τb − 2

ρ−
ρ
τf + τd

]}
, (3)

∂tρ− = +∂x

{
ρ−

[
τext + τsc + τb − 2

ρ+

ρ
τf − τd

]}
, (4)

where

τsc(r, t) =

∫
τind(r − r′)κ(r′, t)d2r′, (5)

τb(r, t) = −D
ρ
∂xκ(r, t), (6)

τd(r, t) = −A
ρ
∂xρ(r, t), (7)

and τf is the ‘flow stress’ that is, in accordance with the

Taylor relationship, assumed to be αρ1/2. Here we used
notations ρ = ρ+ + ρ− for the total and κ = ρ+ − ρ−
for the geometrically necessary dislocation (GND) den-
sity, while D and A are dimensionless constants. (We
recall the the equations are written using the dimension-
less variables introduced above.)

In Eqs. (3,4) the self-consistent field τsc is the long-
range stress field of GNDs which together with the ex-
ternal field τext represents an experimentally measurable
quantity: The average shear stress in a small volume
around r. These stress terms are complemented by the
flow stress τf and local gradient terms τb (back-stress)
and τd (diffusion stress). The origin of these latter terms
is clear from the formal derivation of the theory []: They
stem from the fact that dislocations are not positioned
randomly but are spatially correlated, a fact that has
been already postulated by Wilkens based on energetic
considerations [] and also proved by numerical simula-
tions []. Dislocation patterns themselves are also a man-
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FIG. 1. Comparison of dislocation pattern evolution and plas-
tic response for DDD and SCCP simulations. In the case of
SCCP the following simulation parameters were used: a = 2,
D = −0.6, A = 0.6, and Y = 1.0. (a,b,c): Dislocation con-
figurations obtained by DDD (left column) and density maps
from SCCP simulations (total and GND densities in the mid-
dle and left columns, respectively). The rows correspond to
different strains: (a) γ = 0 (b) intermediate (γ = 0.7 for DDD
and γ = 10 for SCCP) and (c) at the onset of final yield. Note
that due to the PBC the actual position of the emerging ver-
tical wall does not bear any physical relevance. (d): Average
stress-strain curves for the two types of simulations.

ifestation of these correlations. As of the physical mean-
ing of these terms, flow stress is the result of the small-
scale correlated substructures (most importantly, disloca-
tion dipoles) discussed above that may be stable against
external load. Indeed, in Eqs. (3,4) τf is multiplied by
ρ± expressing that dislocations can only be withheld by
dislocations of opposite sign. Interpretation of gradient
terms are more subtle: They can be envisaged as a cor-
rection to the flow stress. In particular, due to the back-
stress term local strength may depend on the gradient
of the GND density as depicted in the sketch of Figure
2. According to the sign of parameter D the strength of
the local volume (or region of interest, ROI) in Fig. 2(b)
may be larger (D < 0) or smaller (D > 0) than that
of Fig. 2(a). Similar explanation can be given for the
diffusion stress τd, too.

(a) (b)

FIG. 2. A gradient in the GND density is one form of spatial
correlations that may affect local strength (through the back-
stress τb) and lead to different yielding thresholds for panels
(a) and (b). Configuration of panel (b) is stronger (weaker) if
D < 0 (D > 0). The dashed lines denote spatial discretization
which is necessary to define continuous densities.

The continuum theory does not yield exact values for
the parameters D and A, one must, therefore, consider
them as fitting parameters. The results of DDD simula-
tions summarized above, however, give a strict constraint
on possible values. As seen in Fig. 1(a) the strongest pos-
sible dislocation configuration is the dipolar wall struc-
ture. According to Fig. 2 this implies the necessity of the
back-stress term τb and that D < 0.

The numerical implementation of Eqs. (3,4) is based
on the method of Zaiser and Moretti []: Densities are
discretized on a regular grid of cell size a, and the
flow stress τf is replaced by a local stochastic variable
(representing the fluctuations of the underlying disloca-
tion microstructure at every cell). For the distribution
of the yield stress a Weibull distribution is used with
shape parameter 1.4 and scale parameter Y []. In ad-
dition, we use extremal dynamics: As long as the lo-
cal stress is below the yielding threshold in a given cell
(e.g., τext + τsc < 2(ρ−/ρ)τf − τb − τd for + dislocations)
no activity happens, otherwise a quantum of dislocation
flux ∆ρ = a−2 (of either positive or negative disloca-
tions) flows through a cell boundary. Further details of
the implementation are summarized in the Supplemen-
tary Material. In the rest of this Letter we will refer to
this model as stochastic crystal plasticity (SCCP).
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In accordance with the DDD case simulations are
started from a random pattern of ρ+ and ρ− and ini-
tially a relaxation step is performed at τext = 0. Then
the external stress τext is gradually increased leading to
the evolution of the dislocation densities. The center and
right column of Fig. 1(a) depicts this evolution for a given
parameter set (D = −0.6, A = 0.8, Y = 1.0, a = 2). As
seen a remarkable similarity is obtained between DDD
and continuum simulations since dipolar walls form in
the latter case, too, as proved by the GND density maps.
To quantitatively compare DDD and SCCP results we
introduce the spatial cross-correlation of dislocations of
opposite sign as

C+−(∆r) =

∫
ρ+(r)ρ−(r + ∆r)d2r (8)

and consider its average along the y axes: C+−(∆x) =
〈C+−(∆x,∆y)〉∆y. This quantity measures the level of
asymmetry, that is, the polarization of the configura-
tions. As seen in the insets of Fig. 3 at zero strain
this function is indeed invariant for ∆x → −∆x sub-
stitution, and a strong asymmetry emerges upon plastic
deformation for both models. We introduce the quan-

tity o :=
∫ L/2

0
[C+−(∆x) − C+−(−∆x)]d∆x as a single

measure of the level of internal polarization. According
to Fig. 3 this parameter initially increases linearly with
strain for both models. At larger strains a difference is
seen that can be attributed to the different system sizes
of the two models.

Now we turn at addressing the role of the parameters
of SCCP in the patterning. Figure 4 plots the depen-
dence of parameter o on the coefficients of the gradient
terms D and A. It is clear, that the presence of dipo-
lar walls is not dependent on A and is conditioned on
D < −0.5. This can be explained by noticing, that in
the middle of a “+−” dipolar wall τd = 0 and the sum of
τsc and τb is negative (positive) if D < −0.5 (D > −0.5).
The details of the simple derivation are summarized in
the Supplementary Material, but we highlight that the
result is independent of the choice of a. One concludes,
thus, that the back stress τb alone is responsible for dipo-
lar wall formation. As of the role of the remaining pa-
rameters: τd is a diffusive term [] so increasing A leads
to the “blurriness” of the dislocation patterns, whereas
modifying Y and a primarily affect the scale and shape
of the stress-strain curves.

It is instructive to compare the continuum plasticity
theory with general elastoplastic constitutive models, in
particular, with those of kinematic hardening. The back-
stress term appearing therein is of completely different
origin as it aims at modeling the Bauschinger effect ob-
served at reversed loading with the appropriate transla-
tion of the yield surface []. Their practical role, however,
are identical, since τb in Eqs. (3,4) can also be consid-
ered as an asymmetric correction to τy. In addition, us-
ing the identity ∂tκ(r, t) = −∂xγ̇(r, t) connecting the
GND density with the shear component γ of the plastic
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FIG. 3. (a,b): C+− cross correlation functions for DDD (a)
and SCCP (b). Panel (c): the evolution of the order parame-
ter for the two types of simulations. The parameters are the
same as in Fig. 1.

strain rate one arrives at τ̇b = (D/ρ)∂2
xγ̇ that is analo-

gous to the phenomenological rate equation of Melan and
Prager (τb ∝ γ̇) [] (the appearance of the second deriva-
tive reflects the difference that quantities are global in
the constitutive theory and local in the present contin-
uum theory). The simulations presented above, there-
fore, emphasize the microscopic origin of the back-stress:
The asymmetry of the yield surface in kinematic harden-
ing is the result of the bulid-up of asymmetric dislocation
sub-structures (dipolar walls in the present set-up).

Back-stress terms are also used in gradient plasticity
theories to account for the short-range interactions in
pile-ups close to grain boundaries []. Such terms ex-
hibit the same form as Eq. (6) but with a positive di-
mensionless prefactor, while we obtained D < 0 here.
The difference can be readily explained by noticing that
pile-ups mainly consist of GNDs. In such a case, if the
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FIG. 4. Phase diagram for Y = 1.0 and a = 2.

pile-up contains, e.g., + dislocations (that is, κ = ρ) the
flow-stress disappears from Eq. (3) and the two gradient

terms merge into one as τb + τd = −(D + A)(1/ρ)∂xκ.
This means that in this fully polarized situation, in ac-
cordance with the plasticity theories, only one back-stress
term remains preceded with a possibly positive prefactor
even with D < 0 (like for the particular parameter set
obtained above).

TODO:

• noise also scales with
√
ρ

• fig 4 for γ = 10

• recalculate o with the new definition

• Merge Fig 3 subfigs into one and caption

• citations

• abstract and conclusions

• supplementary material
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