Multiscale modelling of dislocation patterning

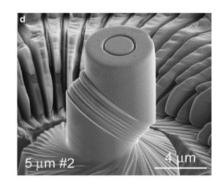
Péter Dusán Ispánovity¹, Stefanos Papanikolaou², István Groma¹

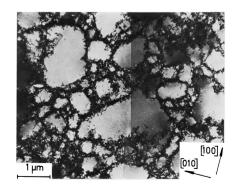
- ¹ Eötvös University Budapest
- ² West Virginia University

Motivation

- Crystal plasticity is undoubtedly a critical phenomenon
 - Power-law distributions, scaling laws
 - Details unclear
- Complex system far from equilibrium

- Dislocations tend to form patterns
 - Various patterns under different conditions
 - Details unclear
- Complex system far from equilibrium





Outline

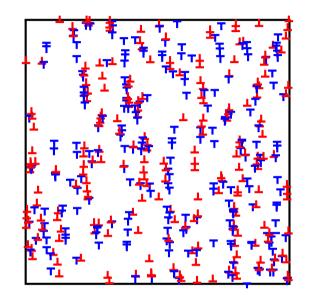
- Properties of 2D dislocation systems
 - Avalanche distributions extended criticality
 - Formation of dipolar walls
- Continuum modelling
 - Stochastic modelling
 - Deterministic continuum models
- 2D stochastic continuum framework
 - Evolution equations backstress, flow stress
 - Dipolar wall formation
 - Comparison with DDD
- Summary

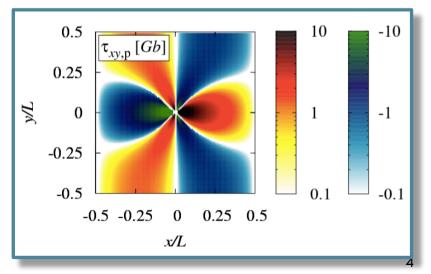
2D dislocation model

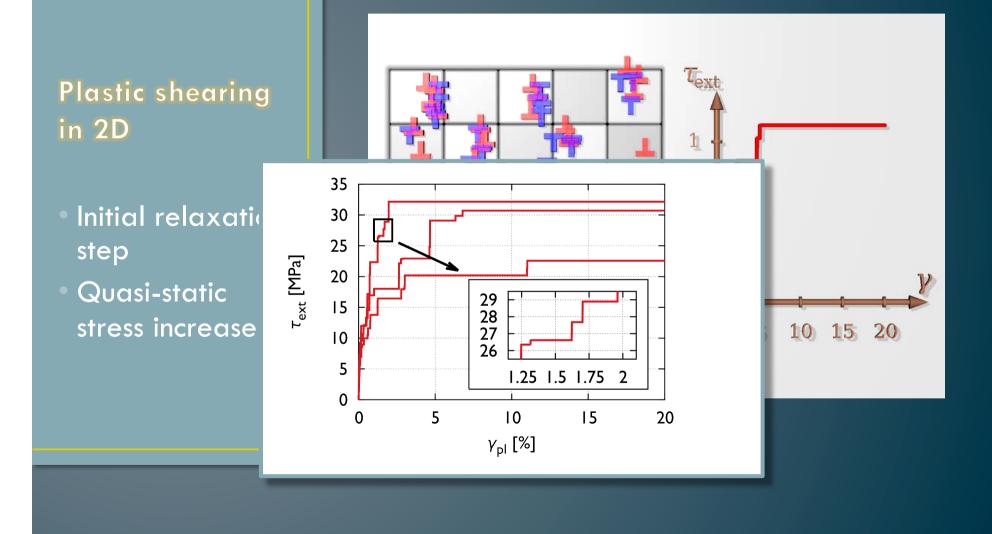
2D DDD

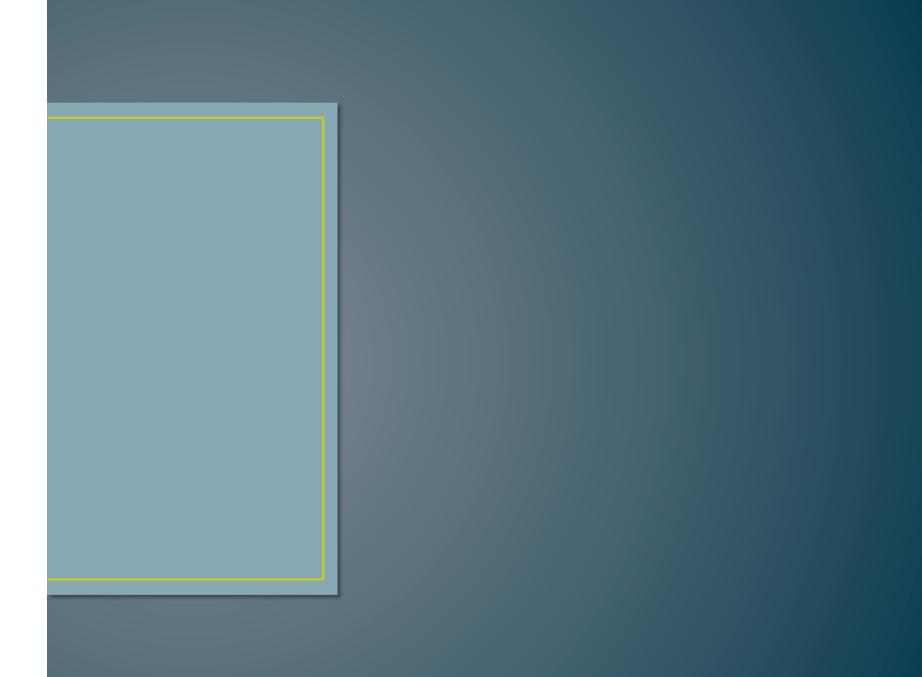
- Parallel edge dislocations in single slip
- Periodic boundary conditions
- Number of dislocations: N
- Sign of dislocations: $s_i = \pm 1$
- Stress-field of an individual dislocation: σ_{xy}
- Overdamped motion:

$$\dot{x}_i = s_i \left[\sigma_{\text{ext}} + \sum_{i=1}^N s_j \sigma_{xy} (\boldsymbol{r}_i - \boldsymbol{r}_j) \right]$$



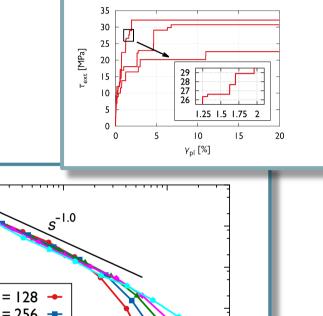


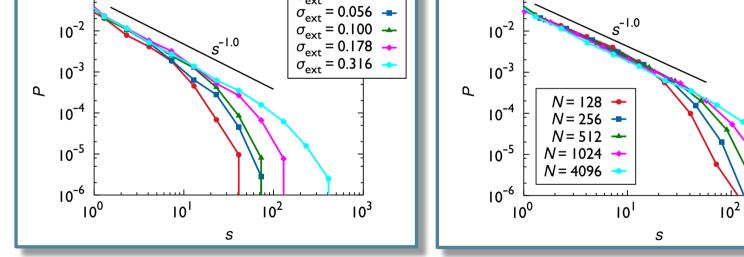




- Avalanche size *s* is the total area swept
- System size: $L = \sqrt{N}$

10⁻¹





 $\sigma_{\rm ext} = 0.032$

10-1

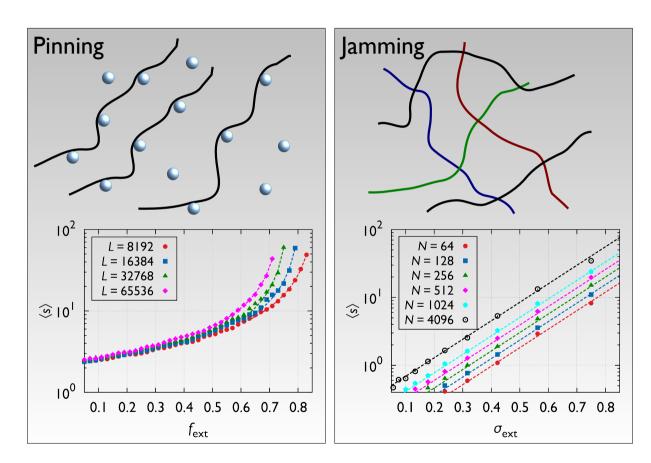
Dependence on the applied stress (N = 4096)

Dependence on the system size ($\sigma_{\rm ext} = 0.316$)

PD Ispánovity, L Laurson, M Zaiser, I Groma, S Zapperi, M Alava, PRL, 2014

Extended criticality

- The system is always critical
 - Other indications (relaxation, system size scaling, pseudo gap)
 - Avalanches always span the whole system
 - Also true in 3D



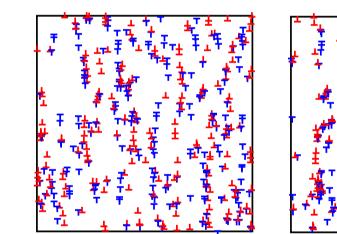
PD Ispánovity, L Laurson, M Zaiser, I Groma, S Zapperi, M Alava, PRL, 2014 A Lehtinen, G Costantini, M Alava, S Zapperi, L Laurson, PRB, 2016 M Ovaska, A Lehtinen, M Alava, L Laurson, S Zapperi, PRL, 2017

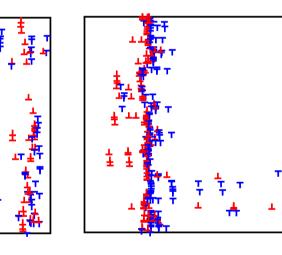
Conclusions of 2D results

Disadvantages	Advantages
Toy model	 Toy model
No multiple slip	 Numerically feasible
 No short-range interactions 	 Theoretically feasible
• No curvature	 Dislocations
 The 2D system is a limit should be capable of d 	ing case theoretical models lescribing
•	g concepts and methods for anding collective phenomena

Pattern evolution in 2D DDD

- dipolar walls form
- With increasing stress These are the 'strongest' objects in 2D single slip



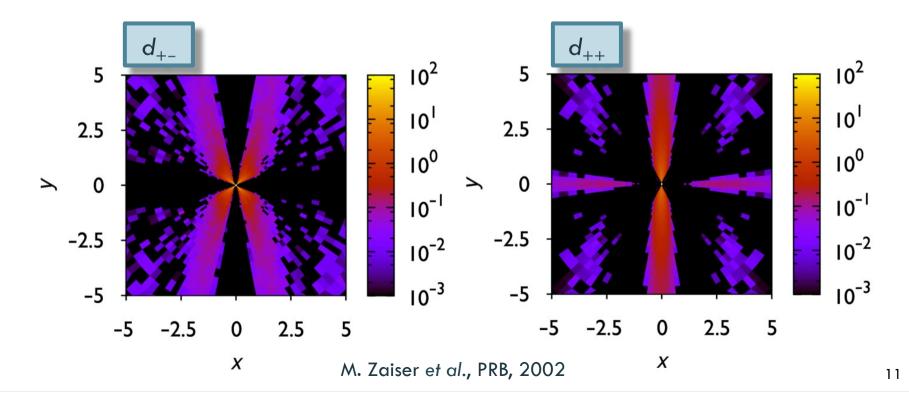


Increasing stress

C Zhou, C Reichhardt, CJO Reichhardt, IJ Beyerlein, Sci Rep, 2015 P Szabó, PD Ispánovity, I Groma, PRB, 2015

Spatial correlation functions

- Correlation functions: dislocation density around a randomly chosen positive sign dislocation
 - d_{+-} : relative density of the negative sign dislocations
 - d_{++} : relative density of the positive sign dislocations



Continuum modelling of dislocations

Stochastic elastoplastic models

- Aim: modelling strain bursts
 - Local yield threshold distributions

Continuum dislocation dynamics

- Aim: modelling local strain evolution and patterns
- Local dislocation density fields
 - Deterministic

Please cite this arti

Journal of Statistical Mecha

e and finite size

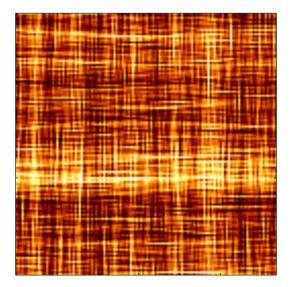
Stochastic plasticity models

2D continuum equations

Assuming $\rho = \text{const.}$

Evolution equation for plastic strain $\dot{\gamma} = \rho b M_0 (\tau_{\rm mf} - \tau_{\rm f})$

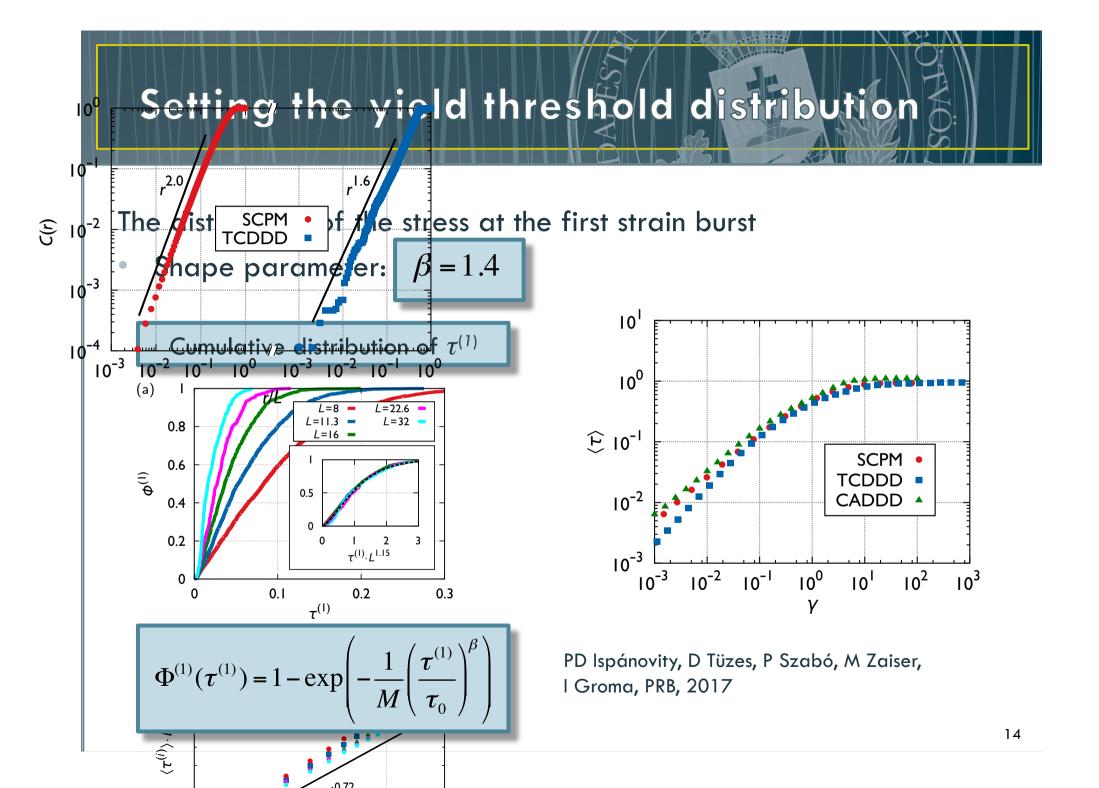
Considering au_{f} as a stochastic variable



Strain pattern upon shear

Stochastic CA model for plasticity

M Zaiser, P Moretti, J Stat Mech, 2005 S Sandfeld et al, J Stat Mech, 2015



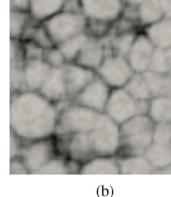
Continuum modelling of cell structures I

- Mean-field 3D continuum dislocation dynamics model
- Enabling cross-slip leads to the formation of a cell structure

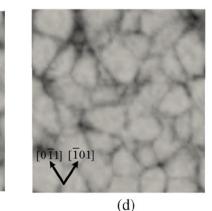
[112] [112]

(c)

ñ



8.13e+13 8.00e+13 6.00e + 134.00e+13 2.00e + 133.42e + 12

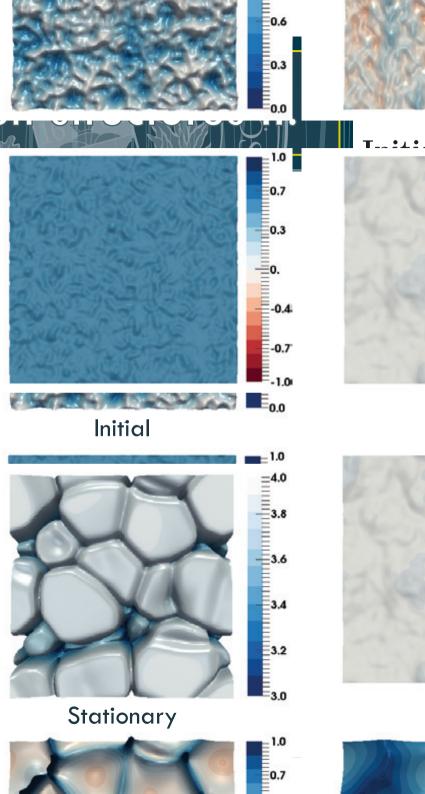


S. Xia and A El-Azab, Mod Simul Mater Sci Eng, 2015

Continuum modelling of

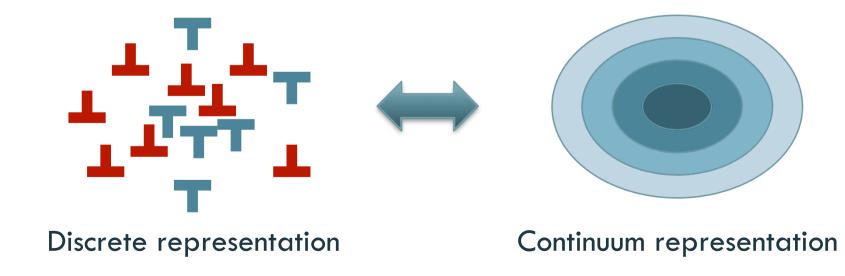
- CDD model of Hochrainer and coworkers
- Neglecting elastic stress interactions and keepeng a Taylor-like friction stress leads to a cellular pattern

S Sandfeld, M Zaiser, Mod Simul Mater Sci Eng, 2015



Objectives

- Multiscale modelling of dislocation patterning
 - Quantitative comparison of *discrete* and *continuum* models
 - Validation of the continuum model, e.g. back-stress
 - Systematic determination of the fitting parameters of the continuum model
 - Simplest case: 2D single slip



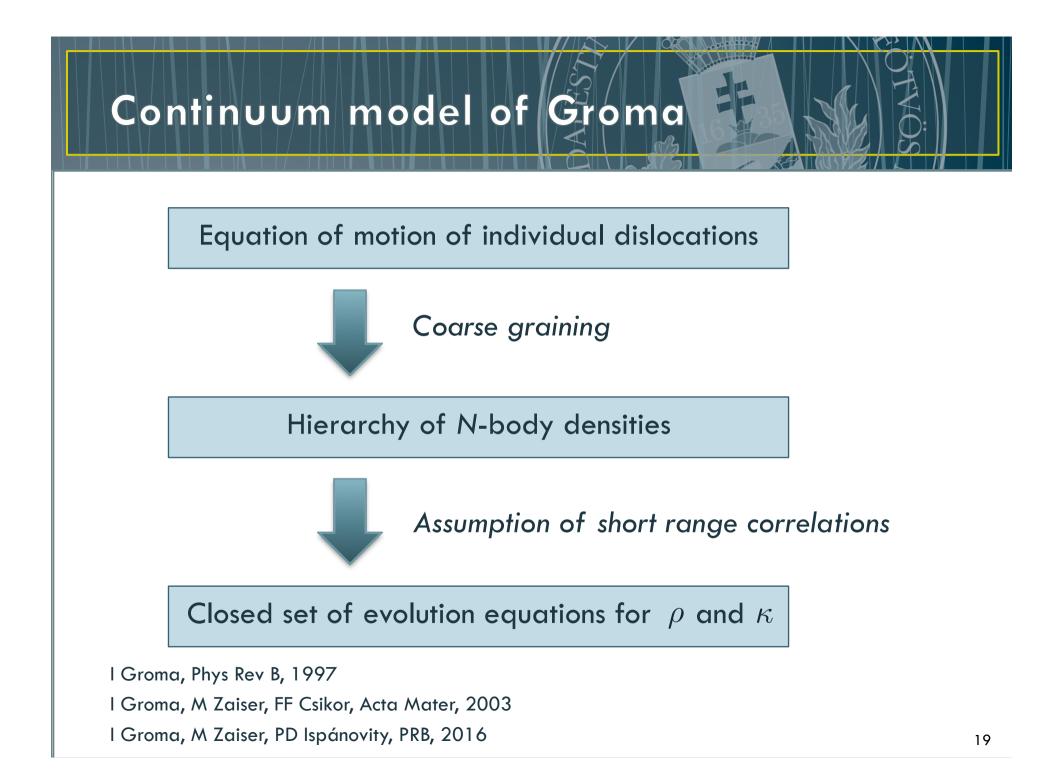
Continuum models

• Evolution equations of dislocation densities

$$\partial_t \rho_i + \nabla \boldsymbol{j}_i = f_{\text{reaction}}(\rho_i, \tau_{\text{ext}}, \dots)$$

- ho_i : some scalar dislocation density field
- j_i : flux of the given density
- $f_{
 m reaction}$: multiplication, annihilation, cross-slip, etc.
- Question:
 - What scalar densities to use?
 - What is the reaction term?
 - How to compute the fluxes?

- In 2D single slip:
 - SSD (ho) and GND (κ) densities?
 - $\rho = \rho_+ + \rho_-$
 - $\kappa = \rho_+ \rho_-$
 - No multiplication, no annihilation



Evolution equations w/o correlations

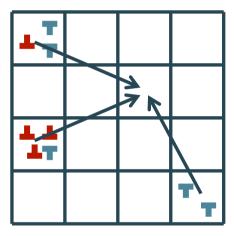
$$\partial_t \rho(\boldsymbol{r}, t) = -M_0 b \partial_x [\kappa \tau_{\rm mf}]$$
$$\partial_t \kappa(\boldsymbol{r}, t) = -M_0 b \partial_x [\rho \tau_{\rm mf}]$$

- M_0 : dislocation mobility
- *b* : Burgers vector
- au_{mf} : mean-field stress
 - External load & long-range stresses generated by the GNDs

$$\tau_{\rm mf}(\boldsymbol{r},t) = \tau_{\rm ext} + \int \kappa(\boldsymbol{r}-\boldsymbol{r}')\tau_{\rm ind}(\boldsymbol{r}')\mathrm{d}^2r'$$

- Measurable quantity: the average local stress around a dislocation
- Plastic strain: $\partial_t \kappa({m r},t) = -(1/b)\partial_x \dot{\gamma}({m r},t)$

I Groma, P Balogh, Acta Mater, 1999



Evolution equations with correlations

$$\partial_{t}\rho(\boldsymbol{r},t) = -M_{0}b\partial_{x}[\kappa\tau_{\mathrm{mf}} + \kappa\tau_{\mathrm{b}} + \rho\tau_{\mathrm{d}}]$$
$$\partial_{t}\kappa(\boldsymbol{r},t) = -M_{0}b\partial_{x}\left[\rho\tau_{\mathrm{mf}} + \rho\tau_{\mathrm{b}} - \rho\left(1 - \frac{\kappa^{2}}{\rho^{2}}\right)\tau_{\mathrm{f}} + \kappa\tau_{\mathrm{d}}\right]$$

Back-stress:
$$au_{\rm b}({m r},t) = -Gb \frac{D}{\rho} \partial_x \kappa({m r},t)$$

• Diffusion stress: $au_{\rm d}({m r},t) = -Gb \frac{A}{\rho} \partial_x \rho({m r},t)$

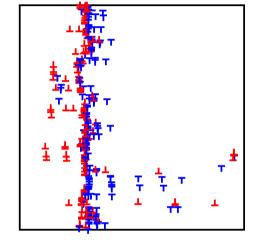
• Flow stress:
$$au_{
m f}({m r},t)=lpha\mu b\sqrt{
ho({m r},t)}$$

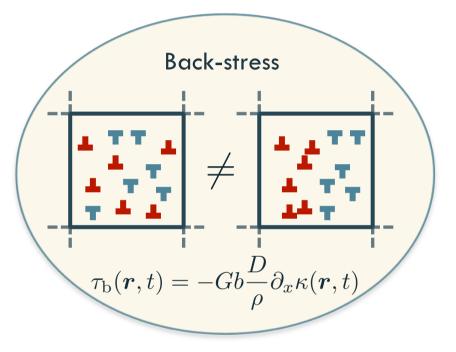
• Dimensionless fitting parameters: $D,\,A,\,\alpha$

I Groma, M Zaiser, PD Ispánovity, Phys Rev B, 2016

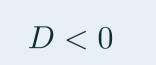
Correlation induced stress terms The representative volume element (RVE) cannot resolve internal correlations **Back-stress** Flow stress **Diffusion stress** $\tau_{\rm f}$ t $au_{\mathrm{d}}(\boldsymbol{r},t) = -Gbrac{A}{ ho}\partial_x ho(\boldsymbol{r},t)$ 22

Strength of a dipolar wall





- In the middle of a dipolar wall: $\partial_x \rho = 0$ and $\partial_x \kappa < 0$
- The back-stress must be negative

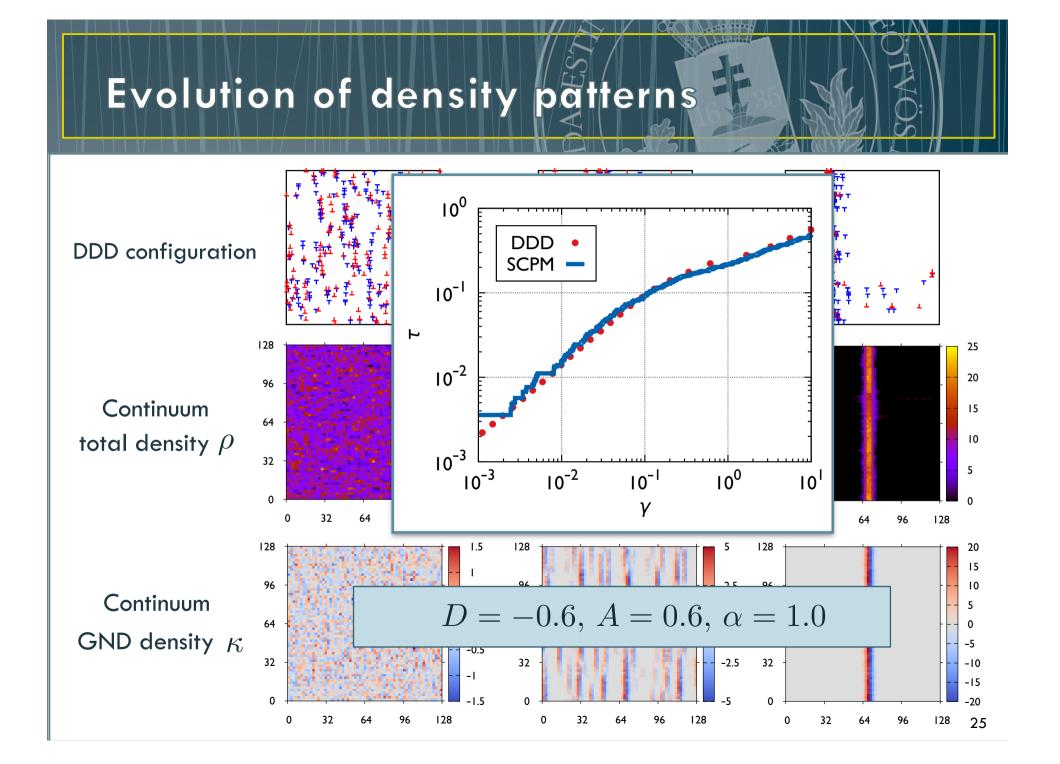


Implementation

$$\partial_t \rho(\mathbf{r}, t) = -M_0 b \partial_x \left[\kappa \tau_{\rm mf} + \kappa \tau_{\rm b} + \rho \tau_{\rm d} \right] \partial_t \kappa(\mathbf{r}, t) = -M_0 b \partial_x \left[\rho \tau_{\rm mf} + \rho \tau_{\rm b} - \rho \left(1 - \frac{\kappa^2}{\rho^2} \right) \tau_{\rm f} + \kappa \tau_{\rm d} \right]$$

- CA implementation with extremal dynamics
- Dimensionless fitting parameters: $D,\,A,\,\alpha$
- Flow stress is a stochastic variable
- No phenomenological assumptions

PD Ispánovity, D Tüzes, P Szabó, M Zaiser, I Groma, arXiv, 2016

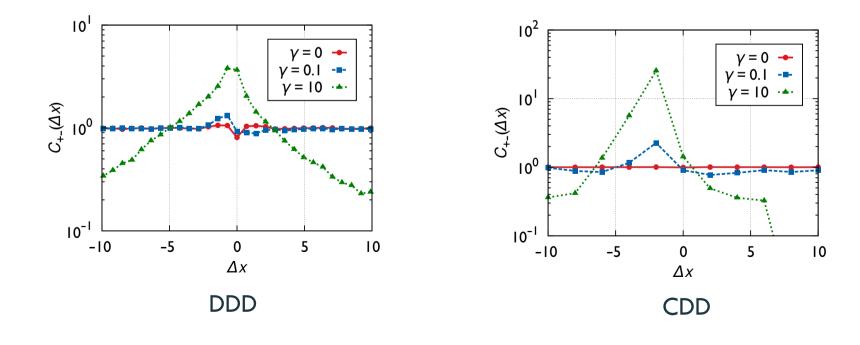


Characterization of pattern

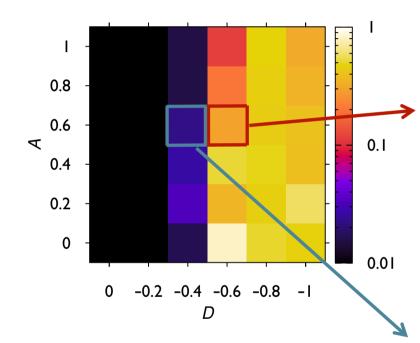
• Cross-correlation of + and – sign dislocations

$$C_{+-}(\Delta x, \Delta y) = \int \rho_{+}(x', y')\rho_{-}(x' + \Delta x, y' + \Delta y)dx'dy'$$

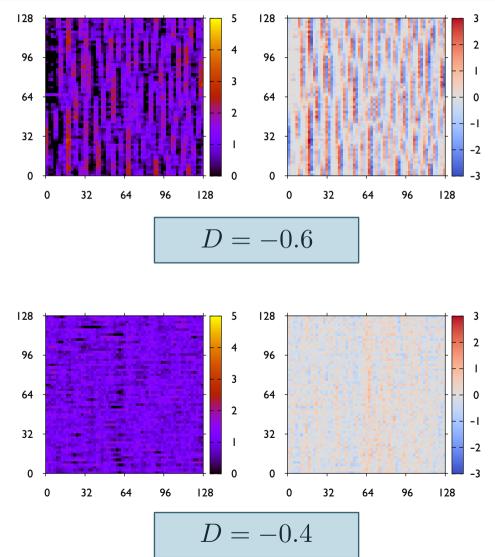
•
$$C_{+-}(\Delta x) := \langle C_{+-}(\Delta x, \Delta y) \rangle_{\Delta y}$$
:



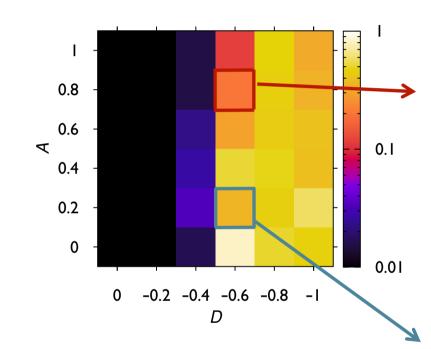
Effect of parmeter D



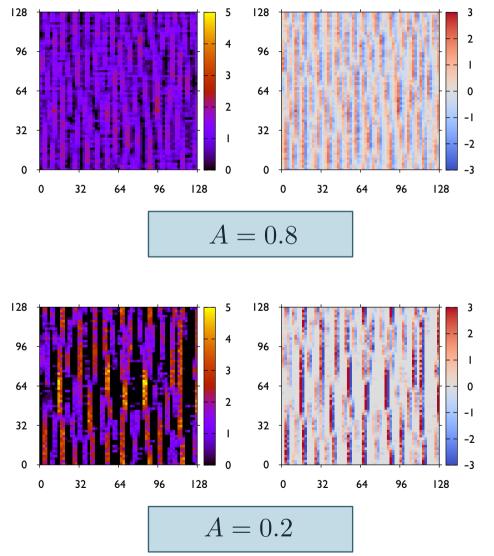
• Order parameter: level of asymmetry in $C_{+-}(\Delta x)$



Effect of parmeter A



• Order parameter: level of asymmetry in $C_{+-}(\Delta x)$



Summary

- 2D DDD is a simple toy model with very complex dynamics
 - Extended criticality
 - Anomalous system size dependence
- 2D continuum theory of dislocation dynamics
 - Derived analytically from the Eqs. of motion of discrete dislocations
 - There are no phenomenological assumptions, the gradient terms naturally emerge
 - Gradient terms are related to features of the microstructure: back-stress dipolar walls
- The 2D continuum theory properly captures the patterning and the strain response of 2D DDD simulations
- Inclusion of back-stress is necessary for pattern formation