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•  Crystal plasticity is 
undoubtedly a critical 
phenomenon 
•  Power-law distributions, scaling 

laws 
•  Details unclear 

•  Complex system far from 
equilibrium 

•  Dislocations tend to form 
patterns 
•  Various patterns under 

different conditions 
•  Details unclear 

•  Complex system far from 
equilibrium 

? 
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During the later stages of plastic deformation, strain hardening of face-centered cubic metals goes
along with the formation of cellular dislocation patterns appearing on various scales. The paper presents
an analysis of the fractal geometry of these dislocation structures. A theoretical model is presented
according to which dislocation cell formation is associated with a noise-induced structural transition far
from equilibrium. The observed fractal dimensions are related to the stochastic process of dislocation
glide, and implications for quantitative metallography are discussed. [S0031-9007(98)07147-6]
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The performance of solid materials is usually affected by
the presence of defects: point defects, dislocations, cracks,
and phase and grain boundaries. In some cases classi-
cal methods of materials characterization (e.g., in terms of
mean particle size, average dislocation density, etc.) fail
to describe properly defect microstructures which exhibit
features of both randomness and heterogeneity. Owing
to a high degree of disorder on various scales, stochas-
tic methods are then needed to characterize and, possibly,
predict and control the structural features. Fractal analy-
sis then provides a tool to account for multiscale behavior
and, hence, to address the important question of how the
macroscopic properties of a material relate to its micro-
scopic defect structure, e.g., the particle size distribution
of dispersion strengthened materials or the arrangement of
grains in multiphase materials [1]. In the present work,
fractal analysis is applied for the first time to deformation-
induced dislocation cell structures which are characterized
by a hierarchy of mesoscopic scales (ranging from say 0.1
to 10 mm) [2]. The results are interpreted in terms of a
stochastic dislocation dynamical model of cell formation.
The flow stress of metals deforming plastically by dis-

location glide is governed by dislocation-dislocation inter-
actions [3]. During deformation dislocations accumulate
in the crystal which gives rise to work hardening. At the
same time cellular dislocation patterns may develop spon-
taneously. These patterns consist of dislocation-rich “cell
walls” separating dislocation-depleted cell interiors. Al-
though the actual aspects of the cell structures depend on
various extrinsic (e.g., strain rate, temperature, crystal ori-
entation) and intrinsic (crystal structure, stacking fault en-
ergy, chemical composition) parameters, the propensity to
dislocation patterning and its relation to work hardening
are common to various materials.
Figure 1 shows a transmission electron micrograph of a

cellular dislocation structure in a Cu single crystal de-
formed in tension. One notes the absence of a well-defined
scale, as cells of various sizes appear. Obviously, the aver-
age cell size that is usually referred to in the metallurgical
literature is not representative of this microstructural mor-
phology. To verify the fractal nature of these structures,

Cu single crystals are considered after tensile deformation
along a f100g axis, i.e., a symmetric multiple slip orien-
tation leading to isotropic dislocation structures [5]. The
crystals had been deformed at room temperature (strain rate
5 3 1025 s21) to stresses (resolved shear stress in the ac-
tive slip systems) text ≠ 37.3, 68.2, and 75.6 MPa, and
micrographs taken from sections parallel and normal to the
tensile axis [6]. In addition, comparable micrographs from
the literature have been considered (Cu f100g deformed to
text ≠ 52 [7], 67 [7], and 75.6 MPa [4]).
The micrographs were digitized to obtain binary maps

of the cell walls (“black”) and cell interiors (“white”). To
estimate the fractal dimension, the box-counting method
was applied: For grids of square boxes with edge length
Dx, the number NsDxd of boxes containing at least one
pixel of a cell wall is determined. A relation NsDxd ,
Dx

2DB defines the “box-counting” dimension DB. For
the cell patterns investigated, double-logarithmic plots of
NsDxd 3 Dx

2 vs Dx reveal three distinct regimes (see
Fig. 2): (i) At very small Dx, N , Dx

22, i.e., the slope
of the plot becomes small. This is a consequence of the
areal character of the cell walls which shows up at small
scales. (ii) At intermediate Dx, linear scaling regimes

FIG. 1. Transmission electron micrograph of the dislocation
cell structure of a Cu single crystal after tensile deformation
along a f100g direction at room temperature to a stress of
75.6 MPa. After Mughrabi et al. [4].
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•  Properties of 2D dislocation systems 
•  Avalanche distributions – extended criticality 
•  Formation of dipolar walls 

•  Continuum modelling 
•  Stochastic modelling 
•  Deterministic continuum models 

•  2D stochastic continuum framework 
•  Evolution equations – backstress, flow stress 
•  Dipolar wall formation 
•  Comparison with DDD 

•  Summary 
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2D DDD 
•  Parallel edge dislocations in single slip 
•  Periodic boundary conditions 
•  Number of dislocations: N 
•  Sign of dislocations: si = ±1 
•  Stress-field of an individual 

dislocation: σxy
•  Overdamped motion: 
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•  Initial relaxation 
step 
• Quasi-static 

stress increase 
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Dependence on the applied 
stress (N = 4096) 
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•  Avalanche size s is the total area swept 
•  System size:  L =

p
N

PD Ispánovity, L Laurson, M Zaiser, I Groma, S Zapperi, M Alava, PRL, 2014 
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•  The system is 
always critical 
•  Other indications 

(relaxation, system 
size scaling, pseudo 
gap) 

•  Avalanches always 
span the whole 
system 

•  Also true in 3D 

PD Ispánovity, L Laurson, M Zaiser, I Groma, S Zapperi, M Alava, PRL, 2014 
A Lehtinen, G Costantini, M Alava, S Zapperi, L Laurson, PRB, 2016 
M Ovaska, A Lehtinen, M Alava, L Laurson, S Zapperi, PRL, 2017 

Pinning Jamming
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Disadvantages 
•  Toy model 
•  No multiple slip 
•  No short-range interactions 
•  No curvature 

Advantages 
•  Toy model 
•  Numerically feasible 
•  Theoretically feasible 

•  Dislocations 
•  Long-range interactions 
•  Constrained motion 

•  The 2D system is a limiting case theoretical models 
should be capable of describing 

•  It is ideal for developing concepts and methods for 
describing and understanding collective phenomena 
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•  With increasing stress 
dipolar walls form 

C Zhou, C Reichhardt, CJO Reichhardt, IJ Beyerlein, Sci Rep, 2015 
P Szabó, PD Ispánovity, I Groma, PRB, 2015 

•  These are the ‘strongest’ 
objects in 2D single slip 

Increasing stress 
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•  Correlation functions: dislocation density around a randomly 
chosen positive sign dislocation 
•  d+– : relative density of the negative sign dislocations 
•  d++: relative density of the positive sign dislocations 

d+–  d++ 



12 12 

Stochastic elastoplastic 
models 

•  Aim: modelling strain bursts 
•  Local yield threshold 

distributions 
 

Continuum dislocation 
dynamics 

•  Aim: modelling local strain 
evolution and patterns 

•  Local dislocation density 
fields 

•  Deterministic 
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M Zaiser, P Moretti, J Stat Mech, 2005 

2D continuum equations 
 

Evolution equation for plastic strain 
 

Assuming  ⇢ = const.

�̇ = ⇢bM0(⌧mf � ⌧f)

Considering      as a 
 stochastic variable 

⌧f

Stochastic CA model for plasticity 
 

S Sandfeld et al, J Stat Mech, 2015 

Avalanches, loading and finite size e↵ects in 2D amorphous plasticity 14

(a) Typical strain pat-
tern for model A

(b) Average strain for
model A

(c) Typical strain pat-
tern model B

(d) Average strain for
model B

Figure 9. Plastic strain patterns for the pure shear models A and B. The average
strain maps (b) and (d) were obtained as ensemble averages over 6000 realizations.

Fig. 10(a) when the applied force is 0.6, a value at which a typical system yields; all

other parameters of the simulations remain the same as those used for the pure shear

simulations in Section 4. Obviously, the external stress resulting from the simple shear

situation exhibits significant deviations from the constant, pure shear stress field. Most

notably, the stress field has strong gradients, as a result of the continuum mechanical

balance equation at a free surface. We emphasize that the stress field regardless the

size of the system never exhibits a plateau of constant stress. How this impacts the

scaling and shear banding behaviour as compared to our previously studied models will

be analysed subsequently.

Finite size scaling Analysing the yield stress distributions under simple shear loading,

we obtain again the mean yield stress and standard deviation. Both quantities follow

a power law (Fig. 4) similar to that found for the pure shear models. Averaging the

exponents for the mean and for the standard deviation, we find values of ⌫ = 1.15±0.09

for the simple shear model C and ⌫ = 1.16 ± 0.07 for the pure shear model B. The

values found for the critical yield stress are f

1
c ⇡ 0.662 for model C, compared to

f

1
c ⇡ 0.722 for the system under pure shear as seen in Section 4.1. The di↵erence is

large and suggests that the macroscopic yield stress is strongly dependent on the loading

condition. This is in accordance to what is known from experimentally tested samples

and which motivated the introduction of di↵erent measures for the ‘equivalent stress’ as

e.g., the von Mises stress.

Avalanche size distributions Analysing the avalanche distributions in the same way as

in Section 4.1, we observe that both systems exhibit an avalanche distributions with

approximately the same slope in the power law regime, as shown in Fig. 5(b), with

measured exponent ⌧ = 1.32 ± 0.02. However, the stress dependence of the cuto↵

of the avalanche distributions has a clear dependence on loading conditions, and for

simple shear we measure 1/� ⇡ 2.6. Furthermore, the cuto↵ is also found to scale with

system size as LD with D = 1.90± 0.01 (shown in Fig. 7). These exponents should be

Please cite this article as: S. Sandfeld, Z. Budrikis, S. Zapperi, and D. Castellanos,  
Avalanches, loading and finite size effects in 2D amorphous plasticity: results from a finite element model, 

Journal of Statistical Mechanics, 2015 (P02011):1-17. DOI: 10.1088/1742-5468/2015/02/P02011 

Strain pattern upon 
shear 
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The distribution of the stress at the first strain burst 
•  Shape parameter: 
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FIG. 9. Statistics of the stress sequence ⌧

(i) for TCDDD sim-
ulations of di↵erent system sizes.
(a) Cumulative distribution �(1) of the first activation stress
⌧

(1). Inset: data collapse obtained by plotting �(1) as a
function of ⌧L

1.15. The curves can be fitted by a Weibull-
distribution with shape parameter � ⇡ 1.4± 0.05.
(b),(c) Average and STD of the external stress ⌧

(i) at the
ith avalanche for di↵erent system sizes. For su�ciently large
system sizes, the data are consistent with Eqs. (9) and (10)
(solid lines) with � = 1.4± 0.05 and ⌘ = 1.6± 0.1.
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with � � 1. It was also assumed that the subsequent
events are independent, so the spatial correlations of
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FIG. 10. Statistics of the strain sequence �

(i) for TCDDD
simulations of di↵erent system sizes. The average [panel (a)]
and STD [panel (b)] of the plastic strain �

(i) at the ith
avalanche for di↵erent system sizes. For su�ciently large sys-
tem sizes, the data are consistent with Eqs. (11) and (12)
(solid lines) with ⇣ = 0.9± 0.05 and ⇠ = 1.5± 0.1.
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FIG. 11. Correlation integral of the avalanche positions for
the SCPM and TCDDD models. The measured data are con-
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⌘, the latter indicated by the solid lines.

to describe the microplastic regime in both cases. Ac-
cording to the scaling relations derived [Eqs. (30) and
(33,34)] and making the straightforward ⇣ = 1 assump-
tion (see Sec. VB) there are only two independent ex-
ponents left, namely � and ⌘. Although these param-
eters represent microstructural details of the material
(local strength distribution and fractal dimension of the
initiation sites, respectively) they are directly linked to
macroscopically measurable quantities: (i) � is related to
the power-law exponent characterizing the stress-strain
curve in the microplastic regime while (⌘) can be de-
termined from the stress fluctuations of di↵erent sam-
ples (see Table I). Therefore, the model parameters can
be determined both from lower and larger scale mod-
els, even from experiments. According to Fig. 12 the
SCPM configured in this manner properly describes the
microplastic regime. Interestingly, with a proper choice
of the parameters the average stress-strain curves overlap
for large strains, too, but since SCPM does not properly
describe internal strain correlations developing at large
deformations27 this is not expected to bear physical rel-
evance.

VII. SUMMARY

In this paper we have demonstrated that the SCPM
model introduced earlier is able to quantitatively describe
the stochastic properties of crystalline plasticity in the

microplastic regime. Using a simple theoretical model
based on the subsequent activation of the weakest links
in the sample we derived a method how to calibrate the
parameters of the SCPM based on lower-level DDD sim-
ulations. The proposed methodology does not only rep-
resent a bridge between micro- and meso-scales, but also
gives insight into the nature of the stochastic processes
characterizing plasticity. The current paper has focused
on crystal plasticity and a simple 2D DDD representa-
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FIG. 12. Stress-strain curves obtained by the three di↵erent
plasticity models. For the SCPM � = 1.4, ��

pl = 6, and
⌧w = 2 was chosen.

tion, but the authors do not see any reason why the pro-
posed plasticity model and the multi-scale methodology
would not be applicable for more involved DDD mod-
els or amorphous materials, too. The verification of this
conjecture is relegated to future work, and is expected to
open new perspectives in the applicability of stochastic
continuum plasticity models.
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•  Mean-field 3D continuum 
dislocation dynamics 
model 

•  Enabling cross-slip leads 
to the formation of a cell 
structure 

S. Xia and A El-Azab, Mod Simul Mater Sci Eng, 2015 

19

Figure 10. Crystal distortion without cross slip activation at 0.5% strain: (a) distortion 
of the simulated cube and (b) distortion of a slice parallel to (0 0 1) plane. The linear 
displacement associated with the average strain is suppressed and only the perturbation 
displacement ∼u is displayed with a 200 times magnification.

Figure 11. Dislocation density pattern with cross slip activation at 0.5% strain. The 
dislocation density is measured in units of m−2. (a) Cell structure on the surface of 
the simulation volume; (b)–(d) cell structure on (0 0 1), (0 1 1) and (1 1 1) planes, 
respectively.

S Xia and A El-Azab Modelling Simul. Mater. Sci. Eng. 23 (2015) 055009
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•  CDD model of Hochrainer and co-
workers 

•  Neglecting elastic stress 
interactions and keepeng a 
Taylor-like friction stress leads to 
a cellular pattern 

S Sandfeld, M Zaiser, Mod Simul Mater Sci Eng, 2015 

11

The mean dislocation density t  and loop number Nd are shown in gure 3 as functions of 
time. We observe that initially the dislocation density quickly increases until it saturates at a 
value that is about four times the initial value. At the same time the total number of dislocation 
loops Nd stays exactly constant. This is expected since loop creation by Frank–Read sources 
and loop merging by mutual annihilation of segments from different loops are not accounted 
for in the present simple model. Accordingly, qt is a conserved quantity—a fact which is 

Figure 2. Evolution of dimensionless CDD eld variables, for parameters see table 2; 
all elds are represented in a projection on the slip plane, instead of qt we show the more 
intuitive curvature q /t t which is the inverse of the local dislocation curvature radius, e
denotes the edge component of the GND density vector. Surfaces are plotted as elevated 
to visualize the uctuations and are not up to scale. Top: initial eld values as obtained 
from a random distribution of 50 dislocation loops, bottom: nal stationary state; note 
that the scales have changed between top and bottom graphs

S Sandfeld and M ZaiserModelling Simul. Mater. Sci. Eng. 23 (2015) 065005
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intuitive curvature q /t t which is the inverse of the local dislocation curvature radius, e
denotes the edge component of the GND density vector. Surfaces are plotted as elevated 
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S Sandfeld and M ZaiserModelling Simul. Mater. Sci. Eng. 23 (2015) 065005

Initial 

Stationary 
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•  Multiscale modelling of dislocation patterning 
•  Quantitative comparison of discrete and continuum models 
•  Validation of the continuum model, e.g. back-stress 
•  Systematic determination of the fitting parameters of the continuum 

model 
•  Simplest case: 2D single slip 

Discrete representation Continuum representation 
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•  Evolution equations of dislocation densities 

•     : some scalar dislocation density field 
•     : flux of the given density 
•                : multiplication, annihilation, cross-slip, etc. 

@t⇢i +rji = f
reaction

(⇢i, ⌧ext, . . . )

⇢i
ji
f
reaction

•  Question: 
•  What scalar densities to use? 
•  What is the reaction term? 
•  How to compute the fluxes? 

•  In 2D single slip: 
•  SSD (   ) and GND (   ) densities? 
•    
•     

•  No multiplication, no annihilation 

⇢
⇢ = ⇢+ + ⇢�
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I Groma, Phys Rev B, 1997 

Equation of motion of individual dislocations 
 

Hierarchy of N-body densities 
 

Coarse graining 

Assumption of short range correlations 

 Closed set of evolution equations for     and ⇢ 

I Groma, M Zaiser, FF Csikor, Acta Mater, 2003 
I Groma, M Zaiser, PD Ispánovity, PRB, 2016 
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•      : dislocation mobility 
•   : Burgers vector 
•      : mean-field stress 
•  External load & long-range stresses generated by the GNDs 

 
•  Measurable quantity: the average local stress around a dislocation 

•  Plastic strain:  

I Groma, P Balogh, Acta Mater, 1999 

@
t

⇢(r, t) = �M0b@x[⌧mf]
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•  Back-stress: 

•  Diffusion stress: 

•  Flow stress: 

•  Dimensionless fitting parameters: 

I Groma, M Zaiser, PD Ispánovity, Phys Rev B, 2016 

⌧b(r, t) = �Gb
D

⇢
@
x

(r, t)

⌧d(r, t) = �Gb
A

⇢
@
x

⇢(r, t)

@
t

⇢(r, t) = �M0b@x[⌧mf +⌧b + ⇢⌧d]

@
t

(r, t) = �M0b@x
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•  The representative volume element (RVE) cannot resolve internal 
correlations 

⌧b(r, t) = �Gb
D

⇢
@
x

(r, t)

6=6=

Back-stress Flow stress 

⌧f(r, t) = ↵µb
p
⇢(r, t)

⌧d(r, t) = �Gb
A

⇢
@
x

⇢(r, t)

Diffusion stress 

6=
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•  In the middle of a dipolar 
wall:                and 

•  The back-stress must be 
negative 

⌧b(r, t) = �Gb
D

⇢
@
x

(r, t)

6=

Back-stress 

@
x

⇢ = 0 @
x

 < 0

D < 0
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•  CA implementation with extremal dynamics 
•  Dimensionless fitting parameters:  
•  Flow stress is a stochastic variable 
•  No phenomenological assumptions 

@
t

⇢(r, t) = �M0b@x[⌧mf +⌧b + ⇢⌧d]

@
t

(r, t) = �M0b@x


⇢⌧mf + ⇢⌧b � ⇢

✓
1� 2

⇢2

◆
⌧f + ⌧d

�

D, A, ↵

PD Ispánovity, D Tüzes, P Szabó, M Zaiser, I Groma, arXiv, 2016 
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•  Cross-correlation of + and – sign dislocations 

•                                                     : 
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•  Order parameter: 
level of asymmetry 
in 
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•  2D DDD is a simple toy model with very complex dynamics 
•  Extended criticality 
•  Anomalous system size dependence 

•  2D continuum theory of dislocation dynamics 
•  Derived analytically from the Eqs. of motion of discrete dislocations 
•  There are no phenomenological assumptions, the gradient terms naturally 

emerge 
•  Gradient terms are related to features of the microstructure: back-stress – 

dipolar walls 

•  The 2D continuum theory properly captures the patterning 
and the strain response of 2D DDD simulations 

•  Inclusion of back-stress is necessary for pattern formation 


