

Földrengések Zn egykristály mikrooszlopokban Ispánovity Péter Dusán ELTE TTK Budapest, Anyagfizikai Tsz.

Közreműködők

ELTE TTK, Anyagfizikai Tanszék

Ispánovity Péter Dusán, Ugi Dávid, Péterffy Gábor, Dankházi Zoltán, Tüzes Dániel, Vida Ádám, Groma István

Károly Egyetem Prága, Dept. of Materials Physics

Michal Knapek, Máthis Krisztián, Frantisek Chmelík

Vázlatos felépítés

Földrengések Zn egykristály mikrooszlopokban

Mi a földrengés?

- Áramlik a magma a szilárd lemezek alatt
- Belső rugalmas erők épülnek fel
- Deformáció hatására felszabadul a rugalmas energia

Rugalmas alakváltozás

 Amíg felhalmozódik a rugalmas energia, addig nincs maradandó alakváltozás

Maradandó alakváltozás

• A maradandó alakváltozás hatására szabadul fel a tárolt energia

A 2019. évi Ridgecrest földrengés

- 2019. július 4-5.
- Richter skála szerinti 7,1-es földrengés
- Az elmúlt 20 év legerősebb földrengése Kaliforniában
- Los Angelestől 200 km-re
- Mély földrengés: 10 kmrel a felszín alatt

A földrengés hatásai: maradandó alakváltozás

 \sim \sim

A földrengés hatásai: rugalmas hullámok

- A felszabaduló rugalmas energia hullámokat kelt
- Ez okozza a pusztítás jelentős részét
- A Föld túloldalán is észlelhető
 - Törések, visszaverődések
 - Pl. atomrobbantások észlelése

Richter-skála

Utórengések

- Utórengések száma:
 - 3 nap alatt kb. 4000
 - 6 hónap alatt kb. 40000
- Térbeli kiterjedés:
 - 50 km-es hosszon voltak utórengések
 - az elmozdulás mértéke kb. 20 cm

- Utórengések rátája *n*(t)
 - n: egységnyi idő alatti utórengések száma
 - t: főrengés óta eltelt idő
- Omori-törvény: $n(t) \sim 1/t$

Egykristály

Polikristály

Egykristály

- - - Keményebb
 - Kevésbé képlékeny
 - lrányfüggetlen deformáció

Amorf/fémüveg

- Puha
- Képlékeny
- Deformáció függ az orientációtól

- Nagyon kemény
- Rideg
- lrányfüggetlen deformáció

Diszlokáció fogalma

Diszlokáció

- 1936: Orován, Taylor, Polányi
- Ezek elmozdulása okozza a fémek maradandó alakváltozását
- Csak egy síkban mozoghatnak
- Nyírófeszültség hatására elmozdulnak
- Ha végighaladnak a kristályon az egy rácsállandónyi maradandó alakváltozást okoz

A Burgers-vektor

- Burgers-vektor: **b**
- Irányvektor: I

A Burgers vektor nem tűnik el az anyagban

Csavar- és éldiszlokáció fogalma

Csavardiszlokáció: **b** || **I**

Éldiszlokáció: **b** 🖌 **l**

Diszlokációk kölcsönhatása

A diszlokációk

- rugalmas rácstorzulást (deformációt) és feszültséget keltenek a kristályrácsban: $\sigma \sim \varepsilon \sim b$
 - A tárolt energia: $E \sim \sigma \epsilon \sim b^2$
- feszültség hatására mozognak

Diszlokáció mintázatok

- Deformáció hatására a diszlokációk sokszorozódnak
- Összefonódás
 - Egymás mozgását akadályozzák
- Diszlokáció mintázatok
 - Diszlokációkban sűrű és ritka térrészek kialakulása

Kapcsolat a mechanikai tulajdonságokkal

- Ha könnyen mozognak: lágy anyagok
- Ha nehezen mozognak: kemény anyagok
- Akadályok:
 - Többi diszlokáció
 - Kiválás
 - Oldott (szubsztitúciós vagy intersticiális) atom
 - Vakanciák

Szemcsehatár

Cink

- A réz és a gallium között helyezkedik el
- Rézzel ötvözve: sárgaréz
- Leggyakoribb alkalmazás: acél korróziógátló bevonata (horganyzás, galvanizálás)

HCP kristályszerkezet

- Hatszöges szoros pakolású – hexagonal close packed
- Mg, Ti, Co, Zn, Zr

Csúszási síkok hcp anyagban

 A diszlokációk legkönnyebben a bazális síkon keletkeznek és mozognak

Pásztázó elektronmikroszkóp (SEM)

SEM labor az ELTE TTK-n

A mikroszkóp belülről

SEM működése

- Fókuszált elektronsugár egy pontban gerjeszti a minta felületét
- Az elektronok által kilökött dolgokat detektáljuk
- Maximális felbontás kb. 10 nm
- Csak fekete-fehér képek

Mikrooszlop faragása

- 20keV-es fókuszált Ga⁺
 ionokkal bombázzuk a felületet
- Módszerek
 - Felülről lefelé ill. oldalról
 - Opcionális amorf Pt réteg

2 µm

Kristályplaszticitás a mikoronos skálán

- Mikron méretű minták (mikrooszlopok)
 - Méreteffektusok
 - Nagy, véletlenszerű deformációs ugrások
 - Megjósolhatatlan deformáció

D. M. Dimiduk et al., Science, 2006

Csikor et al., Science, 2007

Méreteffektusok

 Csökkenő mérettel növekvő keménység:

 $\tau_Y = \tau_0 + Bd^{-n}$

- d: átmérő
- au_0 : tömbi folyásfesz.
- n ≈ 0,6
- Normálás a Burgers vektorral ill. a nyírási modulusszal → univerzális viselkedés

Deformációs/diszlokáció lavinák

- Véletlen diszlokáció lavinák
- Hatványfüggvény szerinti eloszlás: $P(s) = As^{-\tau}e^{-s_0}$
 - τ : lavinaexponens (\approx 1,5)

Akusztikus emisszió

AE mérés

- Akusztikus jelek detektálása a minta felszínén piezoelektromos detektorral
- A detektált jel
 - jellemző a forrásra és a detektorra is
 - függ a forrás és a detektor távolságától
 - lehet folytonos vagy szaggatott

AE tömbi mintákon

- Jég kúszása (kevesebb, mint 0,1 Mpa feszültségnél)
 - $P(E) \propto E^{-\tau_E}$
 - $\tau_E \approx 1.6$ (jel energiája)
 - $\tau_A \approx 2.0$ (jel amplitúdója)
 - Nincs levágás

[Miguel et al., Nature (2001)]

Célkitűzés

- Cél: összekapcsolni a mikrooszlop összenyomási és az AE kísérleteket
 - Bizonyítani az AE és a deformációs lavinák közti korrelációt
 - Értelmezni az AE jeleket a deformációs ugrások tulajdonságainak függvényében
 - Megérteni, hogy az AE jelek hogyan függenek a deformációs mechanizmustól

'Nanotest' in situ deformációs stage

- In situ deformáció a SEM vákuumkamrában
- Precízió
 - xy: 0.5 μm
 - z: 1 nm
 - erő: 1 μN
- Maximum 10 μm
 elmozdulás z irányban
- Változtatható
 rugóállandó (jelenleg
 1 mN/μm vagy 10
 mN/μm)
- Mintavétel: 200 Hz

AE mérések

- Vallen AMSY-6 eszköz
 - Mintavételezési frekvencia: 2 MHz
 - Folytonos adatfelvételi mód (data streaming)
 - Lehetséges az utólagos adatelemzés
 - Physical Acoustic piezoelektromos szenzorok

In situ videó: deformáció + AE események

- Mikrooszlop
 - 8x8x24 μm³
 - Bazális síkra orientált Zn
- Csak egyszeres csúszás a bazális síkon
 - nincs ikresedés
 - nincs keresztcsúszás

Nagyított ábrák + korreláció

- Korreláció a feszültségesések és az AE jelek között
- Számos AE esemény egy feszültségesés alatt
- Nincsenek AE jelek a rugalmas szakaszokban

A feszültségesések statisztikája

Átmérő [µm]	Exponens	Levágás [mN]
4	1,85	0,1
8	1,65	0,15
16	1,55	0,17

AE események

Chan: 1 Set: 506 073 Index: 506 073 12:54:33 217,728000 Time [us] Freq. [mV.kHz] (Rectangle) Frame: 0+2048 0.0028 0.15 0.0025 0.0024 0.1 0.0022 szenzor 0.002 0.0018 0.05 tude [mV] 0.0016 للاد 0.0014 0.0012 0.001 4 -0.05 0.0008 0.0006 -0.1 0.0004 0.000 650 800 608 700 750 850 Chan: 2 Set: 341 289 Index: 341 289 17:48:27 478,912000 Time [µs] Freq. [mV,kHz] (Rectangle) Frame: 0+2048

Chan: 2 Set: 341 289 17:48:27 478,912000 Time 14E-4 13E-4 14E-4 13E-4 14E-4 13E-4 14E-4 13E-4 14E-4 14E-

920 940 960

980 1000

1020

840 860 880 900

0.002 0 Time [µs] Freq. [mV,kHz] (Rectangle) Frame: 0+2048 14E-4 13E-4 12E-4 11E-4 11E-4 11E-4 11E-4 11E-4 10E-4 9E-4 8E-4 7E-4 6E-4 4E-4 1E-4 1E-4 1E-4 10E-4 9E-4 10E-4 9E-4 10E-4 9E-4 10E-4 1

- A detektálható események spektruma azonos
 - Csak egyféle deformációs mechanizmus
 - A jelalak függ a detektortól

Jelalak

Spektrum

Várakozási idők eloszlása

- Bi-modális eloszlás
 - Gyors jelek: ugyanabból az eseményből
 - Lassú jelek: egymást követő eseményekből
- A lavinák időskálája:
 ~1 ms
- Közeli jelek:
 - Skála-független eloszlás
 - Független a deformációs rátától
 - Exponens ~1,5
- Távoli jelek
 - Exponenciális levágás
 - Függ a deformációs rátától
 - Poisson-szerű

Utórengések

- Egy nagy magnitúdójú jel után számos "utórengés"
- Legnagyobb jel esetén kb. 120 utórengés
- Omori tv. is teljesül

 10^{3}

 $\propto t^{-1}$

aftershock rate [1/s]

10

Földrengések vs. diszlokációlavinák

	Földrengések	Diszlokációlavinák
Mechanizmus	Repedés	Diszlokációmozgás
Kiterjedés	Síkban	Síkban
Tipikus méret	km	μm
Tipikus idő	perc-hónap	ms-s
Méreteloszlás	Gutenberg-Richter	Gutenberg-Richter
Utórengések	Omori-tv.	Omori-tv.

Összefoglalás

- Zn mikrooszlopok in situ összenyomása
 - Deformáció diszlokációmozgással
 - Méreteffektusok
 - Lavina-szerű deformáció
- A lavinák során feszültségesések és AE jelek
- Kvalitatív egyezés a földrengésekkel
 - Síkbeli terjedés
 - Skálafüggetlen méreteloszlás
 - Utórengések csökkenő rátával

