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Chapter 1

Introduction

1.1 Preface
During my PhD research, people asked me frequently about the problem I am working on.
They were curious about materials physics is about, what it entails and what my research
included. I always wonder those researchers who are able to give for outsiders a simple
explanation about their work. They are able to describe their field as an interesting,
high-end technology research field where their work is irreplaceable. But I was always
suspicious whether their explanations were scientifically correct, and they really did what
they said - or it was just something they would like to do.

My approach to explaining my field is two-fold. First I always try to demonstrate
that what I am doing is nothing special and anybody with sufficient willpower could
understand materials physics. The explanation has helped people to view me as a normal
human being, who presents materials physics as a far more approachable field than to
the stereotypical reputation of physics. So, when people ask me what I am doing, I reply
the following:

I do simple stuff. Some days I tinker strange springs and carry out
measurements with a microscope. The other days I just push the buttons on
my computer and write simple programs that simulate one of the defects in
crystalline materials.

The next step is explaining why my work is useful and why it counts as science. I
tell them that the special spring goes into a vacuum-chamber of a scanning electron
microscope (SEM) in order to manipulate micron-sized crystals. I explain how some of
the programs I have written can simulate the collective properties of the very important
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types of crystal defects, called dislocations, which determine the properties of the strange
spring fabricated.

At the beginning of my thesis, let me ask the following question: why are dislocations
special, why are they not just one of the crystal defects?

1.2 Importance of dislocations
“What vortex is in a fluid, that is a dislocation in a crystalline material. The major
difference is that the number of dislocations is 1014 crossing a m2 area, so the average
distance between dislocations is 10 nm.” The physical properties of crystalline materials
are fundamentally influenced by the existence of lattice defects. Therefore, the mechanical
properties of crystalline materials can be understood only on the basis of dislocation
theory, because dislocations are the elementary units of plastic deformation. Thus, they
play a major role in determining the technological properties of crystalline materials.
Orován, Taylor and Polányi discovered dislocations in the 1930s and ever since a large
amount of theoretical and experimental knowledge has been acquired in order to better
understand the process of plastic deformation realised by dislocations.

Dislocations are one-dimensional crystal defects. Therefore their extension in the
plane perpendicular to the line direction is in the order of the lattice spacing, while it is
orders of magnitude larger in the third direction. It can vary from thousands of lattice
spacing up to the size of the specimen.

In a early, naive picture of plastic deformation dislocations were excluded. According
to a simplified mechanism, in case of an applied external stress, a part of the material
is moved in the direction of the shear stress by a fraction of the lattice constant, with
a parallel shear, and the boundary between the moved and untouched regions. The
atom-atom bondings are distorted only along this boundary. By applying a large enough
force, the system reaches an unstable equilibrium position, where all the atoms along
the the boundary are moved by a half lattice constant. Then all the atoms in the upper
half of the material, jump into a stable equilibrium position creating a new equilibrium
configuration. This mechanism moves effectively the atoms on the one half of the
imaginary boundary by a lattice constant.

In reality, however, another mechanism is responsible for plastic deformation. At the
beginning, when an external force is applied, only the first couple of atoms are moved
out of their equilibrium position near the crystal surface. By applying larger force they
first go through an unstable equilibrium and then jump into a stable position leading
to a shift of the defected region. This defect or disorder can easily move along the
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lattice leading to same result as the naive picture described above. This fundamentally
different mechanism can be directly and indirectly verified both on a microscopic and a
macroscopic scale.

Dislocations are not just one type of the crystal defects, but the most important one
in the class of one-dimensional defects. Dislocations elucidate the differences between the
crystal growth rates predicted by the classical theory and observed in experiments, which
are significantly faster. They are also responsible for the discrepancy between the stress
theoretically needed to induce plastic strain in perfect (i.e. defect-free) single crystals
and the stress needed in real crystals (i.e. with dislocations) – the latter is smaller by
two orders of magnitude1. In the section part a closer look on plastic deformation of a
single crystal is presented to better demonstrate the importance of dislocations.

1.2.1 Plastic deformation
Consider Fig. 1.1, where a single crystal is subject to a tensile test. Since according to
experimental evidences plastic deformation occurs in inclined planes, it is practical to
resolve the applied tensile stress parallel and perpendicular of the plane selected by XX ′.
This is illustrated in Fig. 1.1b, where the force F is splitted into a FT normal component
(T for tensile) and into a FS parallel component (S for shear). It is shown that a simple
tensile force causes shear force leading to shear stress in a specimen.

Let us increase the tensile force until there is a permanent change in the shape (called
plastic deformation) and then examine the surface under a microscope. A series of
parallel lines can be seen on the surface, caused by small steps on the surface of the
crystal. These are called slip lines or slip steps. By increasing the plastic strain, the
height and the number of the slip lines increases. It seems that whole blocks of crystals
have slipped one another in the direction of the resolved shear stress as shown in Fig. 1.1c.
These slip lines are all parallel but not necessarily lie along the planes of maximum
resolved shear. This indicates that not only the geometry but the crystallography of
the crystal is what this process connected to. By taking a closer look on an atomistic
scale (as shown in Fig. 1.1d) one can find that this is indeed the case: slip occurs only in
preferred crystallographic planes (called slip planes) and in certain directions (called slip
directions). The pair of the slip plane and its chosen slip direction called slip system. (A

1Although dislocations describe why materials are softer than expected, one cannot suppose that
dislocation density could be low enough to neglect dislocation-dislocation interactions. Such a presump-
tion would lead to materials with softness never experienced. Therefore, the dislocation-dislocation
interaction must be taken into account to predict the yield point in the right order of magnitude.
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slip plane can allow multiple slip directions therefore more slip directions can be assigned
to a slip plane.)

X’
X

F

F

tensile
axis

X’
X

F

S
F

T
F

a b c d

slip
plane

slip
direction

Fig. 1.1 The slip mechanism in plastic deformation.

1.2.2 The role of dislocations in modelling plasticity
In engineering, plastic deformation is often described by phenomenological models in
which constitutive relations are given between the stress, deformation, deformation rate
and dislocation density[107, 43, 7, 66]. These models provide satisfactory results for a
large variety of materials under general conditions for large enough samples. It turned
out, however, that on a µm size scale the mechanical properties and the general behaviour
of crystalline materials differ from what their phenomenological theories can predict
[32, 75, 22]. One example is the system size dependence of the plastic response observed
experimentally, that is called size effect and it plays an important role in nanotechnology.

Due to the intense development in nanotechnology, it was inevitable to face the
challenges of size effect to develop models correctly describing and modelling specimens in
the µm size scale. The pressure from the side of the industry first led to the developement
of new phenomenological, non-local models that describe the size effect successfully
[32, 116, 115]. However, they neglect the fact that plastic deformation is achieved by
the motion of individual dislocations. They introduce gradient terms with coefficients
containing length-dimensional parameters leading to a fundamental confrontation with
the properties of dislocations (see appendix A). These models are capable for capturing
the hardening due to the smaller size of the specimen and they also explain some types
of dislocation patterning, but due to their fundamental approach they are unable to
account for some other phenomenon involving to involve the mechanism of dislocations.
It has turned out that the plastic deformation of micropillars (micron-sized single crystal
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rods) is realised by intermittent, avalanche-like strain bursts in different regions of the
sample as seen in Fig. 1.2 [27, 26, 22]. This behaviour makes the phenomenological
models inefficient in predicting the plastic deformation on nanoscale.

Fig. 1.2 The slip mechanism in plastic deformation on nanoscale. The plastic response is
not continuous, as it would be expected on macroscales. This picture has been taken
at ELTE in a scanning electron microscope of a Zn single crystal oriented to basal slip
system.

1.3 The actuality of the topic
As described above, plastic strain is realised by and can be described with a fundamentally
new mechanism in the regime of submicron scales. That is, the collective motion of
dislocations causes a large intermittent strain burst – called dislocation avalanches – that
in turn accumulates and creates plastic strain. This noisy behaviour can be handled only
by statistical approaches.

The actuality of the topic is two-fold. First, state-of-the-art computers are able to run
simulations on a much larger scale than ever before. Large supercomputers are capable
to run molecular dynamic2 simulations on 1000 × 1000 × 1000 atoms, displaying the core
properties of dislocations in 3D. One cannot expect, however, that any of these computers
can simulate a sample with size scale of µm. Simulations where the elementary units are
the dislocations (or their segments) are also developed. They can capture the collective,

2See section 2.1.2
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avalanche-like behaviour of dislocations. Such models with further simplifications (e.g.
2D simulations) can be well handled on larger computers that many universities and
their departments have at their disposal.3

Second, state-of-the-art nanotechnology nowadays allows us to fabric and manipulate
samples with a technology called FIB (focused ion beam) on the size scale of µm, on
which the plastic deformation of the sample is deeply on the submicron scale. One can
therefore recognise that nowadays the size scale one can simulate and fabric are in the
same order of magnitude. This new key feature of the field has increased the possibility
to verify models directly by physical, real specimen measurements and measurements can
be suggested based on the results of computer simulations. Until now a large drawback
of the technology was that the samples prepared with FIB in the vacuum chamber of the
SEM were not deformed in the same device due to technical problems. Technological
advancement also lets us to develop a nanodeformation tool that can fit into the vacuum
chamber of a SEM, facilitating to investigate in situ the emerging steps on the side of
miropillars formed due to dislocation avalanches.

1.4 The structure of the thesis
In the next chapter, models describing crystal defects are presented with the focus on
dislocation simulations, especially on continuum dislocation simulations. This is necessary
in order to understand the models introduced in the latter parts.

The objective of this thesis is two-fold, just as the actuality of the topic. In the first
half of the thesis, the topic is approached from a simulation point of view in chapter 3. A
cellular automaton (CA) model is introduced to link model parameters between discrete
dislocation dynamics (DDD) and continuum dislocation dynamics (CDD) models. The
results are published in an article noted in chapter 8, at point [O1]. A remarkable feature
of the numerical model is that with further extensions of the CA model it is capable
of describing materials which undergo strain softening, like metallic glasses. A striking
property of the model, is that it is capable of describing single crystals just as metallic

3These simplifications are still not sufficient in order to simulate a micron-sized sample. Consider a
simulation with a mean dislocation density of 1014 /m2 in a micron-sized sample. In this case, one has
to face 108 number of dislocations interacting with 108 − 1 number of dislocations leading to a total of
1016/2 number of pair-interaction calculations per time steps. Supposing a lightning-fast CPU – with a
frequency of 10 GHz), and supposing that in each tick cycle the strongness of a pair-interaction force
out of the N2/2 can be calculated – the time scale required to calculate all pair-interactions for just one
single time step is in the order of months. Although this strong underestimation can be improved with
parallel computing by involving hundred thousands of processors, the strong physical simplifications and
huge technological challenges question the profitability of such trials.
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glasses. The details are described in the chapter 4, in which this feature is utilised to
study fracture under strain softening in metallic glasses. The results are published in a
paper, at point [O2] in chapter 8. Finally, another CA model is introduced in chapter 5
to study dislocation patterning. The results are presented along with a non-discretised
model. The results have been also published in a paper, noted at point [O3] in chapter 8.

In the second half, the topic of this thesis is approached from an experimental point
of view, see chapter 6. In order to investigate the properties of plastic deformation
on a micron-scale, one has to produce a mass amount of samples and test them. The
fabrication can be done by a FIB, a commercially available technology for electron
microscopes. Another challenge is how to construct and calibrate a nanodeformation
device (which fits into the vacuum chamber of a SEM) in order to conduct experiments.
The device is coupled to an acoustic emission signal detector to exhibit the potential of
the setup. The results achieved therewith has been already published in a paper, see
point [O4] in chapter 8.





Chapter 2

Dislocation simulations

2.1 From molecular dynamics to discrete dislocation
dynamics

In materials science and physics, modeling and simulation play an essential role. In engi-
neering knowledge-based tools are developed to design materials with better performance
without unnecessary trials. They are used for quantitative understanding on the relations
between composition, processing, structure and properties of the materials. From the
materials physics point of view there are great possibilities to test early concepts to
describe qualitative findings. Although tremendous potential benefits of modeling and
simulation are brought to mankind, they pose challenges because of the huge complexity
involving multiple orders of magnitude in time and space scales, mentioning only one of
the toughest.

1. Dislocations bring a clear example of the size scale problems. Dislocation patterning
appears on the size scale of hundreds of mean dislocation spacing (≈ 10 µm), while
to resolve dislocation core structure scales below atomic distance are needed (less
than 1 Å).

2. Due to the long range interaction the collective motion of dislocations involves
rather different different time scales. Creep is a rather slow deformation while
the timescale of dislocation motion is short range. This challenge arises e.g. at
simulating dislocations in single crystal Ni-based superalloys used in aircraft turbine
blades: the timescale of dislocation motion is in the order of µs, while the change
in microstructures happens in the order of weeks.
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Moreover chemical interactions may play a non-negligible role too. Covering interdisci-
plinary phenomena whose modelling involves different approaches elevate the problem
to a conceptual level. Despite all these difficulties computational models show fruitful
promises worth to try. As a general principle the physical accuracy of a model and its
practicability are opposite aims regarding the spatial and temporal scales. So minimalist
models introducing the smallest possible number of parameters by identifying the essential
mechanisms which can capture the phenomenon desired are essential.1

2.1.1 Ab initio
The starting point of the most fundamental picture in materials’ simulation are the
wave functions of the nuclei and electrons. “Schrödinger’s equation may solve all2” and
describe the time evolution of the system on the level of quantum physics. These models
may involve Hartree-Fock and density functional theory approximation, but a key feature
is that no phenomenological parameters are introduced. These first principle methods
(also known as ab initio) represents the state of the art, completely non-phenomenological
methods. First principle methods let us to construct and investigate theoretical materials
that have not created yet. They allows to investigate their parameters leading to an
improvement in efficiency compared to a completely trial and error experimental discovery
of new materials. Due to the complexity of the Schrödinger’s equation simulations are
strongly limited in both the number of independent variables (particles) and the time
length. Their typical values are around 1 to 100 atoms and time range of 10−15 s to
10−12 s. These limitations mean that ab initio methods cannot be used to study the
collective properties of dislocations, but the properties of the primitive cell and crystal
lattice as the underlying structure for dislocations.

2.1.2 Molecular modelling
Atomic scale methods consider atoms as the smallest units and are essentially built upon
the equations of classical mechanics. They do not resolve subatomic scales, i.e. nuclei
and electrons and their effects are taken into account via phenomenological parameters
as input parameters of the model leading to the possibility to simulate materials different
in structure or in chemical properties. Limitations are moderate compared to ab initio

1That’s why I consider keyboard pushing as science when it comes to simple models based on physical
assumptions.

2Richard Feynmann: Lecture on Physics, Volume II, 41–6: Couette flow
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methods: 104 to 109 or even up to 1012 atoms can be handled for up to 10−12 s to
10−9 s. Atomistic methods can be casted into two major categories:

1. stochastic methods such as Monte Carlo methods[5, 92],

2. deterministic methods such as molecular dynamics (MD). MD simulations are
capable to simulate dislocation-related properties, such as dislocation-solute atom
interaction, interface-matrix dislocation interaction and dislocation-dislocation
interaction, creation, and annihilation [140, 143, 125]. Due to computational
limitations, they cannot handle large number of dislocations or very slow effects,
e.g. deformation with a slow strain rate and diffusion controlled processes (like
dislocation-climb).

2.1.3 Xscopic scale methods
It is common to distinguish models corresponding to different scales as microscopic,
mesoscopic, and macroscopic (denoted by my fantasy name xscopic) scales. They are
above atomic scale methods’ but their naming is rather arbitrary or field-dependent.
Macroscopic scales means the size scale where materials can be handled homogeneous
and all phenomena related to atoms can be taken into account via a finite number of
parameters and where completely classical approaches can be used. In practice this
scale is in the order of mm and above. Microscopic scale is directly above atomic scales
where ab initio and MD are used. Mesoscale is something in between. In the field of
phase/grain microstructures "microscopic" stands for intraphase/intragrain scales and
mesoscopic stands for interphase/intergrain scales[91]. In fields of dislocation microscopic
means that individual dislocations can be resolved (discrete dislocation) and mesoscopic
means field quantities (e.g. dislocation density or dislocation-dislocation two particle
correlation) are introduced to handle dislocation-related phenomena. The work presented
in the thesis focuses on dislocations therefore the latter terminology is utilised in the
following.

Microscopic methods in this sense mean discrete models like DDD, where disloca-
tions are resolved into segments along the dislocation line. Forces – including driving
forces, dissipative forces and inertial term – acting on the whole dislocation is averaged for
the segments determining the motion of the segments. Driving force may include various
sources, such as external force, dislocation-interaction forces ... etc. DDD simulations
provide information on each of the dislocation and they can also handle large number of
dislocations even in multiple slip systems to study their evolution during rearrangement.
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Larger number of dislocations means that with some simplifying assumptions commer-
cially available computers can catch collective dislocation motion phenomena, such as
dislocation avalanches [22, 82, 56]. A strong drawbacks of DDD simulations is a trivial
outcome of their approach: they resolve dislocations one by one. So since one tries to
track the motion of each dislocation segment, the problem leads to computational cost
unaffordable at the scales of dislocation patterning.

Mesoscopic methods average out the microstructure: they refer to such models
where fields and continuum quantities are used. As an example, DDD resolved each of
the dislocations and tracks their motion, while in CDD modelling dislocation density
distributions, dislocation-dislocation correlation functions ... etc. are introduced and
their change in time describes the evolution of the system. As a consequence, their
computational cost is basically independent of the number of dislocations (or dislocation
density) therefore simulation space can be scaled up even to the size scale where real
specimen experiments can be performed even on commercial computers. While in DDD
models the way stresses are calculated is more or less straightforward, CDD models
lead to nontrivial conceptual problems: what are the key quantities, how to handle
them mathematically and how could one handle efficiently to a numerical problem. This
challenge is not surprising, because CDD models have to link

• information got from lower-levels contained in discrete models, like the microstate
of dislocations and

• information got from higher-levels describing materials on macroscopic scales.

The difficulties mentioned above can be handled by deriving terms and numeric parameters
in continuum models obtained by coherent coarse graining of discrete models. The
expected results can be also foreseen by empirically generalising the experimental data
in an adequate way.

Macroscopic scale methods approach the problem from the opposite direction. In
this case the evolution of the whole system is prescribed phenomenologically and only
finite amount of averaged parameters are used to account for the microstructure. The
main advantage of these models is that their numeric implementation is straightforward,
they can easily fit into the standard framework of finite element methods already
available. These models are efficient engineering tools when it comes to estimating the
life-time [21, 69] under mechanical fatigue or creep conditions. In experiments the details
of the stress-strain curves are highly dependent on the specific test conditions hence
model parameters must also reflect this sensitivity feature if the underlying constitutive
formulation still holds at all. These methods are reliable only in a limited range where they
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are tested against real experiments meaning their prediction can hardly go beyond what
the models were build upon. They are able to capture, however, changing microstructural
mechanism by using new set of parameters, i.e. introducing new ones and omitting old
ones, but this is barely a phenomenological approach where one can hardly give the
parameters used in the model any microstructural meaning. Although no doubt that
these models provide useful tools in their own field of engineering, they are inadequate
for the field of microstructure engineering.

2.2 Contiuum dislocation dynamics
The basis of continuum dislocation dynamics was founded by Nye and Kröner in the
nineteen fifties by introducing a tensorial measure, the Kröner-Nye dislocation density
tensor to represent the geometrically necessary dislocation (GND) densities in a crystal.
It was cumbersome and took half a decade to describe plasticity with the density
field introduced above in a nontrivial case of continuous dislocation density where one
has to already take into account the boundary conditions [79]. Since then numerous
different models based on the Kröner-Nye tensor were introduced [2, 68, 101, 123] where
dislocations are the boundaries between plastically sheared and unsheared regions on a
slip plane. In this picture all dislocations are geometrically necessary and there’s no other
type of dislocation. In energy functional based models (such as phase field dislocation
dynamics model [12]) dislocation evolution is driven by the decrease of the total internal
energy, therefore any other source of dislocations than the boundary is neglected. These
models can hardly resolve the system spatially below the mean dislocation distance
meaning they are inadequate models to account for mechanisms taking place below this
size scale.

Another possible type of dislocation is the statistically stored dislocation (SSD)
density accounted only for the flow stress and plastic slip rate. It neglects completely the
geometric compulsion [59, 61]. These models focus on the reproduction of the connection
between dislocation density and the flow stress (e.g. the Taylor-equation for the flow
stress τf = αGB

√
ρ, where G is the shear modulus) and the connection between the

plastic slip rate (e.g. the Orowan-equation ∂η/∂t = ρvb, where η is the plastic strain).
These descriptions are valid as long as the naive picture of dislocations holds3 and in
these cases they can also describe work hardening and plastic flow [14, 18, 31] on a
phenomenological base.

3tautology
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In the rest of this work we will focus on another line of approach where individual
dislocations are coarse grained only of its own type. These models can account for the
evolution of GND and SSD simultaneously [35, 36]. To minimalise the complexity of
such model one could consider only straight edge dislocations in a plain-strain geometry
where only two types of dislocations exist: with Burgers vector s · b, s ∈ {+1, −1}, called
2D dislocation model4. Although the explanation and interpretation of the appearing
term in 2D CDD models [36] reveals astonishing features [39], arbitrary configurations of
curved dislocations became examinable with a general extension [46, 45, 96, 98] granted
by a straightforward though cumbersome calculation applied on the original basis. These
models have been successfully tested against DDD simulations [94] or against other CDD
models [78] and proved to be accountable on the size scale below the mean dislocation
spacing up to orders of magnitude larger scales.

In the following an above-mentioned 2D CDD model with a statistical approach will
be introduced in order to present the basis of chapter 3 and 5.

2.2.1 Equation of motion of dislocations
In this section the equation of motion (EOM) of straight, parallel edge dislocations in
single slip is discussed from a DDD point of view. This is the simplest setup one can
envisage which still reproduces some key features of dislocation system demonstrated
by DDD simulations. The derivation is implemented by a systematic manner providing
further possibilities for improvement.

In the following we consider N dislocations with Burgers vector s ·(b, 0, 0), s ∈ {−1, 1}
with dislocation line directing to the positive direction of the z axis (see Fig. 2.1).
Neglecting the inertial terms on dislocations, i.e. using over-damped dynamics, the EOM
of the dislocation system is given by

dxi

dt
= M0bsi

 N∑
j=1

sjτind (ri − rj) + τext

 , (2.1)

where ri = (xi, yi, Zi) is the position (Zi points to the points of the dislocation line), si

is the sign of the ith dislocation, M0 is a mobility factor specific to the dislocation in the
system given, bi is the Burgers vector, τind is the shear stress generated by dislocation
j at the place of dislocation i, τext is the external shear stress. For simplicity the time
dependence of ri will not be indicated in the rest of this thesis. The actual form of τind

4The 3rd direction, z, is in the direction of the dislocation line.
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x x

y y

z

b −b

Fig. 2.1 A 2D dislocation configuration (single slip) representing a total of N = Nt = 10
dislocations; N+ = 5, N− = 5, the number of exceed dislocations Ns =

N∑
i=1

si = 0 (s for
signed). The z direction is perpendicular to the plane of the sheet/screen and points
towards the reader. (The x, y and z axes form a right-handed system.)

reads as
τind (r) = x

x2 − y2

(x2 + y2)2 = cos (φ) cos (2φ)
r

. (2.2)

By adding a random force term to eq. (2.1), the model is capable to contain the
effect of thermal noise, leading to a stochastic differential equation. By investigating the
corresponding Fokker-Planck equation with real physical parameters, one can find that
the time scale corresponding to thermal noises orders of magnitude (e.g. 104) larger then
the one corresponding to dislocation-dislocation interaction. As a result of neglecting
the thermal fluctuation in the elastic energy, the dislocations cannot escape from even
the smallest energy barrier leaving them in the nearest local energy minimum. One
has to note that although dislocations are still unstable crystal defects meaning that
dislocation-free system would be the preferred configuration, this state cannot be achieved
because the system cannot recover from its metastable configuration – at least within a
reasonable time.

Dislocation climb is another thermal effect could have been taken into account.
The underlying mechanism lies on vacancies which are stable crystal defects at finite
temperature. However, in the following, dislocation climb will be neglected and only
glide will be allowed representing a zero-temperature approximation.
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Coarse graining

The first step towards the desired CDD model from the DDD model is the procedure
called coarse graining or homogenisation. The dislocation density tensor introduced by
Nye and Kröner is

αij = −εikl∂kβp
lj, (2.3)

where ε is the three-dimensional Levi-Civita symbol5 and βp
lj is the plastic distortion.

In the 2D single slip case the quantity αij has only one non-zero component, and it is
highly singular on a DDD level: it can be written as a sum of Dirac-delta distributions

α31 = ρd =
N∑

i=1
siδ (r − ri), (2.4)

where ρd : R2 → R denotes the scalar-valued dislocation density. The evolution of the
system is completely defined at this point: the EOM of the dislocations are given meaning
that the dislocation density can be calculated at any given point at any time which
determines – compared to an initial state – the plastic distortion and the stress. In this
case, however, one has to follow each of the dislocation containing the whole microscopic
information of dislocation configuration.

In a hopefully lucky situation one may predict the macroscopic plastic response of the
system without knowing the detailed information of the whole dislocation arrangement
and the vast majority of the information can be neglected by finding the key homogeneous
quantities as it is done in many other physical systems. One way to do that is to calculate
locally averaged fields for the dislocation density, dislocation current density, stress, ...
etc. Locally averaged means that a convolution is applied with a window function tending
to zero fast enough in a certain sense. One may ask if there are only one appropriate
function or more, which ones are better and worse and if there exist any window function
at all which could provide averaged quantities modelling our system. There is a hope that
within certain limits, a range of functions do the job and the main features of the result
obtained by coarse graining do not depend strongly on the specific shape of the window
function. If we cannot find any proper function and our model seems to be ineffective
describing the reality it may mean that all the microscopic details are necessary for the
description and one cannot use a continuum picture.

The goal of the continuum description is to get rid of unimportant details to speed
up the numerical models implemented on such basis. However, one has to be careful.
Consider two dislocation configurations where signed sum of dislocations are equal within

5The completely antisymmetric 3 × 3 × 3 tensor, or the three indexed permutation symbol
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a region, Ns =
N∑

i=1
si, as seen in Fig. 2.2. Apply coarse graining with a window function

with the characteristic size of the box shown in the figure. Consider the signed dislocation
density κ. It can be seen that on one hand the values of κ are the same and on the other
hand the plastic response of the two configurations are substantially different. This is an
example to point out that further quantities than total and signed dislocation density
tensors are needed to characterise the state of the system.

Fig. 2.2 Coarse graining applied on strongly different dislocation arrangement can lead
to the same signed dislocation densities at some points. This two configurations gives
the same signed dislocation density κ at the center using a window function represented
by the box.

To introduce the key quantities under certain assumptions one has to coarse grain
the EOM in eq. (2.1). For shorter notation only si = +1 type of dislocations will be
considered first and then the results obtained will be generalised to the case when two
types of dislocations are presented. For simplicity, τext is neglected first. Let us apply
∂x (δ (r − ri) · •) first on both sides:

∂x

[
dxi

dt
δ (r − ri)

]
= M0∂x


 N∑

j ̸=i

F (ri − rj)
 δ (r − ri)

 , (2.5)

where F (r) = b · τind (r). With the equivalency

∂x

(
dxi

dt
δ (r − ri)

)
= dxi

dt
∂xδ (r − ri) = −dxi

dt
∂xi

δ (r − ri) = − d

dt
δ (r − ri) (2.6)
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eq. (2.5) reads as

− d

dt
δ (r − ri) = M0∂x

{∫ F (r − r′) [ρd (r′) − δ (r − r′)] d2r′
}

δ (r − ri)︸ ︷︷ ︸
avoid self - int.

 . (2.7)

Here the term δ (r − ri) is to avoid self interaction of the dislocations. Recall eq. (2.4)
and take into account that only positive dislocations are considered and sum up both
sides with respect to i:

− d

dt
ρd (r) = M0∂x

[{∫
F (r − r′) [ρd (r′) − δ (r − r′)] d2r′

}
ρd (r)

]
. (2.8)

Please note the non-local property of this equation. Let us make the coarse graining now
by applying the operation

⟨• (r)⟩ =
∫

• (r′) · w (r − r′) d2r′ = (• ∗ w) (r) . (2.9)

Denote the averaged one-particle dislocation density function by

ρ1 (r) = ⟨ρd (r)⟩ , (2.10)

and the two-particle dislocation density by

ρ2 (r1, r2) = ⟨ρd (r1) ρd (r2) − ρd (r1) δ (r1 − r2)⟩ . (2.11)

With these notation one gets

∂ρ1 (r)
∂t

+ M0

∫
∂x [ρ2 (r, r2) F (r − r2)] d2r2 = 0. (2.12)

Please note that in this equation ρ1 (r) and ρ2 (r1, r2) represent the coarse-grained one-
and two-particle densities.

Equation (2.12) does not describe completely the system, it contains two time-
dependent values ρ1 (r) and ρ2 (r1, r2). This equation could be used to express the time
evolution of the one-particle density function dependent on two-particle density function.
However, one can get an equation for the two-particle density function depending on
the three-particle density function, ... etc, and in the end the N − 1-particle density
function will depend on the N -particle density function. The general equation that gives
the dependence of the k-particle density function on the N > k particle density function
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can be found in the work of Groma [35]:

∂fk

∂t
+

k∑
i=1

k∑
j=i,j ̸=i

∂xi
[fk · F (ri − rj)] + (N − k)

∫
∂xi

[fk+1 · F (ri − rk+1)] d2rk+1 = 0,

where the k-particle distribution function is introduced, ρk = N !
k! fk, and it is a function

of the coordinates of the dislocations,fk (r1, r2, ..., rk), and of the time as well.
With these one got a hierarchy of equations. This form is still equivalent with the

description of the original DDD system without the loss of generality, because nothing
is supposed on the window function appearing only in the i-particle density functions
(namely the ρ1 (r) and ρ2 (r1, r2) in eqs. (2.10) and (2.11)). This generality breaks off
when one gives a specific function on w. In the next two sections different approximations
are applied on these terms. It turns out that at least the first one – the self-consistent,
or mean field – is an oversimplification while the latter one provides enough to observe
dislocation avalanches and dislocation patterning. Before we do so, let us generalise the
form of eq. (2.12) for two different types of dislocations: one with Burgers vector +b and
one with −b pointing to the x direction.

∂ρ+ (r)
∂t

= −M0b∂x

{∫
{[ρ++ (r, r2) − ρ+− (r, r2)] τind (r − r2)} d2r2 + ρ+ (r) τext

}
(2.13)

∂ρ− (r)
∂t

= −M0b∂x

{∫
{[ρ−− (r, r2) − ρ−+ (r, r2)] τind (r − r2)} d2r2 − ρ− (r) τext

}
(2.14)

In these equations the two types of ρ± and four types of ρ±± represent the coarse
grained one- and two-particle density functions.

To get the coarse-grained total dislocation density and signed dislocation density, also
known as (coarse-grained) GND, one has to add and then subtract eqs. (2.13) and (2.14).

∂ρ (r)
∂t

= −M0b∂x

{∫
[ρ++ (r, r2) + ρ−− (r, r2)

−ρ+− (r, r2) − ρ−+ (r, r2)] τind (r − r2) d2r2 + κ (r) τext

}
(2.15)
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∂κ (r)
∂t

= −M0b∂x

{∫
[ρ++ (r, r2) − ρ−− (r, r2)

−ρ+− (r, r2) + ρ−+ (r, r2)] τind (r − r2) d2r2 − ρ (r) τext

}
, (2.16)

where ρ = ρ+ + ρ− and κ = ρ+ − ρ− are the coarse grained density quantities.

2.2.2 Self-consistent field approximation
Solving the hierarchy of equations for the different order of dislocation densities is
mathematically equivalent with the original problem described in DDD at eq. (2.1). The
same holds if two types of dislocations are allowed. Instead of introducing higher-rank
equations one has to cut them at some rank k, i.e. to express the k-particle density
function on lower level particle density functions.

First the simplest possible assumptions will be considered, when the dislocation-
dislocation correlation is completely neglected (i.e. the hierarchy is cut at k = 2). In
this case according to probability theory the two-particle density function is the direct
product of the one-particle density functions:

ρss′ (r1, r2) = ρs (r1) ρs′ (r2) s, s′ ∈ {+, −} . (2.17)

By substituting eq. (2.17) into eqs. (2.15) and (2.16) one gets

dρ (r)
dt

= −M0b∂x {κ (r) [τsc (r) + τext]} (2.18)

and
dκ (r)

dt
= −M0b∂x {ρ (r) [τsc (r) + τext]} , (2.19)

where
τsc (r) = (κ ∗ τind) (r) =

∫
κ (r′) τind (r − r′) d2r′ (2.20)

is called self-consistent (or mean field) shear stress field, the shear stress generated by
the coarse-grained GND. As a side note it is worth to mention calculations can prove
that the shear stress introduced here is the same if it were introduced from the field
theory of dislocations as the coarse grained quantity of the appropriate component of
the stress tensor field ⟨σ12 (r)⟩.

This model also omits the possibility of dislocation creation and annihilation. This
could be taken into account by incorporating a model where the dislocation density is not
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a conservative quantity but in the scope of this thesis these phenomena will be completely
neglected. Besides numerical reasons, i.e. it requires smaller computational power, a
more important reason lies in the nature how such phenomena could be introduced. In
2D systems they always involve new artificial dimensional parameter(s) introducing a
new length scale ruining the scale properties of dislocations[136]. Natural way to handle
dislocation multiplication and annihilation is only given in 3D which is again, out of
scope of this thesis.

So we have got the equations for the time evolution of dislocation densities. It should
be noted that eqs. (2.18) and (2.19) could be set up in a completely speculative way too,
namely a given dislocation moves in the stress field generated by the other dislocations.
The advantage of this method is two-fold. It is pointed out what are the necessary
assumptions to obtain it, and this approximation can be improved in a systematic way.

Linear stability analysis shows that within the framework of self-consistent field
approximation no perturbation can increase, however, stable perturbation can appear.
This means that the elastic interaction between individual dislocations cannot lead to
pattern formation which is in agreement with the experiments.

Just to mention a few, the following major issues must be solved.

• The model does not contain the Taylor-equation for the flow stress τf = αGB
√

ρ,
nor any form of friction-like stress.

• The elastic energy of a dislocation system where no correlation is introduced
diverges logarithmically, an effect not observed experimentally. This would mean
that the energy of a dislocation system is not an extensive quantity.

• No growing perturbation can emerge, the system does not form patterns according
to linear stability analysis.

2.2.3 Dislocation-dislocation correlations
To step beyond the self-consistent field approximation one has to consider correlations in
the two-particle dislocation density function, which is indeed the case for real systems
[130]. Without loss of generality the two-particle density function can be always written
in the form of

ρss′ (r1, r2) = ρs (r1) ρs′ (r2) (1 + dss′ (r1, r2)) s, s′ ∈ {+, −} , (2.21)

where dss′ (r1, r2) denotes the so-called dislocation-dislocation correlation function. For
a general arrangement of dislocations eq. (2.12), the hierarchy of the equations (or in
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case without restriction on the external stress and the signs of dislocation, eqs. (2.13)
and (2.14)) can be used on dss′ to express its form. In case of parallel screw dislocations,
one could find an analytical solution if the correlation function can be writtern as a
product of two, one-particle function [113, 112]. In case of edge dislocations, where
opposite signs for the Burgers vector is allowed, one has to apply some approximation
and find out under what restriction the approximation can be justified.

In the following analysis, a relaxed dislocation system is suspected, where initially each
dislocation was placed in an uncorrelated way and the system was allowed to evolve into
a state where on each dislocation the acting total stress is zero. (This numeric calculation
can be done on DDD modelling.) It is also supposed that the total number of dislocations
with opposite Buergers vectors are the same. (Furthermore, no dislocation annihilation
or creation is introduced as mentioned before.) The simulation results indicate that the
two-particle density functions decay exponentially and due to dimensional reasons, this
decay must go with the characteristic length scale of the mean dislocation spacing. Based
on this, it is assumed that the direct dependency of the two-particle density functions on
r1 and r2 are weak, and only the difference of the positions of the two particles occurs in
the expressions, the direct dependency of r1 and r2 comes only via the spatial dependency
of the dislocation density ρ, i.e.

dss′ (r1, r2) = d̃ss′ (r1 − r2, ρ (r1)) . (2.22)

(This approximation is true under the restriction κ ≪ ρ [36, 39], and if the dislocation
density varies slowly on the length scale of the mean dislocation spacing.) Furthermore
the correlation cannot depend on a dimensional argument, therefore supposing the
simplest case by dimensional analysis argument one arrives to the form

d̃ss′ (r1 − r2, ρ (r1)) = ˜̃dss′

(
(r1 − r2) ·

√
ρ (r1)

)
(2.23)

(In the following the tilde is omitted as it does not lead to misreading due to the
different number – or type – of arguments.) This approximation can be called as
local density approximation. This approximation is in perfect analogy with first order
approximation applied in conventional thermal systems and leads to linear response
theory. By substituting eq. (2.23) into eqs. (2.15) and (2.16) one gets

∂ρ+ (r)
∂t

= −M0b∂x {ρ+ (r) [τsc (r) + τ+ (r) + τext]} (2.24)
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and
∂ρ− (r)

∂t
= +M0b∂x {ρ− (r) [τsc (r) + τ− (r) + τext]} , (2.25)

where τsc (r) is the previously defined self-consistent stress field and τ+ (r) and τ− (r) are
defined as

τ+ (r) = +
∫

[ρ+ (r′) d++ (r − r′) − ρ− (r′) d+− (r − r′)] τind (r − r′) d2r′ (2.26)

and

τ− (r) = −
∫

[ρ− (r′) d−− (r − r′) − ρ− (r′) d−+ (r − r′)] τind (r − r′) d2r′. (2.27)

Without going into the details, the following observations and assumptions can be made.

• d++ and d−− – as functions acting on two-particle argument – are symmetric,
therefore the corresponding one-particle variable variants must be even functions
of their argument r.

• From a similar argumentation one can get that d+− (r) = d−+ (r) holds.

• For nearly homogeneous systems the contribution of d++ − d−− can be neglected
compared to d+− or d−+.

• One can apply a Taylor expansion on ρ (r) and κ (r) around the point r.

• τind (x, y) = −τind (−x, y) and τind (x, y) = τind (−x, −y).

• τsc + τext := τmf is often smaller than other appearing stress quantities (in the case
of small GND and low external stress) so on any τmf depending quantity a Taylor
expansion around 0 can be applied.

Equation of motion in a continuous dislocation dynamic system under local
density approximation

The hypotheses mentioned above lead to the equations

∂ρ+ (r)
∂t

= −M0b∂x

{
ρ+ (r)

[
τsc (r) + τb (r) −

(
1 − κ (r)

ρ (r)

)
τf (r) + τd + τext

]}
(2.28)

and

∂ρ− (r)
∂t

= +M0b∂x

{
ρ− (r)

[
τsc (r) + τb (r) −

(
1 + κ (r)

ρ (r)

)
τf (r) − τd + τext

]}
, (2.29)
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or equivalently by adding and subtracting them:

∂ρ (r)
∂t

= −M0b∂x {κ (r) [τsc (r) + τb (r) + τext] + ρ (r) τd (r)} (2.30)

and

∂κ (r)
∂t

= −M0b∂x

{
ρ (r)

[
τsc (r) + τb (r) + κ2 (r) − ρ2 (r)

ρ2 (r) τf (r) + τext

]
+ κ (r) τd (r)

}
,

(2.31)
where the leading terms τb (r), τd (r) and τf (r) reads as

τf (r) = −µbC
√

ρ (r), (2.32)

τb (r) = −Gb
D

ρ (r)∂xκ (r) , (2.33)

and
τd (r) = −Gb

A

ρ (r)∂xρ (r) , (2.34)

where µ is the shear modulus, ν is the Poisson’s ratio and G = µ/ [2π (1 − ν)]. C, D and
A are parameters in the order of 1, they depend on some of the one- and two-particle
density functions, but while A and D are constants under the assumptions mentioned
above, C is linear in τmf. Let us take a close look on the parameters and the stress terms.

1. To have a more precise description on C, the strain rate from dislocation field
theory must be included at this point. Without further explanation we recall [40]
that the plastic shear rate for a homogeneous system can be expressed as

γ̇ = ρbM0

[
τmf −

(
1 − κ(r)2

ρ(r)2

)
τf (r)

]
. (2.35)

For a system where κ = 0 the flow stress will have a finite value due to dislocation
dipoles and multipoles, and below this shear stress value the plastic strain rate is 0.
The relation

C =


α
µb

√
ρ
τmf if τmf 6 τflow

α otherwise,
(2.36)

does reflect this behavior, where τflow = αµb
√

ρ is the flow-stress. One can envisage
then the role of the mean-field stress as the driving force in a stick-slip-like system
making it a good argument to call τf as friction stress. α is a parameter in the
model depending on the microstructure of the dislocation arrangement.
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It is nontrivial how a case-separated value like eq. (2.36) can be obtained from an
energy functional if one tries to construct this dependency by a variational approach.
The key idea is to add a nontrivial, nonlinear mobility function with a threshold by
hand. These terms play the role of Taylor stresses, i.e. they represent the positive
and negative dislocations trapping each other into a n-polar configuration. Please
note the role of κ in eqs. (2.28) and (2.29), as in the case of excess dislocations of
type ρi, i ∈ {+, −} the pinning force is reduced for ρi and increased for the other
type. As a special case, κ = ρ or κ = −ρ, the pinning stress is 0.

2. To name the term τb note the relation τb ∼ ∂xκ. Such term is often used in strain
gradient plasticity theories accounting for size effects. It is called the term back
stress, therefore this term will be referred as back stress. A main difference here is
that it is introduced with no further physical parameters then the already used ones
and the appearing length scale appears through the (mean) dislocation spacing √

ρ.

3. The term τd is called diffusion stress because it goes with the derivative of the
dislocation density ρ, τd ∼ ∂xρ. It’s atypical feature is that it moves both positive
and negative dislocations the same direction, as can be seen on eqs. (2.28) and (2.29).

These results are valid under many limitations, e.g. κ ≪ ρ, but the model can be
extended by a phase-field approach to cases when κ ≈ ρ [38]. For general κ/ρ cases
there is no reason not to use linear interpolation between the two extremities. Further
extensions towards a 3D description is also possible [129].

Summary
It was explicated why and how one can move further than DDD-level description in order
to handle samples in the size scales of microns. It has to be realised, that continuum
description raises conceptional and mathematical difficulties. They can be solved by
either ad-hoc empirical approaches suitable for complex systems using fitting parameters
which meanings are hardly possible to express on a microstructural level or analysing the
simplest cases which can be handled as exact as possible with parameters which meanings
are clear on a microstructural level. The latter way was followed and elaborated in a
CDD model based on the simplest case of DDD, a single slip system with straight edge
dislocations. It was pointed out what approximations lead to non-physical results, e.g.
considering no correlation between dislocations and it is showed what minimal further
step could be added to achieve a description which shows no inconsistency6.

6up to date today
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This simplest case used above represents real setups with real specimen meaning that
this description is valid not only for a set with measure zero. This description is exact in
the sense that the meaning of all quantities introduced are well understood and direct
derivation can be set up from a corresponding DDD model.

We may want, however, to introduce further simplification in order to solve the EOM
of the given quantities of κ and ρ, or equivalently, ρ+ and ρ−. The robustness of the
calculation is demonstrated in chapter 3 where further assumptions will be considered
to achieve an even more minimal picture of dislocation rearrangement. Although the
derivation explained above require strong simplifications, the advantage of this approach,
namely that the final model is got by dropping out terms and take stronger and stronger
assumptions, is that it remains clear, what are the assumptions required, in contrast to a
merely ad-hoc approaches where the validity is completely non-controlled.

The model derivated requires – beside the material-specific Poissons ratio and shear
modulus – three parameters depending on the dislocation-arrangement, namely A, D and
C. The first two can be considered constant but for C one may consider a more accurate
value as it can be accounted for the stochastic behaviour of dislocation systems. A step
back from CDD towards DDD could be made in order to figure out how to bestow C to
represent the microstructural property leading to stochastic behaviour during dislocation
avalanches. In chapter 3 besides further simplification an assumption will be made which
is not linked directly to this pioneering derivation of CDD.



Chapter 3

Role of weakest links and
system-size scaling in multiscale
modelling of stochastic plasticity
[O1]

In this study the intermittent local strain burst events involved in plastic deformation
of crystalline materials will be investigated from a numerical and theoretical point of
view. This approach differs completely from that of chapter 6, where new technological
ideas will be introduced to facilitate and improve the experimental examination of the
avalanche-like behaviour in crystalline materials.

To better understand the physical basis of the phenomenon a minimal stochastic
continuum plasticity model (SCPM) is introduced, where the details of the microstructure
of the dislocations are taken into account via a fluctuating local yield threshold which
is one possibility to handle the question raised in section 2.2.3 after eq. (2.36), namely
the actual form of α1. In this published study (see point [O1] at chapter 8) a method
for determining the appropriate yield stress distribution in micron scale plasticity is
presented. The distribution we propose is derived from lower scale DDD simulations which
is combined with weakest link arguments. To demonstrate the success of the parameter-
derivation in the microplastic regime, stress-strain curves obtained from both the SCPM
and the lower scale DDD models are presented. The two models behave identically in

1The value α can be calulated by a kind of weighted average of the stress field induced by a dislocation,
where the weights are coming from a specific linear combination of the two-particle dislocation-dislocation
density function. Under specific assumptions one can consider the value of α to be constant, but due to
its high sensitivity on the local dislocation arrangement, one can also envisage it as a fluctuating value
around a mean value.
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the thermodynamic limit and they are statistically equivalent shown by various scaling
properties. The proposed technique can be adapted to different microstructures and also
to amorphous materials according to our expectations.

3.1 Introduction
Understanding and modelling crystal plasticity requires multiscale approaches as the
plasticity itself involves features of the specimen on multiple spatial and temporal scales
from the smallest, atomic scales through the scales of crystal defects (point-like defects,
dislocations or even dislocation patterns) and grain microstructure up to the specimen size.
In a fortunate situation one can separate the size scales in the sense that at a given scale
level lower phenomena are taken into account by only a restricted amount of parameters.
Such scale linking is offered by the DDD and CDD approaches in crystal plasticity, an
enticing possibility intensively studied [36, 38, 46, 84, 72, 102]. The main advantage of
having descriptions on different levels is that difficulties appearing at lower levels can
disappear on higher scales due to appropriate approximations chosen carefully. In the case
of dislocations this difficulty on a lower level arises from the fact that dislocations interact
via a long range force field, therefore in DDD simulations each pair-interaction must be
taken into account leading to a disadvantageous scaling of the computational cost. This
restricts simulations to only a couple of thousands of dislocations or dislocation segments.
An appropriate CDD model might lift this restriction, where continuous density field
quantities represent the dislocations, and the dynamics of dislocations is translated into
coupled partial differential equations of these fields.

Continuum descriptions filter out spatial fluctuations below the the size scale of the
mean dislocation spacing which play an important role of the intermittent strain bursts
caused by dislocation avalanches [131, 26]. Such fluctuations may be negligible for bulk
samples but certainly not for micron-scale specimens where they derange the prediction
of formability causing a major challenge for material design [22]. Spatial fluctuations may
also increase average strength of specimens with dimensions reduced down to the micron
scale or even below, a size effect observed in experimental investigation [27, 26, 110]. One
way to take into account the important physics of strain bursts is to extend CDD models
by introducing a new stochastic component appearing in the differential equations.

Such SCPM was proposed in 2D[134], where the stochastic component arises in a
random component as the local yield stress of the material. This component is meant
to account for the stress-fluctuations below the mean dislocation spacing which can
be caused by formation and breaking of local jammed configurations such as narrow
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dislocation dipoles or junctions in 3D. The model discretises both time and space leading
to a cellular automaton (CA) representation. The equations are solved in this framework
and the plastic strain field is investigated thereafter. The stochastic nature of plasticity
is successfully captured by the resulting model [135] which is also suitable for modelling
the quasiperiodic oscillatory behaviour observed in micropillars at a low strain rate [83].

SCPMs were first introduced to study plasticity in amorphous materials [16, 10],
where dislocations cannot play any role in the deformation. It is surprising, how such
models can be also used in strongly different systems, namely in crystalline materials, to
study plasticity. The basic assumptions which lead to usability of the similar models are:

1. The accumulation of plastic strain can be resolved into smaller events taking place
in a localised region. These events decrease the on-site stress and cause a long-range
stress-rearrangement in the sample with equivalent asymptotic properties.

2. A fluctuation in the local yield stress accounts for the disorder below the scale of
resolution of the CA model .

A version of the SCPM – equivalent with the one used in this study – was recently
introduced to study avalanche phenomena in amorphous materials [105, 15, 97, 74]. The
reason why equvivalent models can describe completely different materials lies in the
concept that a local strain increment can be envisaged as an adequate Eshelby inclusion
problem [30]. This can be realised both with or without dislocations resulting practically
the same mathematical formula which explains the first point in the previous enumeration.
The conceptional differences of the materials can be taken into account in the second
point of the enumeration. As an example, in the works of Talamali et al. [105] and Zaiser
and Moretti [134], they both use a probabilistic distribution for the local yield stress but
their actual form differs, as they intend to represent different microstructural features of
the actual material, hence differ between crystalline and amorphous solids.

In this study a possible approach is presented how these parameters can be calibrated
for the case of crystal plasticity. The role of the underlying lower-scale model is played
by two types of 2D DDD models that have been investigated extensively in the past
[76, 108, 82, 60]. A load-controlled quasistatic plastic deformation will be performed
where the beginning and end of the avalanches can be well defined [56]. The microplastic
regime will be in focus where no system-scale yielding occurs. It will be shown that
Weibull distribution characterises the external stress at the event of first dislocation
avalanche, and the mean stress at the ith avalanche follows a weakest link sequence
from the same distribution. An in-depth statistical analysis will be also provided to
show by scaling relations that both simulations of DDD and SCPM exhibit a smooth
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plastic response at not too large strains when the system size tends to infinity. With an
appropriate choice of the other SCPM parameters its plastic response can be fitted to
those obtained for DDD models at least in the microplastic regime, meaning they are
statistically equivalent.

3.2 Simulation models
For the sake of simplicity only 2D models are considered in this chapter. To mimic
an infinite crystal (or to avoid introducing extra external conditions), toroidal periodic
boundary conditions are used. We premise that the stress field of a dislocation is required
under periodic boundary conditions. It can be found in the work of Bakó et al. [9] based
on the book of Hirth and Lothe [44]. For simplicity, the equations in this chapter use the
infinite-large limit form. Only the key features of the models will be discussed throughout
this section as they have been used extensively in the literature.

3.2.1 Stochastic continuum plasticity model
The SCPM used in our study is based on the pioneering work of Zaiser and Moretti [134]
aiming to study crystal plasticity at the micron scale. Their model considers a 2D plain
strain situation where slip can only occur on one single slip system. Without loss of
generality here we assume the plastic strain tensor to be of the form εpl (r) = γpl (r) · M,
where γpl (r) is the scalar plastic strain and M = (ex ⊗ ey + ey ⊗ ex) /2. Not only the
strain but also the local stress – denoted by τloc (r) – is a scalar field quantity, as only
the shear component plays a role. In an infinite system the shear stress at a position r
can be written as

τloc (r) = τext + (GE ∗ γpl) (r) , (3.1)

where τext represents the remote boundary tractions, GE (r) is the elastic Green’s function
determined by the solution of the Eshelby inclusion problem [30] – which also includes
the details of the actual form of plastic deformation – and the star ∗ denotes the spatial
convolution. Equation (3.1) means that the local stress field consists of two parts: an
external term influenced by the environment and an internal term generated by the
inhomogeneous plastic deformation field. The stress and strain fields are discretised on a
square lattice with directions parallel and perpendicular to the slip direction. The size
of a cell in the lattice is d in the dimensionless units described in appendix A, and the
size of the whole lattice is L · d × L · d and different values for L have been chosen to
investigate the properties of the model as the system size tends to infinity. In this study
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L = 8, 16, 32, ..., 512 were used. Space coordinates are discretised and the indices i and j

are used to denote the coordinates where x = i · d and y = j · d. The Green’s function is
also discretised, GE (i, j), which gives the stress field caused by a plastic slip event at the
origin, γpl (i, j) = δi0δj0∆γpl, where δkl is the Kronecker symbol and ∆γpl is the size of
the plastic event. The elementary slip event is implemented by adding four dislocations
with Burgers vectors bex, bey, −bex and -bey at the right, top, left and bottom sides to
the cell that has to be deformed leading to a plastic deformation of ∆γpl = 2/d. (Fig. 3.2
illustrates the procedure.) The stress value generated by these four dislocations is then
calculated at cell (i, j) and evaluated at the centerpoints of the cells. In the very centre
this gives GE (0, 0) ∆γpl = −4∆γpl = −8/d. For the rest of the cells the result can be
seen in Fig. 3.1 in the units of |GE (0, 0)| · ∆γpl. The Green’s function describes the
stress-redistribution in the sample, and in accordance with Newton’s axiom, it does not
decrease or increase the average stress since

L∑
i,j=0

GE (i, j) = 0.
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Fig. 3.1 The central part of the stress field of the elementary slip event, GE (i, j) · ∆γpl
in units of |GE (0, 0)| ∆γpl. System size: L = 128. In the inset the part [0, 2] × [0, 2] is
enlarged and the individual value of the stress of the cells are shown. The pattern has a
fourfold symmetry which comes from the symmetric arrangement of the dislocations at
four sides of the cell (0, 0).

The dislocation microstructure inside a cell determines the local flow stress, a fluctu-
ating local threshold value which prevents plastic flow in case of too small local stresses,
i.e., if for a given cell

τr (r, t) := τth (r, t) − |τloc (r, t)| > 0 (3.2)

holds (r for residual), then the cell is in equilibrium, the dislocations move neither on a
continuum nor on the discrete level. When the inequality does not hold, the cell is active,
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it yields. The value of τth (r, t) is different from cell to cell, and its actual value is chosen
from a given distribution, assigned first to each cell at the beginning of the simulation.
This threshold value is an independent random variable for each cell and correlations
between the cells are neglected which implies some non-controlled assumptions on the
cell size. The values are taken from a Weibull distribution

P (τth) = β

τw

(
τth

τw

)β−1
e−(τth/τw)β

(3.3)

with shape parameter β = 1, 1.4, 2 and scale parameter τw. The threshold value of a cell
is regenerated after each plastic deformation occurring at that cell. The plastic strain is
considered homogeneous at the beginning of the simulation leading to 0 internal stress.
The loading procedure is stress-controlled, starts from 0 and is increased quasi-statically:
First it is increased until a single site violates eq. (3.2), that is, it gets activated. The
local strain is then increased by ∆γpl in the active cell and a new τth value is assigned
from the very same Weibull distribution used at the beginning. The change in the local
strain changes the internal stress not only in the active cell, but also elsewhere, due to
the non-localness of the Green’s function. The change caused by the plastic event is
calculated according to eq. (3.1). Activated cells are identified by eq. (3.2) and strain
is applied to those cells which violate the inequality referenced and internal stress is
recalculated. This search, strain generation and internal stress recalculation is done over
and over again as long as the inequality violated at least for one cell. An avalanche is
defined by the sum of the plastic events occurring at this given external stress.

Extremal dynamics is considered, meaning, if more then one cell violates the local
equilibrium at once, strain is applied to that cell first for which τr is the smallest negative
number, and then the recalculation of the internal stress field is done. When no more
cells are activated, the avalanche is closed and the external stress is increased again to
that value where at least one cell violates the inequality initiating a new avalanche.

The total strain γ is defined as γ = ⟨γpl⟩, where ⟨•⟩ denotes the spatial average.

3.2.2 Discrete dislocation dynamics
Two types of DDD models are used in this study. A time and space continuous one and
one where both time and space are discretised.

Time continuous DDD

The model called time-continuous DDD (TCDDD) is the conventional DDD model,
widely used in the literature. Here we consider N straight parallel edge dislocations
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Fig. 3.2 The sketch shows the elementary slip event. Four dislocations are placed on
the edges of the active cell which causes a plastic strain ∆εpl = ∆γpl · M = ∆γpl ·
(ex ⊗ ey + ey ⊗ ex) /2. Then the cell is elastically deformed to fit back into its original
position. The stress field this procedure generates can be calculated on the basis of the
generalised Eshelby’s inclusion problem and is equivalent with the stress field of the four
dislocations. This deformation procedure creates the stress field shown on Fig. 3.1. The
stress field of the four dislocations are evaluated at the centerpoints of the cells.

in the same slip system describing the easy slip regime of a face centered cubic (FCC)
crystal at low temperatures (no climb and cross-slip, only glide).

There are two types of dislocations considered differing only in their Burgers vector,
b = (b, 0) and b = (−b, 0). The first is called a positive dislocation s = 1 and latter as a
negative one s = −1. Equal amount of positive and negative dislocations are considered
(no excess dislocations). The simulation space is square shaped with sides parallel and
perpendicular to the Burgers vector and since they are edge dislocations, they move
parallel to the x axis, therefore only the shear component of the stress tensor plays a
role in the EOM of the dislocations. An individual dislocation at the origin induces an
anisotropic shear stress field at the position r as

τind (r) = x
x2 − y2

(x2 + y2)2 = cos (φ) cos (2φ)
r

, (3.4)

where (r, φ) are polar coordinates and units are omitted in agreement with appendix A.
The acting external stress is considered to be homogeneous and strong damping is

considered due to phonon drag (over-damped motion) therefore the EOM of the ith
dislocation, being at position ri = (xi, yi) is given by

dxi

dt
= si

τext +
N∑

j=1;j ̸=i

sjτind (ri − rj)
 (3.5)
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and
dyi

dt
= 0. (3.6)

where this latter means the absence of climb.
At the beginning of the simulations values are assigned independently to both x and y

coordinates from a uniform distribution leading to no initial spatial correlations between
the dislocations. Then eq. (3.5) is numerically solved and iterated until each dislocation
reaches equilibrium defined by a low enough non-zero value limit for the average absolute
velocity. This initial transient was not considered in the forthcoming evaluation as it
belongs only to the generation of the initial state and time measurement is started from
the end of relaxation.

In the following phase the plastic response of the system is simulated due to applied
load. The external stress is increased at a constant rate till the system reaches the
v (t) > vc condition. The system is considered to be in the state of an avalanche if
v (t) > vc holds and during an avalanche the external stress is kept constant implementing
a quasistatic load-controlled procedure. (The procedure is illustrated in Fig. 3.3.)

c

Fig. 3.3 On an individual realisation of a DDD simulation the quasistatic loading procedure
is illustrated. If the average velocity v of the dislocations (signed with their Burgers
vector) is below a threshold value vc, the rate of the external stress is chosen as a constant
value. If the v > vth, the external stress is kept constant.

Plastic activity in this model has two different aspects.

1. During avalanches the strain rate is high and weakly depends on the external
driving rate.
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2. Between avalanches the strain rate is non-zero and proportional to the external
stress rate and the deformation is quasireversible.

The border of this two regimes is well defined by a carefully chosen value of v̇c.
In agreement with appendix A, system size can be expressed by the number of

dislocations as L = N0.5 which explains the choice of the system sizes, chosen as
L = 8, 11.31, 16, 22.63, 32. For each system size large number of statistically equivalent
realisations were taken (3000, 2000, 800, 300 and 180 respectively). For numerical reasons
narrow enough dislocation dipoles were removed, but the introduction of this artificial
length scale did not affect the phenomena investigated according to our verification.

3.2.3 Cellular automaton DDD
The CADDD model is very similar to the continuous one introduced above but two
restrictions are introduced which fasten up the simulation considerably.

1. Space is discretised into a square lattice with a cell size of δ and directions along
the x and y axes. Dislocations can only jump from a cell to a neighboring one in
the x direction. Only one dislocation can occupy a cell: the second dislocation of
the same sign is not allowed to step to the same cell and dislocations with opposite
signs annihilate each other if they are in the same cell. A very fine mesh was
defined, more precisely, only every 128 × 128th cell was populated at the beginning.

2. Time is also discretised using the following dynamics. The acting stress τ is
evaluated at both right and left edges of the cells which contain a dislocation. If
the stress is positive at the right side or negative at the left side, a step towards the
given direction of the stress leads to a ∆E ∼ |τ | δ decrease in the elastic energy,
where τ denotes the stress at the given edge. Dislocation with such property is
called active dislocation. At each time step the active dislocation with the highest
possible ∆E is identified and moved by one cell in the direction determined by the
largest energy drop. If none of the dislocations is active at a given time, then the
external stress is increased until it is large enough to activate one, which means a
quasistatic load-controlled procedure just as in the other two models.

Like in TCDDD, simulations are started from an uncorrelated random dislocation
distribution followed by an initial relaxation. The speed-up due to this technique has
two main reasons.

1. Some details on the dynamics are erased due to the rough space and time steps.
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2. The finite number of possible pair-interactions can be precalculated and stored in
the memory.

With the introduction of this CA DDD model it becomes possible to identify the effect
of the chosen dynamics – i.e. extremal with CA or overdamped with continuous – on the
numerical results obtained. However, comparison is limited at the small deformation and
time scales as the discrete steps corrupt the dynamics of the small avalanches and also
affect the quasireversible regime observed in TCDDD, as the the motion of a dislocation
either belongs to an avalanche or either is not presented at all. This is, however, not a
major issue as long as macroscopic deformation, avalanche statistics and stress-strain
curves are investigated.
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Fig. 3.4 Sketch of the external stress-strain curves obtained from the SCPM and DDD
models. The curve is made of only steps, therefore the stress and strain information on
each sequence (τ (i) and γ(i), respectively) describes the whole curve.

3.3 Numerical results
In this section the simulation results are presented and analysed for the SCPM first, and
then for the two types of DDD models simultaneously. For each model the results are
presented in the following order:

1. For each model the stress-strain curves show a step-like behaviour and differ among
realisations for the same model. Therefore the average of the stress-strain curves
will be in focus first.
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2. Then the fluctuation in the plastic response will be evaluated.

3. Individual strain bursts are investigated then, started with the stress sequence
denoted by τ (k). (See Fig. 3.4 for the definition of τ (k).)

4. And finally the strain sequence is analysed denoted by γ(k). The way the numbers
are assigned and a short outlook is presented in Fig. 3.4.

From now on τ will denote the external stress.

3.3.1 SCPM
Three scalar parameters of the SCPM were under investigation.

1. The β shape parameter of the Weibull distribution (see eq. (3.3)) characterizing
the local yield stress distribution.

2. The strain increment at each elementary slip deformation denoted by ∆γpl.

3. The scale parameter τw characterising the average strength of a cell ⟨τth⟩. For
Weibull distributions with β values considered in this study, τw ≈ 1.1 · ⟨τth⟩ holds.

One of the last two parameters can be always eliminated by measuring the stress in units
of ⟨τth⟩ and strain in the units of ∆γpl, which defines a nondimensional coupling constant
I = ∆γpl/ ⟨τth⟩. According to our choice ⟨τth⟩ was set to 1 and ∆γpl was the variable.
Where it is not stated otherwise, β = 1.4 and ∆γpl = 1/4 were used.

Average stress-strain curve

The stress-strain curves of the individual realisations were averaged at given strain values.
This means that at a given strain value γ the different values of the corresponding external
stress were averaged. Fig. 3.5a shows the averaged stress-strain curve for different β values
and system sizes on a double logarithmic scale. The figure shows that the microplastic
regime is described by a power law,

⟨τ⟩ (γ) = τ1γ
α (3.7)

over several orders of magnitude where τ1 is a constant and the exponent α depends on
the shape parameter β of the Weibull distribution. The fitted values of α along with
other scale parameters obtained from this and the other two models can be found in
table 3.1. The curves show no size effect, i.e. for a given β the curves for different L
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(a) The effect of the shape parameter β.
The power-law region is consistent with
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Fig. 3.5 The averaged stress-plastic strain curves for the SCPM. In Fig. (a) different
values for the shape parameter β, while in Fig. (b) different ∆γpl were used. In each case
for small strains the curves follow a power-law, then saturate.

overlap, justifying that no size scaling was introduced in eq. (3.7). For plastic strains
γ & 1 the stress reaches a plateau due to infinitely large avalanches signaling the onset
of continuous plastic flow.

Fig.3.5b shows the role of ∆γpl and τw. It was mentioned that only I = ∆γpl/τw is
the independent parameter. This feature can be seen for simulations with parameters
(∆γpl, τw) = (1/2, 2) , (1, 4) and (2, 8). By dividing the plastic strain by ∆γpl and the
stress by τw the curves collapse for each of the individual realisation, therefore their
averaged curve too at a mathematical precision.

It can be also seen in the figure that the curve depends on the specific choice of the
parameters (for different value of I), but according to the inset, if the stress and strains
are rescaled by τw and ∆γpl, the curves collapse into a mastercurve with a specific scaling
of the parameter I.

Fluctuations in the plastic response

For each of the realisations the stress-strain curve is a staircase-like function as sketched
in Fig. 3.4, but the averaging described above makes from the ensemble of these functions
a smooth one hiding the underlying details. To recover this fluctuation the cumulative
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Fig. 3.6 The cumulative stress distributions at different deformation values for the SCPM
are shown. As system size increases the width of distributions shrink, that is, stress
fluctuations disappear for large samples. By multiplying a kind of effective external stress
(which can be obtained as the external stress decreased by a certain value) with a power
of the system size curves can be fitted with a normal distribution (dashed line) as seen
in the insets.

distribution function (CDF) of the stresses at a given strain for different realisations is
measured and denoted by Φγ (τ). The wider this curve is the larger the scatter of the
external stress is which are measured for different realisations. For bulk samples the
individual stress-strain curves are identical meaning that there is no fluctuation in the
external stress, therefore tending to larger values with the system size one expects the
width of Φγ (τ) to shrink. As seen in Fig. 3.6 for all strains γ the measured Φγ (τ) curves
indeed tend towards a step function as the system size increases. The stress-strain curve
of a bulk material is expected to become the ⟨τ⟩ (γ) curve since there is no relevant size
effect observed. This also implies that the step function the Φγ (τ) CDF tends towards
must be located at the given value of ⟨τ⟩ (γ). It is noted that the Φγ (τ) curves for
different system sizes cross each other in the very same point. This property may hide a
connection between the system parameters not revealed in this study.

All the insets in Fig. 3.6 show that curves collapse after scaling the stresses by the
system size around ⟨τ⟩ (γ). Moreover the curves (see later section 3.4.1 and eq. (3.19))
can be fitted by a normal distribution

Φγ (τ) = 1
2

[
1 + erf

(
τ − ⟨τ⟩ (γ)

cL−θ

)]
, (3.8)
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where c is an appropriate constant and θ is the exponent characterising the system size
dependence on the stress fluctuations. It was found that no size effect can be identified
on the stress-strain curve in which case θ = 1 is expected. Our findings are in good
agreement with this expectation as θ = 1 ± 0.05 was found.

Previously, a shifted Weibull distribution was used to fit Φγ (τ) onto the results for
2D and 3D DDD and as well as micropillar compression data [57]. A normal distribution,
however, has fewer parameters and is in good agreement with the theoretical arguments
presented later in section 3.4.1.

Stress sequence

In this and the upcoming sections the stress and strain sequences τ (i) and γ(i) will be
in focus, because they play a key role in the simple plasticity model to be introduced
in section 3.4. First the cumulative distribution Φ(1) of τ (1) (the external stress at first
event) will be considered. In the SCPM the plastic strain is initially homogeneous (e.g.
zero) everywhere, therefore until the first event the local stress is also homogeneous
and equal to the applied external stress everywhere according to eq. (3.1). As a result
the distribution of the external stress at the occurance of the first plastic event must
be a Weibull distribution with shape parameter β and scale parameter τw ∼ L−2/β

(for explanation see section 3.4.1). According to Fig. 3.7a Φ(1) indeed follows well the
corresponding Weibull distribution, and the curves for different system sizes overlap if
the stress is rescaled by L2/β.

Fig. 3.7b and Fig. 3.7c plot the average stress sequence
〈
τ (i)

〉
and its standard

deviation (STD) δτ (i), respectively. For a given shape value β the curves collapse for
small i values when the stress is rescaled by L2/β. The mastercurves follow power laws,

〈
τ (i)

〉
= τ0

(
i

Lη

)1/β

, (3.9)

δτ (i) = τ0

i1/2

(
i

Lη

)1/β

, (3.10)

where the value of η is estimated by visual analysis and η = 2.0 ± 0.05 is found.

Strain sequence

The strain sequence shows similar properties to the stress sequence. The averaged curve
and its deviation can be seen in Fig. 3.8. For small i values both

〈
γ(i)

〉
and δγ(i) follow
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Fig. 3.7 The analysis of the stress sequence for different shape values β = 1, 1.4, 2 and
system sizes for the case of SCPM. The findings led to the simple plasticity model
introduced in section 3.4. The model prediction is plotted in each subfig with black lines.
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Fig. 3.8 Strain sequences from the SCPM. The strain γ(i) measured at the ith strain
burst for different system sizes and β values. The curves follow eq. (3.11) and eq. (3.12)
(solid lines) with ζ = 1 ± 0.05 and ξ = 2 ± 0.1.

power laws, 〈
γ(i)

〉
= s0

iζ

Lξ
, (3.11)

δγ(i) = s1

i1/2
iζ

Lξ
, (3.12)

where values for ζ and ξ are obtained by visual inspections: ζ = 1.0±0.05 and ξ = 2.0±0.1.
We found that both ζ and ξ are insensitive to the exponent β but γ(i) and δγ(i) themselves
are sensitive, therefore s0 and s1 too. It means that the size of individual avalanches
vary significantly in different cases.

3.3.2 DDD models
Average stress-strain curve

The average stress-strain curves for the DDD models were calculated the same way as
for the SCPM detailed in section 3.3.1. The stress-strain curves can be seen in Fig. 3.9
which show similar features to those obtained by the SCPM case, namely:

1. The microplastic regime is characterised by a power law with an exponent α =
0.8 ± 0.05 (see eq. (3.7)) and only a weak size effect can be seen.

2. This regime breaks down at τ ≈ 0.1.
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3. The curves saturate for large (γ & 10) strains.
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Fig. 3.9 The average stress-strain curves of the DDD simulations. They follow a power-law
until γ ≈ 0.1, and saturate for large (γ & 10) strains.

Significant difference in the averaged stress-strain curves between the two DDD models
arises only at large strains. In the work of Kapetanou et al. [60] it is discussed, that
the source of this discrepancy can be originated from artifact of the periodic boundary
conditions. This phenomenon does not play any role at the initial part of the stress-strain
curve, therefore it does not affect the statistical arguments presented in the followings,
which is valid for small to medium strains only where the two DDD models exhibit
similar behaviour.

Fluctuation in the plastic response

In Fig. 3.10 cumulative distributions Φγ (τ) of the stresses for different realisations at a
given strain γ are calculated and plotted, just as for the SCPM case, and the curves also
share the similarities. Namely, the curves

1. tend to step functions as the system size increases,

2. intersect in a single point,

3. can be collapsed by scaling the stress with a certain power of the system size,

4. are well approximated by a normal distribution.

As a consequence of the last point, eq. (3.8) holds with the proper exponent, here
θ = 0.8 ± 0.05, which means the system shows size dependency in this sense. Note that
0.8 = θDDD < θSCPM = 1.
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Fig. 3.10 The cumulative stress distributions Φγ at two different deformation levels γ for
the two DDD models. Scaling collapse can be obtained (see insets) by multiplying a kind
of effective external stress (obtained by subtracting a certain value from the external
stress) with a power of the system size, just as for the SCPM in Fig. 3.6. The collapsed
curves can be well fitted by an appropriate normal distribution (dashed lines).
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The stress sequence
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Fig. 3.11 The analysis of the stress sequence τ (i) for TCDDD simulations of different
system sizes. Predictions according to the simple plasticity model introduced in 3.4 is
plotted with black lines.

As mentioned in the description of the CADDD model 3.2.3, inter-avalanche events
cannot be distinguished from small avalanches, therefore they ruin the statistics in inves-
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tigating the stress and strain sequence at the low strain/stress limit. As a consequence,
only the TCDDD model will be used in this analysis.

For the CADDD case, the analysis of the stress sequence can be seen in Fig. 3.11.
According to Fig. 3.11a, where the cumulative distribution Φ(1) of τ (1) (the external
stress at the first plastic event) is plotted, a Weibull distribution with the proper shape
parameter β can be perfectly fitted onto the curve after collapsing the curves into a
mastercurve (shown in the inset) via rescaling τ (1) by Lη/β with parameters

β = 1.4 ± 0.05, (3.13)

η = 1.6 ± 0.1. (3.14)

The rescaled
〈
τ (i)

〉
and δτ (i) obey the same rule observed for SCPM in eqs. (3.9)

and (3.10) and share the parameters as in eqs. (3.13) and (3.14).

Strain sequence

Figure 3.12 shows some statistics on the strain measured at the ith event. The average
strain

〈
γ(i)

〉
at the burst of the ith avalanche can be seen in Fig. 3.12a and its STD in

Fig. 3.12b. The curves are in good agreement with eqs. (3.11) and (3.12) estabilished for
the SCPM first, but here the exponents were ζ = 0.9 ± 0.05 and ξ = 1.5 ± 0.1.
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Fig. 3.12 Strain sequences from the TCDDD. The strain γ(i) measured at the ith strain
burst for different system sizes and β values. The curves follow eq. (3.11)) and eq. (3.12)
(solid lines) with ζ = 0.9 ± 0.05 and ξ = 1.5 ± 0.1 for large enough system sizes.
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A summary of all the exponents introduced in this section can be found in Table 3.1.

3.4 Simple plasticity model based on order statistics
A simple plasticity model is introduced in this section based on the numerical results
obtained in the previous sections of this chapter. In this model the deformation is stress
controlled, elastic deformation is neglected and the stress-strain curve is a monotonic stair-
case function, which is completely characterised by the stress-strain sequence

(
τ (i), γ(i)

)
(for a sketch see 3.4). The intention behind this picture is to model the stochastic feature
of the plasticity investigated numerically in the previous section, therefore scaling forms
in the model proposed will share the same notations as used at the evaluation of the
results. A comprehensive overview of the parameters can be found in Table. 3.1.

In this model we adopt the work of Derlet and Maaß [25] using a weakest link
assumption to express the mean value of the stress sequence τ (i) and its STD. From the
work of Ispánovity et al. [56] we adopt a straightforward rule for the strain sequence
to obtain the mean value and STD of the strain sequence in the TCDDD model too,
where anomalous system size scaling has been observed. The combination of the stress
and strain sequences gives a statistical prediction on the stress-strain curve which affirm
our numerical results in section 3.3. In our model the material can be decomposed into
smaller units which interact via only the stress-field kernel. In the small deformation limit
the plastic events are localised into a smaller portion of the material and the starting
points of the avalanches are not affected by the deformation history.

In this model we will further assume, that

1. The Weibull-shaped activation threshold of a plastic events remains unchanged
during plastic deformation.

2. The distribution of the avalanche size is stress independent.

3. By splitting up the stress-strain curve into small segments, in each interval many
avalanches occur so that the summation of the strain sequences leads to a normal
distribution according to the central limit theorem.

The validity of the first two is questionable in a general case, especially for the SCPM
where critical behaviour at high enough external stress can be observed, but can be
accepted at the limit of small stresses, where avalanches are rather localised and not
limited by the system size. The third assumption can be always legitimated if the system
size L is large enough.
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3.4.1 Stress sequence
The main idea of the SCPM is that plasticity occurs via irreversible local structural
excitations which are activated at different stress values. This critical stress distribution
P (τ) = d

dτ
Φ (τ) (the derivative of the cumulative distribution) represents the inhomogen-

ities in the material at the resolution of the mesh size. During the stress increase the
weakest sites are activated first, therefore only the τ → 0 limit of this distribution plays
a role at low strains. A reasonable proposition for this distribution [25] is a power law as

Φ (τ) =
(

τ

τ0

)β

if τ → 0 (3.15)

with β > 1. It is also assumed that the subsequent events are independent, i.e. no spatial
correlations in the stress and plastic strain is present initially (at the low strain limit). If
the number of independent sites is M , and M → ∞, then the cumulative distribution of
the ith stress value τ (i) follows a Weibull order statistics [88], e.g. for the first value it is

Φ(1,M)
(
τ (1,M)

)
= 1 − exp

− 1
M

(
τ (1,M)

τ0

)β
 . (3.16)

The expected value of the ith event is given by

〈
τ (i,M)

〉
= τ0

M1/β

Γ (i + 1/β)
Γ (i) ≈ τ0

(
i

M

)1/β

, (3.17)

and the STD by

δτ (i,M) =

√√√√( τ0

M1/β

)2 Γ (i + 2/β)
Γ (i) −

(
Γ (i + 1/β)

Γ (i)

)2

≈ τ0

i1/2

(
i

M

)1/β

, (3.18)

where the approximation is exact in the limit when i → ∞, M → ∞ and i/M → 0, and
the error is less than 2% if i > 5 and if M > 1000 · i [1, Sec. 6.1.47.].

The findings are not restricted to only to the first few plastic events, but also applicable
in the regime of order statistics, where i/M = p finite. In the asymptotic limit, when
M → ∞ and i/M = p is finite, the probability density function (PDF) of the ith smallest
member drawn from M samples – whose CDF is Φ (τ) – is normal distributed according
to the central limit theorem, and its CDF is

Φ(i,M)
(
τ (i,M)

)
= 1

2

1 + erf
τ (i,M) −

〈
τ (i,M)

〉
σ(i,M)

 , (3.19)
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in which the expected value is given by [24]
〈
τ (i,M)

〉
= Φ−1 (p) := τ (p) , (3.20)

and the deviation by

σ(i,M) =
(

p (1 − p)
M · [Φ′ (τ (p))]2

)1/2

, (3.21)

where Φ−1 (p) is the inverse of the CDF Φ (τ) and Φ′ is the derivative of the CDF,
Φ′ = d

dτ
Φ (τ). It was found that for small p the CDF is Φ ≈ (τ/τw)β which recovers

eqs. (3.17) and (3.18), hence extreme order statistics is applicable in the regime of finite
i/M too.

The connection between the number of sites M and linear system size L can be also
discussed in the framework of this simple plasticity model. According to a common
assumption, all sites are homogeneously distributed where plastic event can occur and
their density does not depend on the system size. This leads to a M ∝ Ld connection,
where d is the physical dimension of the system, in our case, d = 2. In the DDD
case results have shown anomalous size dependence which requires the refinement of
this connection. Instead of d, a fractal dimension η is introduced to describe the size
dependence in the form

M ∝ Lη. (3.22)

Substituting this eq. (3.22) into eqs. (3.16) to (3.18), one gets

Φ(1)
(
τ (1)

)
= 1 − exp

−
[

1
τ0

τ (1)

Lη/β

]β
 , (3.23)

τ (i) ≈ τ0L
−η/β · i1/β, (3.24)

and
δτ (i) ≈ L−η/β · i1/β−1/2. (3.25)

3.4.2 Strain sequence
The size of strain burst events may exhibit power-law distribution, revealed by recent
experimental and numerical studies [26, 131, 56, 76]. This distribution P (∆γ) is upper
bounded by ∆γu, which can originate from the system size or other intrinsic bounds
inherent in dynamics, and lower bounded by ∆γl due to the fact that a power law

2This exponent is an input parameter for the SCPM model
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Table 3.1 Summary of the exponents used in this study.

Sym-
bol Description

Value
predicted
by theory

Value for
SCPM

Value for
TCDDD

Value for
CADDD

β

Characterizes
threshold stress
distribution, see
eq. (3.15))

- 1.0, 1.4,
and 2.02 1.4 ± 0.05 -

η

Describes the relation
between the system
size L and the total
number of links M ,
see eq. (3.22))

- 2.0 ± 0.05 1.6 ± 0.1 -

ζ
Characterizes the
strain sequence, see
eq. (3.29))

- 1.0 ± 0.05 0.9 ± 0.05 -

ξ

Characterizes the
system size
dependence of the
average avalanche size,
see eq. (3.27))

ηζ 2.0 ± 0.1 1.5 ± 0.1 -

α

Exponent of the
power-law
characterizing the
microplastic regime of
the stress-strain
curves, see eq. (3.7)

(βζ)−1
1.0±0.05,
0.7±0.05,

and
0.5 ± 0.05

0.8 ± 0.05 0.8 ± 0.05

θ

Exponent
characterizing the
system size
dependence of the
stress fluctuations, see
eq. (3.8))

η/2 1.0 ± 0.05 0.8 ± 0.05 0.8 ± 0.05
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distribution with exponent smaller than −1 cannot be normalised around the singularity
at 0. This boundary can be originated from e.g. the mean dislocation spacing – which
is orders of magnitude larger than the size of the dislocation core –, below which the
individual dislocation motion may be the major source of plastic strain. Restricting our
model above the lower boundary, the size distribution can be written as

P (∆γ) = C · ∆γ−τa · f (∆γ/∆γu) if ∆γ > ∆γl (3.26)

where ∆γ is the size of the strain increment, C is a normalisation factor, τa is the
avalanche size exponent and f (x) is a cutoff function, which tends to 1 for x → 0 , and
tends to 0 for x → ∞.

According to the work of Ispánovity et al. [56], τa ≈ 1 was found in the microplastic
regime and ∆γu depends only weakly on the allied stress and exhibits anomalous system
size dependence. In a work of Sandfeld et al. [97], for the SCPM case, τa ≈ 1.35 was
found, and ∆γu diverges at a critical stress and exhibits regular system size dependence.
The mean value of the strain size and its variance can be written in both cases as

⟨∆γ⟩ = s0

Lξ
, (3.27)

δ (∆γ) = s1

Lξ
, (3.28)

where ξ is the exponent characterising the system size dependence, and s0 and s1 are
constants depending e.g. on the applied stress. For the 2D DDD case, ξ < 2 represents
anomalous scaling, where the total size of a plastic event depends on the system size.
Value ξ = 2 corresponds to normal scaling in 2D, as it was found for the SCPM.

In case one can assume the independence of the size of the subsequent events, central
limit theorem for large enough i values gives the value of the mean and variance in the
form of 〈

γ(i)
〉

= iζ ⟨∆γ⟩ = iζ s0

Lξ
(3.29)

and
δγ(i) = iζ−1/2δ (∆γ) = iζ

i1/2
s1

Lξ
. (3.30)

3.4.3 Stress-strain curves
The possibility to express the stress-strain curve for one realisation from the individual
τ (i) and γ(i) sequences is given as they completely characterise the curve. For a given
large enough value i both follow a normal distribution according to eqs. (3.17) and (3.18)
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and to eqs. (3.29) and (3.30). By inverting
〈
γ(i)

〉
(i) and substituting the value i into τ (i)

and using the approximation

〈
τ (i)

〉
(γ) ≈ τ

(
⟨γ(i)⟩−1

(γ)
)
, (3.31)

one gets
⟨τ⟩ (γ) = τ0

s
1/(βζ)
0

L(ξ/ζ−η)/βγ1/βζ (3.32)

and
δτ (γ) = τ2L

(ξ/ζ−η)/β−ξ/(2ζ) · γ(1/β−1/2)/ζ (3.33)

with τ2 = τ0/s
(1/β−1/2)/ζ
0 . In this approximation the stress-strain curve follows power law

and has a system size dependence for all (large) L values if (ξ/ζ − η) /β ≠ 0. To avoid
this non-physical behaviour,

ξ = ζη (3.34)

must hold. In this case eqs. (3.32) and (3.33) have the form

⟨τ⟩ (γ) ∝ γα α = 1/βζ (3.35)

and
δτ (γ) ∝ L−θ θ = η/2. (3.36)

Equation (3.36) says that with increasing system size the STD decreases since θ > 0 and
one obtains a well-defined, system size independent curve in the L → ∞ limit.

3.5 Summary
The main idea of our SCPM is that a crystalline material can be treated as an arrangement
of independent smaller units, each characterised by a local flow threshold (i.e. activation
stress of a local plastic strain event) accounting for the inhomogeneity of the underlying
dislocation microstructure not taken into account completely on the continuum level.
According to the weakest link theory, the PDF of the external stress τ (1) at the onset of
the first activated plastic event must follow a Weibull distribution.

This idea was supported by the numerical results of the TCDDD model, where the
PDF of τ (1) followed a Weibull distribution with a shape parameter β independent from
the system size. Moreover, the shape parameter not only determines the asymptotic
behaviour of the PDF of the stress threshold for the individual units, which is a power
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low with an exponent of β, but also plays a central role in forming the stress-strain curve.
Theoretical explanation of the value found for β ≈ 1.4 is out of the scope of this study,
but similar connection can be found in 3D DDD models and in micropillar compression
tests too [55, 57], where the stress-strain curves are investigated and obtained that
α = 1/ (βζ) = 0.8. In the following chapter (chapter 4)) the role of β in ductility of
disordered materials exhibiting strain softening will be presented.

For both the SCPM and the DDD models the stress sequence followed a power law,
with and exponent η characterising the system size dependence. For the case of SCPM
η ≈ 2 was found representing normal system size scaling, i.e. the number of sites M

which can be activated scales with the linear size of the system on the power of the
system dimension, M ∝ L2. Whereas for DDD η ≈ 1.5 was found, a significantly smaller
number than the physical dimension of the system suggesting a fractal-like arrangement
of the activated sites. This presumption can be checked by calculating the correlation
integral C (r) for the coordinates3 of the dislocation avalanches.4 Figure 3.13 shows this
correlation integral for the SCPM and DDD model. It tells that for large enough r values
they can be approximated by a power law and the findings support our conjecture: for the
SCPM case the place of plastic strains follows a r2 dependence while for the DDD case
the function goes as r1.6, i.e. the plastic strain is indeed accumulated on a fractal pattern
of the material. This is in good agreement with the work of Weiss and Marsan [117],
which states that the sources of the accousic emission signals are located on a fractal
layer, morever, the fractal behaviour in our DDD model could explain the long-range
nature of the correlations observed in the work of Ispánovity et al. [56] investigating 2D
DDD system, however, the origin of this fractal phenomenon is out of the scope of this
study.

It is important to note that the size effects found in this study are not in connection
with those general phenomena observed in other samples, where size effects come from
surface effects, like dislocation pile ups or dislocations running out of the sample at free
a boundary, but represents the behaviour of bulk samples as we implemented periodic
boundary conditions. This boundary condition may lead to nonphysical artifacts (e.g.
Fig. 3.9b shows inverse size effect for large strains) which can be handled with an
appropriate modification of the boundary conditions [60].

The theoretical models used in this study are capable of describing the microplastic
regime of micron-scale samples. We also found that there are only two independent

3The correlation integral C (r) on a set of points gives the frequency that two points can be found
within a smaller distance than r.

4By the coordinates of an avalanche we took the coordinates of the first plastic event within the
avalanche.
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Fig. 3.13 The correlation integrals of the starting positions of the avalanches for the
SCPM and TCDDD models are plotted on a log-log scale. For both cases the integral
follows a power law C (r) ∝ rη, with η ≈ 2.0 and η ≈ 1.6, respectively. Power laws with
these exponents are also plotted with solid black lines.

exponents, β and η, which, on the one hand, represent microstructural details of the
material, on the other hand, they are directly linked to macroscopic quantities. β can
be obtained from the microplastic regime of stress-strain curve identifying the exponent
of the power law, while η can be determined from the stress fluctuations of different
samples. By measuring these parameters in a model or even in real experiments one can
set up the SCPM to reflect the desired behaviour . Figure 3.14 shows a well configured
SCPM in order to give similar results at microplastic regime then what we got for the
DDD models. The fact that the stress-strain curve of the SCPM follows well the curve
obtained for DDD models at larger strains too does not necessarily hold relevance as the
model doesn’t capture the internal strain correlations observed in DDD models.

Notes in regard to the thesis
In this study we demonstrated that the SCPM model introduced earlier is capable of
describing the stochastic properties of materials in the microplastic regime. A simple
plasticity model has been proposed which is founded on the subsequent plastic events of
crystalline samples in the microplastic regime. A methodology was proposed to compare
the results of the SCPM and DDD models, which is suitable to determine how the free
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Fig. 3.14 The stress-strain curves obtained from the three different plasticity models.
The parameters of the SCPM were: β = 1.4, ∆γpl = 6 and τw = 2.

parameters of the SCPM should be chosen in order to reproduce the behaviour observed
in the lower level DDD simulations.

The SCPM introduced earlier is based on a continuum model using the self-consistent
field approximation which neglects the initial correlations of dislocations and lets them
evolve only through the signed (excess) dislocation density. It is known that such systems
exhibit non physical behaviour, e.g. the energy of the dislocation system is not an
extensive quantity. However, this model is still suitable to describe some properties of
the stochastic phenomena observed in crystal plasticity and gives an idea how to handle
correctly the appearing C parameter occurring in the local flow stress introduced in the
continuum model with local density approximation at eq. (2.32).

My specific contribution to this study was primarily based on the SCPM. Based on
the description found in the work of Zaiser and Moretti [134] I implemented a model first
which reproduces the same statistics. Our target was to run large number of simulations
but due to our moderate computational resources an efficient and free software was
needed. Therefore, I wrote the whole program in C++. I further extended the model with
the possibility to chose a local flowstress distribution, the actual form of the interaction
kernel GE and the size of the plastic event along some other details not mentioned so far.
I performed all the analysis of the data and contributed in preparing the corresponding
manuscript and in preparing the figures therein.
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It was also mentioned that the validity of this SCPM is not restricted to crystalline
materials only but can be also used in amorphous materials. A model essentially based
on this implementation can be found in the next chapter 4.

Negative results
The reason why many other parameters or details have been investigated lies in our initial
goal, which was namely to investigate the size distribution of the avalanches and how the
parameters of the SCPM modify it. I also tried to point out the non-depinning behaviour
of dislocation avalanches with the SCPM developed but it turned out that either the size
scale used is too small to verify our goal or this is not the case, i.e. dislocations/dislocation
groups are pinned at each site and a critical stress (yield stress) indeed exists where
infinite large event occurs. It was also desired to find an anomalous system size scaling
but our efforts rewarded no success and to exclude the possibility, that it is due to the
small system size, large system sizes were again desirable. To achieve larger system sizes
than 512 × 512, a program code for GPU has been written in CUDA which gave the
same results as the one written in C++ and due to the nature of GPGPU the simulation
time scales favourably with the system size and already at the size of 1024 × 1024 runs
faster then on CPU5. Unfortunately the acquisition of such devices has been canceled
and only further improvements in the CPU code moved forward the investigation of the
influence of the system size. The sophisticated CPU code on larger systems still didn’t
produce the results desired which made me to focus on other properties of the model, i.e.
how to correctly set up all the parameters introduced in this model instead of their effect
on the avalanche size distribution and the critical behaviour.

During these trials we found the robustness of the model, i.e. how insensitive the
exponents are6 to many details of the model. Just to mention a few I list some of those,
which leaves the exponent τ in the size distribution P (s) = C · s−τ · exp

[
−(s/s0)2

]
of

dislocation avalanches unchanged.

• The actual shape of the flowstress distribution is almost irrelevant for the value of
τ , as long as it has finite mean value. In general, they modify only s0.

• The main property of the interaction kernel is its long-rangeness. If the four
dislocations are split up into smaller ones, or rearranged into other configuration,
the long range stress field remains basically the same, and does not affect the
exponent τ .

5performed on an architecture which costs the same amount of money
6For example, the size distribution of the avalanches, which are also investigated in the work of [22].
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• The event size introduced as ∆γ has been deeply analysed. Let us imagine the
following scenario. The local flowstress is small and the total stress acting on the
cell is also small, but larger than the local flowstress. Now let us activate this cell.
The size of the plastic event is finite and can happen that according to the elastic
kernel shown in Fig. 3.1, it decreases the local stress below 0 and initiate a plastic
event with a size of −∆γ. To avoid this, two techniques were implemented.

1. We used adaptive size for the plastic event, i.e. the ∆γactual was chosen so to
decrease the local stress until to 0 only (as it was done later in the study in
chapter 4). Or, as an alternative, the size can be chosen from a distribution
with a mean value of ∆γactual.

2. Plastic flow with negative size was disallowed.

The original solution and the two extensions all gave the same value for the exponent
τ and did not play a role in the size distribution of the avalanches. Due to the
possibility of the negative flow (plastic event with negative plastic strain) the strain-
stress sequence can be non-monotonic, which phenomenon could be completely
eliminated by the second extension. No other remarkable effect was revealed.

Although it could be hard to publish the negative results mentioned above, they also
headed me to the right direction of investigations and gave good basis for further plans.





Chapter 4

The influence of local disorder on
strain localization and ductility of
strain softening materials [O2]

In this study a model is proposed for the deformation of a locally disordered but macro-
scopically homogeneous material which shows softening during plastic deformation. A
measure for the internal structural disorder is introduced and its role in strain localisation
is investigated with respect to the formation of macroscopic shear bands in such materials.
This study reveals the role of the heterogeneity in the suppression of strain localisation
and on the extension of the plastic regime in the stress-strain curves.

4.1 Introduction
Quite a few materials undergo strain softening upon plastic deformation, that is, the load
carrying capability of the material decreases. Strain softening often leads to formation of
shear bands, when strain localises in the sample, making it locally even weaker. This
positive feedback may lead finally to catastrophic failure. In case of localised deformation
small macroscopic strain can also evoke failure if the width of the shear band is small
compared to the specimen dimensions. When irreversible softening occurs after yield,
stress-strain curves can also show the properties of brittle fracture even though the failure
mode is inherently ductile. An illustrious example of this behaviour are metallic glasses
[8, 99] whose application is limited by the tendency to fail shortly after yield which is
due to the formation of shear bands. In this case, softening mechanism is most likely
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linked to the shear-induced increase in free volume [103], however, localised, adiabatic
heating has been also proposed as an alternative source [120].

In favour of delaying the onset of the catastrophic shear localisation, which would
enhance the ductility of metallic glasses, numerous strategies have been proposed. The
main concept is to introduce some degree of heterogeneity on a microstructural level, e.g.
a second interface phase [3], embedding nano-crystallites or isolated dendritic crystallites
into a glassy matrix [23, 50, 124], pre-straining along a different deformation path
[142, 121], or micro-alloying to increase atomic-scale disorder by introducing quasi-point
defects[86].

Structural disorder is present in the vast majority of condensed matter. Not only
metallic glasses, mentioned in the previous paragraph, but crystalline solids also exhibit
microstructural disorder on a larger scale, but still well below the scale of a typical macro-
scopic specimen. On an orders of magnitude larger scale, metal foams also show structural
disorder. One may ask how the macroscopic deformation behaviour is influenced by the
microstructural disorder and length scales, which can vary from nanoscale (for metallic
glasses) up to millimeters (for solid foams). Increasing microstructural heterogeneity may
lead to increasing deformation homogeneity, as observed in compression tests of metallic
foams[138].

In this study a generic model is considered which accounts for heterogeneity and
randomness in the material microstructure and microstructure evolution in conjunction
with strain softening. The model is derived from the one used in section 3.2.1, which
is based on previous scalar plasticity studies[134, 133], origianally introduced for single
slip deformation of crystals with disordered dislocation microstructure. The idea to
use this model to investigate the growth of shear bands and the associated avalanches
in amorphous materials is not new[106, 15, 97, 70], but none of them included strain
softening explicitly.

In this chapter the model is introduced first, then the simulated deformation behaviour
are presented for different microstructural disorder. A special emphasis will be put on
the strain localisation process and its consequence on the stress-strain curve. It will be
shown that increase in disorder delays strain localisation and thus leads to a remarkable
increase in macroscopic ductility.
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4.2 The stochastic continuum plasticity model
The model used throughout this chapter is based on the stochastic continuum plasticity
model (SCPM) of chapter 3. Here I only summerise the differences compared to that
model.

The external stress τ ext is controlled by remote displacements acting on the specimen
which generates the total (plastic and elastic) shear strain γtot, and the elastic strain is
proportional to the total stress, which is only the external stress, as the average of the
internal stress is zero by construction, therefore

τ ext = µ
(
γtot − γpl

)
γpl = 1

L2

L∑
k,l=1

γpl
k,l, (4.1)

where µ is the shear modulus.
Whenever the local stress in a cell (k, l) exceeds the local threshold, i.e. eq. (3.2) is

violated, plastic deformation occurs and at that cell γpl
k,l is increased by

∆γpl
k,l = min (∆γ0, C · ∆γk,l) C =

τ int
k,l + τ ext

|GE (0, 0)| , (4.2)

where GE (0, 0) = −2µ/ [π (1 − ν)] and ν is the Poisson’s ratio. In agreement with the
notations used before, τ loc

k,l = τ int
k,l + τ ext is used1. This specific choice of the plastic strain

eliminates the local stress if the plastic strain required is not larger than ∆γ0. This
ensures the dissipated energy dW diss to be positive, dW diss = τ∆γpl = σ · dεpl, but limits
the largest allowed local plastic strain at the same time.

The different local flow threshold values τ th
k,l represent the structural disorder and

their values are chosen independently from a Weibull distribution with shape parameter
β and mean value τ th

0 (as the cell size of the simulations supposed to be larger than the
correlation distance of the microstructural heterogeneity), where larger β implies smaller
scatter of the local yield stresses, i.e. more homogeneous microstructure. At the beginning
of the simulation at zero plastic strain τ th

k,l values are assigned to all cells. Strain softening
is handled on cell-level: after each local strain increment occurring at a site (k, l), a
new τ th

k,l threshold value is assigned from the same Weibull distribution multiplied by
a penalty factor F

(
γpl

k,l

)
= 1 − f · γpl

k,l, where f > 0 is the softening parameter (or for
strain hardening, f < 0).

1Here the type of force is noted in the upper index as the continuous spatial argument is now discrete
and occupies the lower index.
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Fig. 4.1 The probability density function of a Weibull distribution for x > 0 is given
by P (x) = β

λ

(
x
λ

)β−1
· exp

(
−(x/λ)β

)
, where λ is called the scale parameter and β is

called the shape parameter. Four different Weibull distributions are plotted here with
λ = 1 scale parameter and different β shape parameters. Their mean for shape values
β = 1, 2, 4 and 8 are 1, 0.89, 0.91 and 0.94 approximately.

4.2.1 Dimensionless units
Just as in the study on the role of the weakest links in chapter 3, this model can also be
non-dimensionalised by measuring all appearing quantities in the units of the introduced
quantities. Let’s measure all stresses in the units of the mean flow threshold τ th

0 , all
strains in units of τ th

0 /µ (the elastic strain needed to reach the mean flow threshold value)
and the spatial coordinates in the units of the cell size d. Beside the Weibull shape
parameter β, the model behaviour is then controlled by two numerical parameters.

1. I =
∣∣∣GE

0,0

∣∣∣∆γ0/τ th
0 (called ’coupling constant’), which controls, how much the stress

in a cell is redistributed after an elementary plastic event, compared to the mean
flow threshold value.

2. The softening parameter f . It is worth to note that different softening protocols can
also be imagined, e.g. an exponential softening, where the factor which multiplies the
probability variable (chosen from the Weibull distribution) has the form F

(
γpl

k,l

)
=

1 − c1e
γpl

k,l
/c2 with appropriate parameters c1 and c2.

In the following a simplifying assumption ν = 0.353 is made in which case the coupling
constant I = µ∆γ0/τ th

0 . The local stress reduction at the site of a deformation event
with size ∆γ0 is then I and the external stress reduction due to the same event is I/L2.
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4.2.2 Simulation protocol
The simulation protocol closely follows the one used in section 3.2.1. The two main
differences are:

1. The external stress decreases during a plastic event according to eq. (4.1) while
the total deformation is kept constant. In these simulations it is not the external
stress, what is prescribed, but the total strain.

2. The τ th
k,l flow threshold is multiplied by the factor F

(
γpl

k,l

)
. It is also a probability

variable and its expected value is F
(
γpl

k,l

)
times the original value (τ th

0 ).

This means that the simulation protocol is as follows. The initial flow threshold values are
assigned to all sites according to the Weibull distribution with exponent β and mean value
1. The site with the lowest flow threshold is identified and the total strain γtot is increased
till the external stress2 according to eq. (4.1) reaches the flow threshold of that cell,
triggering the first deformation event. The plastic deformation occurs instantaneously,
modifies the internal stress (which is the Green’s function convoluted with the plastic
strain) and decreases the external stress, while γtot is kept constant. The new flow stress
value is assigned to the affected cell, for which the same distribution is used, and then
multiplied with the factor F

(
γpl

k,l

)
(this decreases the expected value of the effective

distribution in case of strain softening, f > 0). After this the total acting stress may
exceed the local flow threshold value for some other cells. If this is the case, the one with
the highest surplus (smallest residual stress, according to eq. (3.2), which is negative in
case of instability) is identified and plastic strain is applied on that cell according to
eq. (4.2), thus implementing extremal dynamics. The loop is repeated until there are no
more unstable sites, and the event called avalanche terminates. The plastic strain and
stress at this point are evaluated and these data make up the whole stress-strain curve.

Then again the site with the smallest residual stress is located and γtot is increased
such a way that the concomitant external stress will be large enough to trigger that cell,
which then starts the next avalanche. The loop triggering avalanches is repeated until the
local strain of at least one site reaches the value γpl

k,l = 1/f . At this point the strength of
that site becomes 0, which is considered as a nucleation of a microcrack, leading to the
failure of the system. The plastic strain required to achieve failure is denoted by γpl

f and
depends not only on the parameters of the simulations but also on the initial distribution
of the local flow threshold values. This means that a statistical approach is required in
this study.

2which is equal to the total local stress in the beginning, when no inhomogeneous strain is present
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4.3 Results
Simulations for Weibull shape parameters β = 1, 2, 4 and 8, for coupling constants
I = 0.125, 0.25, 0.5 and 1, and for system sizes L = 32, 64, 128, 256 and 512 were
performed. In each case 512 simulations were performed. The realisations were differed
in the initial state guaranteed by the probability distribution of the flow stress values.
The softening parameter f was taken to be 1/16 for all simulations.

4.3.1 Stress-strain curves
The average stress-strain curves were calculated by averaging the external stress at a
given total deformation over all the different realisations. The system failure occurred
not at the same total deformation for every case. The averaging was performed only
for those deformation values, which were below this failure threshold in each realisation.
This means that the plotted stress-strain curves contain data of all realisations on its
whole domain. The stress-strain curves obtained can be seen in Fig. 4.2.
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Fig. 4.2 Averaged stress-total strain curves for two different yield-stress distributions
(Weibull exponents β = 1 and β = 4) and different system sizes. Parameters of the
simulations: number of simulations = 512, I = 1, f = 1/16.

One can identify three different regions in Fig. 4.2.

1. An initial quasi-elastic loading region.

2. A transition to a plastic deformation region, where the stress increases with strain
(hardening). The previous and this region are system size independent.
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3. A transition to softening part, where the external stress decreases with the total
strain. The simulations are terminated once a microcrack nucleation occurred,
indicated by the 0 flow stress at least on one site. The corresponding failure strains
γpl

f are much smaller than what one would expect for a homogeneous system, 1/f ,
meaning strong localisation in deformation. Contrary to the first regions, this one
is system size dependent: the stress drop occurs more rapidly in larger systems, and
system failure occurs earlier too, which means stronger deformation localisation in
some sense.

In the upcoming sections the emerging deformation patterns are investigated first,
and a measurement for strain localisation is introduced which characterises the strength
of strain localisation. Finally, a simple model is introduced which gives an explanation
for the localisation and system size dependence.

4.3.2 Patterns in the strain maps
The emerging strain patterns during the softening regime can be seen in Fig. 4.3. The
left patterns show the plastic strain arrangement at the peak stress, before the onset
of softening. In this stage deformation is macroscopically homogeneous, but mesoscale
structures can be identified in the form of numerous weak shear bands in the x and y

directions which are more pronounced at larger degree of disorder (smaller β parameter).
Note that the peak stress is reached at different total strain values, as for larger degree
of disorder it is reached later, hence the mean value of the strain is larger.

During the softening regime the patterns undergo a qualitative change, as most of
the additional strain emerging during the softening regime is localised in a single shear
band where the microcrack nucleation also takes place. This shear band is more visible
and pronounced in the case with less disorder (larger β values).

The formation of localised shear band is in good agreement with the ideas of classical
continuum mechanics, which predicts localisation to occur – in a system without boundary
constraints and under pure shear loading – at the transition from strain hardening to
strain softening regimes. A quantitative measurement for strain localisation is introduced
in the following to describe this behaviour more precisely.

4.3.3 Deformation localisation
The spatial distribution of the incremental strain is investigated in order to quantify
strain localisation. The averaged external stress-plastic strain curve is divided into n = 50
equally large intervals, where the kth interval is defined by γpl ∈

[
γpl,k, γpl,k+1

)
, where
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Fig. 4.3 Plastic strain patterns at the highest external stress, right before the onset of
softening (left), and at the end of the simulation, at system failure (right). Parameters
are: β = 1 (top) and β = 4 (bottom), I = 1, f = 1/16, L = 256.

γpl,k = k ·
〈
γpl

f

〉
/n. The plastic strain increase occurring during strain interval k at site

(i, j) is denoted by γpl,k
i,j .

The following definition of localisation will exploit the observation that shear bands
have a planar shape. A plane P is the set of all consecutive cells in the x (or y) direction
at a given y (or x) value, counting L number of cells. Considering planes in x and y

directions, there are a total of 2 · L different planes in a system. The dP
i,j denotes the

distance between site (i, j) and a plane P , for which 0 ≤ dP
i,j ≤ L/2 due to the periodic

boundary conditions. The strain-weighted average of dP
i,j at the kth strain interval is

denoted as dP
k and calculated as

dP
k =

L∑
i,j=1

γpl,k
i,j · dP

i,j

L∑
i,j=1

γpl,k
i,j

. (4.3)

Let us take a short look on two special cases to better understand this definition.

1. When all deformations occur at only one plane along x at y∗, one would get
dP

k = dP
1,y∗ , because for all the cases when γpl,k

i,j ≠ 0, dP
i,j = dP

i,y∗ . The first argument
of the lower index of d can be anything in the range [1, L].
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2. For a completely homogeneous strain distribution one would get

dP
k =

L∑
i,j=1

c · dP
i,j

L∑
i,j=1

c
=

L∑
i,j=1

dP
i,j

L2 =
L
(
0 + 2 · 1 + 2 · 2 + ... + 2 · L

4

)
L2 =

2L
2

L
4

L
= L

4

for every plane P .

Then the plane is identified for which dP
k is minimal, dk = min

P

(
dP

k

)
. In case 1, it

would be the plane Pmin = {(x, y∗) |x ∈ [0, L]}, where all the deformations take place,
and dk = dPmin

1,y∗ = 0. In case 2, dP
k is the same for every plane, therefore dk = dP

k = L/4.
The localisation parameter η at a given interval k is then defined as

ηk = 1 − 4
L

· min
P

(
dP

k

)
, (4.4)

i.e. the plane, for which dP
k is minimal, identified, and then transformed in such a way,

that for the largest possible localisation (case 1, where dP
k = 0) the result is 1, and for

the smallest possible localisation (case 2, where dk = L/4) the result is 0.
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Fig. 4.4 External stress-plastic strain curves and the strain evolution of the localisation
parameter η for different degrees of disorder (Weibull shape parameter β = 8, 4, 2 and 1.
f = 1/16, L = 256)
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Fig. 4.4 shows, that in all simulations the localisation parameter η starts from η = 0
and then monotonously increases during the hardening regime. After the peak stress
is reached and the system enters the macroscopic softening region, η increases rapidly
towards η = 1, indicating that new plastic events occur in one single shear band. It can
be also clearly seen, that the increasing degree of disorder – even though it leads to larger
plastic response and an earlier onset of plastic flow – extends the hardening region to
larger strains with higher external stress and delays the onset of deformation localisation.
The value of the coupling constant I can be varied in an order of a magnitude without
seriously affecting the main picture, therefore its role in localisation is marginal.

One can investigate the incremental strain around the final failure plane. In Fig. 4.5
the profile of the shear bands for different values of the localisation parameter η can be
seen for larger disorder (β = 1) and for smaller disorder (β = 8). Note that the width of
the bands are almost the same, but the localisation of deformation happens later in the
case of larger disorder, although both curves compare situations with equal value of η.
This phenomenon can only happen, if in the case of larger disorder, deformation first
localises in general not on the final failure plane, and localisation on the final failure plane
happens after larger deformation activity, which is spread out in the system elsewhere
than the final failure plane. In contrast, in case of small disorder, deformation localises
on the final failure plane almost from the beginning of the softening region.
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Fig. 4.5 Evolution of the distribution of plastic strain around the final failure plane for
different Weibull shape parameters β averaged over every simulation. I = 1, f = 1/16,
L = 256.

The measure of localisation η used in this study characterises localisation with respect
to a best-fit shear plane, and is a novel approach in this field, but has been used before
to analyse strain localisation and failure processes in rock samples [71]. This definition



4.3 Results 69

is quite different from other measures proposed in this field, in the sense that it can
accunt for the spatial distribution of the deformation. A naive measure provided by
the root-mean-square deviation of the local strain from the average plastic strain [19]
cannot distinguish between a single broader shear band and numerous, spatially scattered
narrower – either point-like – shear bands which carry the same local strain. Such a
measure effectively takes account for the magnitude of the scatter, but not for its spatial
distribution. This distinction is central to our argument, i.e. large degree of small-scale
microstructural heterogeneity prevents the emergence of heterogeneity on the large scale
in the form of single macroscopic shear band, which would lead to system failure.

4.3.4 Mean strain to failure
It has been shown that disorder decreases strain localisation, but one may raise the
question how it modifies the mean strain at failure, a more practical parameter that can be
easily measured in experiments. Fig. 4.6 shows that the strain required for system failure
is system size dependent and decreases with increasing system size. This dependency is
not surprising if we do the following approximations based on the previous observations.
Let us consider the strain occurring during the hardening region to be homogeneous
with magnitude γh, while all strain emerging during the subsequent softening regime is
localised in one slip band with a finite width of d, depending weakly on the Weibull-shape
parameter β and let us also suppose that the shear band itself is homogeneous. In this
case the mean strain at failure is

γf = γh +
(
γloc

f − γh
)

· (d/L) , (4.5)

where γloc
f is the strain value which characterises the plastic strain value of the cells inside

the shear band when the failure occurs. The parameters in eq. (4.5) can be obtained by
fitting a γf = c1 + c2/L function on the data measured, particularly γh = c1, which is the
failure strain in the infinite large system limit.

Fig. 4.7 shows the mean strain at failure as the function of the Weibull-shape parameter,
for different system sizes, where values for the infinite large system limit come from the
fitting of c1 mentioned. It can be seen that larger microstructural disorder leads to an
increase in ductility. The figure also shows that this effect is strongly pronounced in
larger samples: the ratio of the main strain in the β = 1 and β = 8 cases are about 60,
while the corresponding variation coefficients are σβ=1 = 1 and σβ=8 ≈ 0.15.
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Fig. 4.6 Mean strain at failure as a function of the system size for different Weibull
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curves in Fig. 4.6.
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4.4 Summary
In this study the deformation and failure behaviour of microstructurally disordered
model materials are studied, which exhibit irreversible strain softening and fail by shear
band formation. According to the intuitive idea increased microstructural heterogeneity
may facilitate shear band nucleation and therefore may have a negative impact on
deformability. The observed behaviour is just the opposite: a strong positive effect
of increased heterogeneity and randomness on the deformation properties were found.
Although the increased microstructural heterogeneity plays role in the earlier onset of
plastic deformation in the form of diffuse shear bands – which can be understood within
the framework of classical weakest-link statistics [57] –, but the same heterogeneity
prevents the spreading of shear bands evolving into a system-wide macroscopic shear
band leading to system failure. The earlier onset of deformation is coupled with an
extended hardening regime, leading to the elimination of weak regions of the material.
This hardening is only a survival-bias-hardening (in contrast with the explicitely defined
softening), meaning that the weakest sites are eliminated and only stronger sites remain.
This behaviour is more expressed when more sites can be considered very weak, which
occurs in the case of larger scatter in the residual strength (i.e. larger disorder). After
the hardening is exhausted, structural softening takes place and promotes macroscopic
deformation localisation. The onset of strain localisation is close to the peak stress where
the system enters the globally softening regime.

According to this study, in microstructurally disordered materials, where ductility is
limited by shear band formation, the increase of the degree of microstructural heterogene-
ity on the nanoscale may result both in an increase in strength and in a significant increase
in ductility. These results match well with the ideas to increase the ductility of metallic
glasses by introducing a second interface phase [3] or by embedding nano-crystallites or
isolated dendritic crystallites into a glassy matrix [23, 50], which all result in an increase
of the scatter of local deformation properties within a disordered microstructure. Until
now, such ideas have been studied by some types of MD simulations, which also supported
the concept, that introducing nanoscale heterogeneity can promote the nucleation of
multiple shear bands which prevent catastrophic shear localisation in one single band
[53, 53]. The drawbacks of MD simulations are their spatial and temporal scale limits,
which makes it difficult to directly investigate strain localisation on a macroscopic level,
however, they are suitable to parametrise mesoscopic models[89, 90, 4], such as the
present one. The highest potential in this study is to combine the model presented with
MD simulations in order to obtain physically based parameters for the model of bulk
metallic glasses as well as of nanoglasses and amorphous nanocomposite structures.
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It is important to note that this study does not investigate or promote the well
established idea, that combining weak-but-ductile and strong-but-brittle materials into a
composite may lead to a material carrying the desired strong-yet-ductile property.

In this model different volume elements of different strength fail at the same local strain,
and at system failure the similarity of the evolving macroscopic shear band is marginal
between the weakly and strongly disordered materials (see Fig. 4.5). Nevertheless, the
overall deformation behaviour is essentially different in both cases: larger disorder extends
the hardening region with diffuse shear band formation which delays the coalescence of
the local shear bands into one large catastrophic macroscopic shear band. It would be
desirable to understand how fluctuations emerge and extend across scales, as done by
other models similar to the one presented in this study, which demonstrate the emergence
of scale-free, system-wide correlations in the internal stress and local strain patterns
[132, 60]. Due to these correlations, the macroscopic properties of such materials cannot
be deduced from local statistics (e.g. using only weakest-link arguments), nor can they
be trivially originated from small, circumscribed representative volume element. It is
shown in this study, that local fluctuations not only influence, but significantly modify
the properties of macroscopic materials, which can be used to design materials with
improved properties for which novel conceptual tools may be needed.

Notes in regard to the thesis
The summary above clearly identifies for which material the model presented is suitable
for and in which area it has its largest potential, namely for microstructurally disordered
materials which undergo strain softening. Its highest potential lies in bulk metallic glasses,
nanoglasses and amorphous nanocomposite structures. At the same time I would like to
emphasize that the model is not restricted to non-crytalline materials, also mentioned
at the introduction of this chapter in section 4.1. Strictly speaking, the model does not
involve dislocations and dislocation motion since the resolution of this model is much
above the scale of the mean dislocation spacing of crystalline materials, and neither the
deformation mechanism used here lies on the theory of dislocations. However, different
dislocation arrangements can lead to the different local yield threshold introduced in this
model, dislocation motion can be also used to account for plastic strain and the stress
field of the plastic event of the Eshelby’s inclusion problem share the basis with the stress
field of dislocations, therefore it is indisputable that the model of this study can be used
to study the effect of dislocations in a larger scale in a stochastic manner. The fact, that
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the underlying numerical model lays elementary on the model introduced for crystalline
materials [134] reinforced me to carry out this study in the framework of my thesis.





Chapter 5

Dislocation pattern formation in a
stochastic single slip model [O3]

In this study, in order to investigate the formation of dislocation patterns, a model
for dislocation transport is introduced. The theory proposed connects the formation
of dislocation patterns to the dynamics of the driven dislocation system which tries to
minimize the internal energy in the presence of a state dependent, friction-like flow stress.
The approach throws a new light upon the old "energetic vs. dynamic" controversy
regarding the physical origin of dislocation patterns. The mechanism is introduced
in the simplest case, i.e. in plane strain, single slip, which demonstrate the required
minimal conditions for pattern formation and the robustness of the model. This latter is
emphasised by another implementation of the model whose results are also presented
for comparison. In these two models the same driving stresses have been taken into
account but the models differ in the description of dislocation transport. The model I
implemented assumes spatially and temporally discrete transport of discrete "packets"
of dislocation density driven by extremal dynamics, therefore called stochastic cellular
automaton model, while the other model uses continuous time and space resolution
and assumes that the dislocation velocity depends linearly on the acting local stress,
and called hydrodynamic model. Despite the elemental differences of the models the
emergent patterns in both models are mutually consistent and in good agreement with
the prediction of the results of the linear stability analysis applied on the continuum
model.
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5.1 Introduction
Even the earliest TEM micrographs showed that the distribution of dislocations is hardly
ever homogeneous in deformed crystals, they tend to form structures where dislocation
density can rise by multiple orders of magnitude in a distance smaller than the mean
dislocation spacing. Even though the properties of an individual dislocation with its
environment is well understood on a theoretical level, the same does not hold for the
patterns they form. Numerous models aimed to reveal the properties of dislocation
pattern formation. Most of them are based on analogy with other pattern formation
observed in physical systems. It has been argued that dislocation patterns can be
understood as minimisers of some kind of energy functional, but even the mathematical
formulation of such pictures led to intellectual exhaustion. In a remarkable exception,
a work of Holt [51] an approach similar to spinodal decomposition was used, where
dislocation densities minimalise an associated internal energy functional but the model
introduced could not handle the fact that dislocation patterns are stable not only in
the presence but in the absence of external stress too. What is common in all energetic
approach is that they envisage the deforming crystal with dislocations as a system far
from equilibrium and assume that pattern formation may lead to energy dissipation.
These concepts led to a set of coupled partial differential equation for dislocation densities
[116, 85] producing patterns full of delights for the eye but only some of the resemble
dislocation patterns have been observed on TEM micrographs, while others, such as
spiral waves have never been observed[93]. All of these models aimed to describe pattern
formation by introducing interaction forces in a phenomenological way in addition to the
well understood elementary interactions between a single dislocation and its environment,
therefore left the question open whether dislocation patterning is an energetic or dynamic
phenomenon[80].

Over the past years studies have been introduced which consider dislocation density
(densities) as key quantity and deduce the dynamic equations of dislocation densities
from the equation of motion of discrete dislocations in a systematic manner based upon
averaging procedures. The kinematics of dislocations has been formulated for 2D and
later for 3D too[45, 49, 47] applying two approaches.

1. Direct averaging of the interaction forces of discrete dislocations[36, 111, 39].

2. Formulating an energy functional governing the dynamics of the dislocation system
from phenomenological considerations[37, 38] or from direct averaging the elastic
energy of discrete dislocation system [129] and then obtaining the driving forces
using thermodynamical principles[48].
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In contrary to the former attempts of describing dislocation patterns mentioned earlier, the
focus in these models is not on pattern modelling, i.e. reproducing the patterns observed
but to model dislocations and their collective properties in a continuum framework. What
indicates the effectiveness of these models is that the dynamic equations of dislocation
densities in the CDD model deduced faithfully from the discrete level leads to the
emergence of heterogeneous dislocation pattern formation.

Simulating pattern formation and its evolution in 3D multiple slip system would
be important, and the advances in computation power[123] or kinematic averaging
methods[95] sure do provide the possibility to do so, the aim presented in this study
is to elucidate the role of the model parameters and the influences of dynamic and
energetic mechanisms on pattern formation only in 2D single slip system, seems to
be an oversimplification. With this choice, however, an exact representation of the
kinematics becomes possible and both for the energy functional [37, 129] and for the
effective mobility law[39] well-defined forms can be established. In the 2D model one does
not need phenomenological assumptions. A complete understanding of the combined role
of energy minimisation, external force and friction stress is obtained. In the previous
work of Groma et al. [39] linear stability analysis on the evolving dislocation densities has
been performed leading to the important conclusions on the early stages of patterning
mechanism but it can hardly provide further details on the stability and robustness of
the emergent patterns. This study firmly extends the scope of previous work to the
nonlinear regime and investigate the robustness of the evolving patterns by comparing
two elementary different implementation. The robustness is illustrated with further
scenarios in the paper embracing all the results[O3] which is the fourth paper included
in this thesis.

This study is organised as follows: in the next section 5.2 the two simulation models
used are introduced. The first model in 5.2.1 is the continuum one based on the work of
Groma et al. [39] which implements a spatially and temporally continuous model. The
second model in 5.2.2 is the stochastic one essentially developed and managed by me. It
implements a spatially and temporally discrete and stochastic model which considers the
same stresses as the continuum model but uses completely different dynamics. Results of
the latter model is presented and compared with the former for similar cases, and with
the results of the linear stability analysis. The study ends with the discussion on the
robustness of dislocation patterning in section 5.4.
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5.2 Simulation models
In this section the two different models are introduced in details. Both consider the same
stresses but implements dislocation transport in a rather different way.

The system considered in both cases contains only straight edge dislocations of the
two types in a single slip system with only conservative motion (dislocation climb is not
allowed, dislocation motion happens only in the slip plane). The dislocations behave
as quasi-particles in 2D, which is, without loss of generality, taken to be in the xy

plane, the slip planes taken to be the xz planes with Burgers vectors b = (b, 0, 0) and
−b = (−b, 0, 0). In our case, it is the y dislocation coordinate which cannot change.
The system size in both cases is limited, but toroidal boundary conditions are used to
eliminate the effect of the boundary.

5.2.1 Deterministic continuum model
The deterministic continuum model is a direct and straightforward implementation of
the 2D CDD model[36, 111, 39] explained earlier.

Transport equations

The dislocation densities must obey continuity equations. The sign convention according
to which the positive dislocation density ρ+ moves to the positive direction of x with
velocity v+ under positive resolved shear stress, and negative dislocation densities ρ−

moves with velocity v− is used. With these notations the time derivative of the shear
strain γ can be expressed as

∂tγ = b
(
ρ+v+ − ρ−v−

)
.

In case there is no source term of dislocation densities, the system conserves the dislocation
density and the continuity equations

∂tρ
+ (r, t) = −∂x

(
ρ+v+

)
∂tρ

− (r, t) = −∂x

(
ρ−v−

)
hold, where

v+ (r, t) = + M0bτ
+ (r, t)

v− (r, t) = − M0bτ
− (r, t) ,

(5.1)
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in which τ+ and τ− are effective shear stresses driving the positive and negative disloca-
tions with mobility coefficient M0. The velocities are proportional to the acting effective
forces bτ+ or bτ− (i.e. the effective glide components of the Peach-Koehler forces), as it
can be seen from eq. (5.1).

Evaluation of the effective driving stresses

The effective driving stresses result from the combination of the sign-dependent local
driving stresses acting on the positive (or negative) dislocation density τ+

d (or τ−
d )1 and

the friction-like stress τ+
f (or τ−

f ) as

τ+
(
τ+

d , τ+
f

)
=τ+

d ·
∣∣∣τ+

d

∣∣∣− τ+
f

τ+
d − sgn

(
τ+

d

)
· τ+

f , if
∣∣∣τ+

d

∣∣∣ > τ+
f

0, if
∣∣∣τ+

d

∣∣∣ 6 τ+
f ,

τ−
(
τ−

d , τ−
f

)
=τ−

d ·
∣∣∣τ−

d

∣∣∣− τ−
f

τ−
d − sgn

(
τ−

d

)
· τ−

f , if
∣∣∣τ−

d

∣∣∣ > τ−
f

0, if
∣∣∣τ−

d

∣∣∣ 6 τ−
f .

(5.2)

The driving stresses written in these equations are given by combinations of the
spatially homogeneous shear stress τext coming from the remotely applied boundary
displacement providing the plastic flow and the dislocation-dislocation interaction forces
of the continuum level.

τ+
d = τext + τsc + τback + τdiff

τ−
d = τext + τsc + τback − τdiff

(5.3)

The role and explanation of the different stress terms can be found in section 2.2.3
and in the work of Groma et al. [39].

5.2.2 Stochastic continuum model
In the second model the same forces are taken into consideration but dislocation transport
is implemented in an essentially different way.

The space is discretised on a square lattice of size L × L = N · d × N · d, where
the size of a cell is d and its edges are aligned in the x and y directions and a spatial
bijection of (x, y) 7→ (i = x/d, j = y/d) is also made. Dislocation densities are considered
to be constant inside the lattice cells and quantised in the units of ρd = ρ0/ (2M) called
dislocatom ("d" for discrete), where M is a chosen parameter describing the fineness of

1Here "d" denotes "driving", while in a previous section at 2.2.3, "d" denoted "diffusion". Here,
"diffusion" will be denoted by "diff".
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the quantisation. The dislocation state of a lattice cell (i, j) is then given by the number
of positive and negative dislocatoms, ρ+

i,j = n+
i,jρd and ρ−

i,j = n−
i,jρd. No dislocation

source terms are introduced, just as in the previous model, i.e. ∑i,j n+
i,j and ∑i,j n−

i,j are
considered constant separately.

Time is propagated in discrete steps and just as in the deterministic continuum model,
the spatial distribution of the dislocation densities are updated. Since all dependent
and independent variables are represented with integers, the system defined describes a
cellular automaton for which the rule of iteration steps gives the dynamics of the system.

Cellular automaton dynamics

The motion of dislocations is accomplished by exchanging dislocatoms between the
neighboring cells in the first, i index. Motion of positive and negative dislocatoms are
determined by the same effective driving stress τ+

d and τ−
d , but this time defined only at

the border of x-adjoint cells and during the calculations it is assumed that all dislocatoms
are concentrated in the middle of the cells, therefore there is a shift of d/2 between
the place of dislocatatoms and the force acting on them. For the sake of simplicity the
boundary between cells (i, j) and (i + 1, j) will be denoted as (i, j). Dislocatoms are
moved under the following protocol:

1. The boundary is determined where the largest absolute value of the effective
driving stress is, i.e. the value max

i,j,s

∣∣∣τ s
i,j

∣∣∣ is identified and denoted by
∣∣∣τ sm

im,jm

∣∣∣. If∣∣∣τ sm
im,jm

∣∣∣ > 0
(
⇔ ∃ (i, j, s) :

∣∣∣τ s
i,j

∣∣∣ > 0
)
, then one dislocatom will be moved between

cell (i, j) and (i + 1, j) of dislocation type sm. The four possibilities are:

• τ sm
im,jm

> 0, sm ∈ {+} ⇒ a positive dislocatom will be moved from (i, j) to
(i + 1, j),

• τ sm
im,jm

< 0, sm ∈ {+} ⇒ a positive dislocatom will be moved from (i + 1, j) to
(i, j),

• τ sm
im,jm

> 0, sm ∈ {−} ⇒ a negative dislocatom will be moved from (i + 1, j)
to (i, j)0,

• τ sm
im,jm

< 0, sm ∈ {−} ⇒ a negative dislocatom will be moved from (i, j) to
(i + 1, j).

With other words, dislocatom of sign sm is moved on the boundary (i, j) in the
direction of sm sgn

(
τ sm

im,jm

)
.
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2. Cases are excluded when there is no available dislocatoms to move, i.e. the lookup
in the maximum value restricted to those cells where motion is allowed by available
dislocatoms.

3. The movement of a dislocatom through a boundary changes the strain at (i, j)
by sgn

(
τ sm

im,jm

)
· ρdbd, i.e. the motion of a positive [or negative] dislocatom to the

positive [or negative] direction (in case of positive effective stress) leads to an
increase of the local strain, while the motion of a positive [or negative] dislocatom
to the negative [or positive] direction (in case of negative effective stress) leads to a
decrease of the local strain.

4. After a dislocatom has been moved, all densities and stresses are recalculated and
the next critical boundary is identified.

With the rules above one implements an extremal dynamics for which a good example
would be a strongly nonlinear dependence of the dislocation velocity on the driving
effective stress like in v (τ) ∼ τβ, β ≫ 1. In such a case the ratio of the velocity of
two different dislocations where the ratio of the effective driven stress is c is given by
v (c · τ) /v (τ) = cβ. In a CA model one can keep the displacement in the order of the
spatial resolution, v (c · τ) ·∆t = d, which suppresses the motion of the slower dislocations
and therefore v (τ) · ∆t/d ≪ 1 becomes negligible, resulting that effectively only one
dislocation, which has the largest effective driving stress, moves at a time. This dynamics
is in strong contrast with the hydrodynamical one described in the previous section 5.2.1,
where all dislocations with nonzero effective stress are moving.

Stress calculation

The effective driving stresses τ+
i,j and τ−

i,j are calculated basically the same way as
before with some minor changes due to the discretisation and an exception of the
friction stress. The total and signed (excess) dislocation densities are calculated as
ρi,j = ρd

(
n+

i,j + n−
i,j

)
and κi,j = ρd

(
n+

i,j − n−
i,j

)
, respectively. The external stress is

spatially constant. The calculation of the internal stress is based on eq. (2.20) with a
change of the integration to summation. The back and diffusion stresses are calculated
according to eqs. (2.33) and (2.34), where the derivation operator acts as a discrete
operator, ∂xf (i, j) = [f (i + 1, j) − f (i, j)] /d. The most important change is on the
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calculation of the friction stress. It is calculated as

τ+
f;i,j = αµb

√
ρi,j + ρi+1,j

2

(
1 − κi,j + κi+1,j

ρi,j + ρi+1,j

)
· ξ+

i,j,

τ−
f;i,j = αµb

√
ρi,j + ρi+1,j

2

(
1 + κi,j + κi+1,j

ρi,j + ρi+1,j

)
· ξ−

i,j,

(5.4)

where ξi,j is a random variable of mean value 1 and standard deviation στ . Since
there is no theoretical prediction for the actual form of the probability distribution of
ξi,j, we have to select on a phenomenlogical ground. Although argumentation to use
a power-law distribution, e.g Weibull-distribution, can be found[O1], in this study a
Gaussian-distribution is used. The number ξ+

i,j or ξ−
i,j is regenerated whenever a dislocation

moves across the border (i, j). The random factor ξi,j accounts for the stress fluctuation
inside a cell arising from the actual local configuration of the discrete dislocations[134].
With a choice of στ = 0, eq. (5.4) becomes the straightforward counterpart of the
hydrodynamical case.

5.2.3 Initial conditions, loading protocol
N2·M/2 number of positive and the same amount of negative dislocatoms were distributed
initially in an uncorrelated manner.

Two different types of loading protocol were investigated:

1. Constant external stress was applied right from the very beginning.

2. 0 external stress was applied at the beginning of the simulation and after an
initial relaxation, the stress was increased quasi-statically, i.e. after each stress
increment all the dislocatoms which felt effective driving force, moved according to
the simulation protocol. This loading scheme produces a stress-strain curve with a
horizontal asymptote representing the macroscopic flow stress.

It is shown that except the initial relaxation region, the two loading protocol lead to the
same event sequence, therefore no change in the patterning behaviour is found.
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5.3 Results

5.3.1 Prediction from linear stability analysis
Linear stability analysis on the coupled partial differential equations of the dislocation
densities was performed in the work of Groma et al. [39]. To compare the results obtained
in this study of strongly nonlinear models, a brief summary of the analysis is presented.

Let us start with a spatially homogeneous dislocation system, ρ+ (r) = ρ− (r) = ρ/2
and κ (r) = 0. This is a solution for any τext. Then a perturbation is applied around this
state and the linear response of the system is investigated, i.e. the higher order terms are
neglected. Due to the general scaling invariance properties of dislocation systems (as
noted in appendix A), the results obtained can be expressed in a universal way, where
all dislocation densities are measured in the units of Cρ = ρ0, all lengths in the units
of Ct = ρ

1/2
0 , all times in the units of Ct = (M0µb2ρ0)−1, all stresses in the units of

Cτ = µb
√

ρ, and all strains in the units of Cγ = b
√

ρ. If not noted otherwise, these units
are used in the following.

The results of the linear stability analysis are:

1. If the external stress is below the flow stress (τext 6 α), the perturbation dies out
exponentially, i.e. no plastic flow occurs and the dislocation microstructure remains
the same.

2. Above the flow stress, the growth rates of fluctuations at wave vector k is:

Λ± (k) = − (A + D) k2
x + T (k)

2

±

√
[(A + D) k2

x + T (k)]2 − 4k2
x [A (Dk2

x + T (k)) − B]
2 ,

where
B =τext [(3/2) α − τext] ,

T (k) = 1
π (1 − ν)

k2
xk2

y

k4 .

For those k, where
A
(
Dk2

x + T (k)
)

− B < 0,
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the perturbation increases and the highest amplification is expected at kmax, at
the maximum of Λ+ (k), which is at

kmax,x = ρ
1/2
0

2B
−1 +

√
1 + (A−D)2

4AD

(A − D)2


1/2

(5.5)

and kmax,y = 0.

5.3.2 Simulations of the stochastic cellular automaton model
Simulations with the stochastic cellular automaton model were performed using a quasi-
static stress load protocol described in section 5.2.2, and the dislocatom size has been
chosen to M = 16. The emerging patterns in the excess dislocation density can be
seen on Fig. 5.1 for one realisation. The figure shows the borning patters of alternating
positive and negative exceed dislocations as the strain increased. As a comparison, the
emerging total ρ and excess κ dislocation density patterns for the deterministic model is
shown in Fig. 5.2.

γ = 0.5 γ = 2

γ = 8 γ = 16
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Fig. 5.1 Spatio-temporal evolution of the excess dislocation density κ in the direct space
for the stochastic cellular automaton model in the units of the ρ0 = M · ρd. Parameters:
A = D = 0.1, α = 0.3, M = 16.

The Fourier transform of the evolving pattern at different strain values has been
calculated for each individual realisation and averaged. Fig. 5.3 demonstrates that



5.3 Results 85

Fig. 5.2 Spatio-temporal evolution of the excess κ (lower half of each subfig) and total ρ
(upper half of each subfig) dislocation density in the direct space for the deterministic
continuum model in the units of ρ0. Parameters: A = 0.5, D = 0.4, α = 0.3, τext = 1.1α,
the initial noise is Gaussian.

the dominant wavelength of the patterns obtained are shifted to wavelengths larger
(smaller kx values) than expected from the stability analysis. This may result from the
short-wavelength noise explicitely added to the model, appearing on the scale of the size
of a cell.

In the direct space, another effect of the stochastic dynamics can be seen in the final
pattern developed. It should be noted that in the Fourier space an average has been
done over the various initial conditions, in the direct space it is not possible, because
averaging in the direct space would wash out any type of pattern as topologically all
space points are identical and different realisations are independent from each other. To
obtain a smooth pattern in the direct space is not possible, because it is the feature
of the dynamics, however, by refining the mesh of the stochastic cellular automaton
and reducing the dislocatom size accordingly, one can reduce the noise as well and the
dynamics would approach those of the deterministic continuum model.

The wavelength λ, which characterises the patterns at the largest strain is obtained
from Fig. 5.3 by determining the value k∗

max,x, for which
〈∣∣∣κ̃ (k∗

max,x, ⟨γ⟩
)∣∣∣〉

ens
is the largest,

where κ̃ (kx, ky) is the Fourier transform of the exceed dislocation density. Fig. 5.4 shows
that the wavelength λ of the fully developed patterns increases with increasing A and D

parameters, in agreement with the LSA. However, especially at larger A and D values,
the values for λ are noticeably larger in the stochastic cellular automaton model than



86 Dislocation patterning

Analytical Λ

−π/4 −π/8 0 π/8 π/4
kx

−π/4

−π/8

0

π/8

π/4

k y

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

−π/4

−π/8

0

π/8

π/4

−π/4−π/8 0 π/8 π/4

k y

kx

Fourier transform of κ, 〈γ〉 = 1

0.2

0.5

1

2

5

10

20

〈|κ̃
(k
,〈
γ
〉)|

〉 en
s/
〈|κ̃

(k
,0
)|〉

en
s,
k

−π/4

−π/8

0

π/8

π/4

−π/4−π/8 0 π/8 π/4

k y

kx

Fourier transform of κ, 〈γ〉 = 4

0.2

0.5

1

2

5

10

20

〈|κ̃
(k
,〈
γ
〉)|

〉 en
s/
〈|κ̃

(k
,0
)|〉

en
s,
k

−π/4

−π/8

0

π/8

π/4

−π/4−π/8 0 π/8 π/4

k y

kx

Fourier transform of κ, 〈γ〉 = 16

0.2

0.5

1

2

5

10

20

〈|κ̃
(k
,〈
γ
〉)|

〉 en
s/
〈|κ̃

(k
,0
)|〉

en
s,
k

Fig. 5.3 Spatio-temporal evolution of the excess dislocation density κ in the Fourier space
for the stochastic cellular automaton model and the prediction of the LSA (upper left
corner). Parameters: A = D = 0.1, α = 0.3, M = 16.

what expected from LSA, which is attributed to our opinion to the extremal dynamics
and stochastic behaviour.

Simulations with constant external stress, instead of the quasi-static loading protocol,
were performed and resulted in identical results with respect to the pattern formation.
This behaviour is expected as, aside from the different and in our case, marginal initial
relaxation, the sequence of events remains the same. This means that in this model the
characteristic wavelength of the emerging pattern is stress independent. As a consequence,
regardless the actual value of the external stress, the fully developed patterns match the
ones obtained from the deterministic continuum model in the τext → 1 limit, i.e. when the
excess external stress is just above the flow stress and the deformatin rate is practically
zero (γ̇ = 0). This case is relevant, because the rate dependent contribution of the flow
stress to the patterning is marginal. Using Cu as an example, where M0 ≈ 2·1014 Pa−1s−1

[65] and b = 2.52 · 10−10 m and assuming a dislocation density of ρ0 = 1012 m−2 and a
typical strain rate 10−3 s−1, requires a stress in the order of 1 Pa, which is about 7 orders
of magnitude smaller then the typical level of the dislocation-dislocation interaction
stresses. Therefore the deviation of the applied stress from the value τext = 1 is marginal.
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Fig. 5.4 Pattern wavelength λ as function of the model parameters A and D. Green
squares: D = 0.5 and A is the independent variable; green circle: A = 0.5 and D is the
independent variable; blue stars: A = D; solid lines: prediction from the local density
approximation for the fixed A or D case (green) and for the A = D case. Note that the
expression eq. (5.5) is symmetric for A and D.

5.4 Conclusion
In this study strongly nonlinear models for dislocation patterning were introduced where
the fully developed patterns closely match the predictions obtained from a linear stability
analysis of the equations of the continuum model. Two different implementations were
investigated. One of them assumes linear dependence of the dislocation motion in the
external stress (deterministic continuum model), while the other one supposes extremal
dynamics where only one dislocation (package), with the highest effective stress, is
moved (stochastic cellular automaton). Although the patterns slightly depend on the
dynamical rules describing the dislocation motion, the results are qualitatively similar.
Patterning goes along with hardening in both models, as evidenced in the stochastic
cellular automaton model by an increase in stress during quasi-static loading protocol.
In essence, a quasi-static balance of the different stress contributions governs the final
patterns, which keep the dislocations in a meta-stable configuration and not by moving
them between stable configurations. This picture provides some idea why dislocation
patterns are similar along various materials with different crystal structures.

Dislocation pattern formation depends on the interplay of three different types of
forces appearing in the continuum theory and all of them needed for the formation.
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Without external stress no plastic strain occurs, so dislocation pattern formation cannot
happen. The other type of forces are the interaction kernel of dislocations represented
by the τsc, τback and τdiffusion stresses, which can be derived from an energy functional
covering elastic and defect energy contributions. These terms play the most important
role in the structure of the patterns and determine mainly the characteristic wavelength
of the patterns. In particular, the wall-like structure is predicated by the shape of the
interaction kernel τsc, as its minimisation forces the emergent walls being perpendicular
to the slip plane. The stresses τback and τdiffusion controls the wavelength of the pattern,
in which the parameters D and A tune the contributions of the gradient of the exceed
(also known as signed) and total dislocation density to the energy functional. The study
reveals that internal energy related stress contributions alone does not explain pattern
formation, as the process crucially depends on the third type of stress, the friction stress.
The basic mechanism leading to dislocation patterning originates from the fact, that in
a location of increased dislocation density the friction stress is also increased, and this
positive feedback leads to dislocation density instability. This is exactly the patterning
scenario described by Nabarro [80] and called "dynamic" patterning. Nevertheless without
accounting for the energetic stress contributions, the pattern wavelength and pattern
morphology would remain unexplained.

As a final words of this study, I would like to highlight the conclusion that most of the
earlier discussion on dislocation patterning may have based upon misleading analogies
and false dichotomies. Dislocation patterns are not dynamic-dissipative structures and
their formation are not solely driven by energy minimisation. The system indeed attempts
to minimise a coarse grained energy functional driven by external stress but the system
stuck into a local energy minima at every step which on the coarse grained scale appears
as friction stress. This duality cannot be observed in spinodal decomposition or in
dynamic chemical waves, therefore they cannot serve as analogies. What could serve as
an exemplary picture is the ripples on sand dunes. There, airflow over the sand surface
and the turbulence serves the external driving force, while the system tries to minimise
the gravitational potential energy and the complex friction of the granular material are
the key mechanism that may lead to the instability of a smooth sand surface in favor of
a ripple formation[62].

Notes in regard to the thesis
Ever since I had gotten involved into dislocation simulations I had been always interested
in the duality of dislocation properties in the terms of long-rangeness. It is gladsome
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that my interest coincided with my possibilities to study dislocation avalanches and
I was also excited to read the paper of Groma et al. [39] after which I tried to find
simulations where dislocation patterning arise. Due to the lack of simulations, where
approximations and simplifications are controlled, I proposed my supervisor István Groma
to develop a model to investigate pattern formation – even beyond LSA – based on
that paper. A couple of weeks later my second supervisor Péter Ispánovity revealed his
program code running a CA simulation of the very same CDD model based on the paper
mentioned. I forked his code and rewrote it completely: simplified where it was possible,
corrected some minor bugs, restructured it and implemented numerous new features.
This helped me to point out that this model does show dislocation patterning with a
specific parameter-set. Due to the weak visibility of the patterns in the direct space I
implemented the Fourier-averaging method to convince other members of our research
group that patterns do arise and stable far beyond the linear regime in that CDD model,
which led to a joint research work with Michael Zaiser and his PhD student, Ronghai
Wu.

The previous CA model described in the study at chapter 3 uses the self-consistent
field-approximation (see 2.2.2), even though it is well-known, that such an approximation
leads to properties never observed experimentally. But the model reproduces dislocation
avalanches and in good agreement with DDD simulations in the small plastic regime
and that is the reason why it has been used. In this chapter this model is extended
with further stress terms based on strict physical consideration in a hope for a more
complete description of dislocation motion which has the potential – according to LSA
– of dislocation pattern formation but also inherited the stochastic properties entailing
dislocation avalanche phenomena. Investigating dislocation avalanches in a local-density-
approximation-based CDD model is a promising and interesting installment of this study
but it was out of the scope of the current thesis.





Chapter 6

Audiovisual experience in
dislocation avalanches: a coupled in
situ study of strain bursts and
acoustic emission [O4]

Micron-scale plastic deformation of crystalline materials is characterised by stochastic
strain burst [77, 117, 137, 134, 139], a phenomenon does not happen in bulk samples.
Stress-strain curves vary from sample to sample so in order to obtain a detailed picture
of the stochastic, intermittent deformation behaviour, numbersome specimens in the
micron-scale are required for testing. The demand to mass fabricate such specimens is
already present but it is still a huge technological challenge to achieve it in an effective
way. To this end in this study an improved FIB fabrication method is proposed to prepare
non-tapered micropillars more efficiently than with other methods. The avalanche-like
motion of the single crystal emerges from the collective motion of the dislocations and can
be observed as step-like stress decrease on the stress-strain curves. As a novel application
an acoustic emission (AE) detector was also mounted onto the setup to study the plastic
response of micropillars. This technique firmly supports the SEM’s in situ information
acquisition as it is particularly sensitive to the collection motion of dislocations observed
as the stress-steps on the stress-strain curves.



92 In-situ study of avalanches

6.1 Motivation
The miniaturisation of electromechanical devices has reached a level in 21st century where
further research is desired to investigate the plastic properties of micron-sized specimens
[114, 81, 131, 64, 141]. These micron-sized components are used in micromachined inertial
sensors [126] and also in cantilever transducers as a platform for chemical and biological
sensors [67]. The demand for ever smaller elements requires the detailed understanding
of the underlying physical processes during plastic deformation on a similar size-scale.

Plastic deformation is realised by single dislocations only in the most rare cases. In
(large enough) single crystals the typical process is realized by the collective motion and
rearrangement of dislocations. The stress-strain curve for bulk materials is smooth and
characterised by the mechanical and chemical properties of the specimen investigated.
These curves are reproducible because the stochastic noise from dislocation ensembles is
marginal, the size of the dislocation ensemble taking part at a time in plastic deformation is
negligible compared to the total number of dislocations – at least under the commonly used
resolutions. This allows predicting the material behaviour with high accuracy. In contrast,
at micrometer scales the stochastic noise from dislocation ensembles is not marginal but
plays a major role in the plastic response, when the size of dislocation microstructure
is in the same order of magnitude as the sample size. The activation of dislocation
ensembles can be characterised by stochastic processes leading to a discontinuous plastic
response. This behaviour makes it impossible to predict the exact stress-strain curve on
an elementary level – only statistical statements can be formed, therefore a statistical
approach must be applied when it comes to specimen testing at this size scale.

The first remarkable evidences of intermittent crystal plasticity phenomena were
observed in ice single crystals under creep deformation [76, 118], however, these experi-
ments gave only an indirect possibility of investigations as they only used AE detection
for the observation of the strong signals. A couple of years later SEM experiments (Ni
single-crystalline micropillar compression [109, 26, 110]) were conducted to find out that
the plastic response of single crystal micropillars are dominated by instabilities in the
form of strain jumps. The fact that micron sized samples behave differently than bulk
materials raises the following questions [6, 33, 57].

1. Is there a limit between microscopic and macroscopic deformation?

2. What are the good definitions for material strength parameters, e.g. yield point or
ultimate tensile strength?

The statistical nature of this behaviour requires large number of samples to be tested.
FIB milling [87] is one of the most frequent method for fabricating micropillars, i.e.
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micron-sized pillars. During the fabrication process the sample is under visual control of
a SEM providing a conventional way for milling, and is not limited to material or crystal
type, however, slight differences in the technique may be required. FIB was introduced
as a comprehensive method to prepare wide range of shapes and materials under different
circumstances individually, as per request, meaning that FIB is a time consuming "Jolly
Joker" technique. FIB-less techniques have been also introduced [17, 58] to shorten
fabrication time of micropillars, but they lack the possibility to control the properties
of dislocation-structure in the micropillars. Moreover it cannot be used on arbitrary
material and pillars are only semi-fixed to the surface due to the underlying technique,
which leaves FIB-less technique an unpracticed method in micropillar fabrication for the
purpose of investigation micron-scale plasticity.

There are two main approaches commonly used in FIB milling to fabricate micropillars
[52]. They are summarised in Table 6.1.

Table 6.1 The two major FIB approaches used before 2015 are compared. The method
used in this study combines the two.

Approach latheral annular

Directions

the ion beam is
almost perpendicular
to the axis of the micropillar;
the sample is rotated
around the axis of the pillar
forming a pair of skew lines
with the axis of ion beam

the pillar axis is always parallel
to the ion beam axis;
the sample is rotated
around the pillar axis

Shape

strong control on shape;
cylindrical shape
can be obtained if
the stage is rotating
at a constant speed
while the beam is on

weak control on shape;
more or less tampered shape;
cylindrical shape is preferred

Advantages perfect shape control time effective;
smaller ion damage and pollution

The new method described here combines the two techniques so that it is considerably
faster and yet still suitable for a wide range of pillar shapes [122].

The new fabrication method was needed to produce micropillars with moderate
resources in order to produce such an amount of them which is suitable for statistical
analysis [55].
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In our demonstrative work compression tests were performed on micropillars fabricated
on the surface of a bulk material of Al - 5% Mg alloy which exhibits the Portevin-Le
Chatelier (PLC) effect [104, 20, 41, 127]. In this type of alloy the stress-strain curve even
for bulk samples shows intermittent plastic response to external shear which originates
from the periodic pile-ups and break-outs (pinning and depinning) of dislocations pinned
at the solute atoms acting as obstacles for mobile dislocations [41, 127]. Compared to
non-PLC dislocation avalanches, which cannot be envisaged as a depinning phenomenon
[56], PLC dislocation avalanches generate stronger AE signals, which helps to catch AE
signals and couple them with the stress-drops measured on the stress-strain curves.

6.2 Sample preparation
In this study we focus on investigating collective dislocation phenomena, therefore two
properties of the sample are desired. On the one hand large dislocation density serves
our goal in the term of stronger AE signals, and on the other hand small enough samples
are preferred which provides isolable stress-drops in the stress-strain curves. Dislocation
density in FCC metals, such as Al, varies from 1011 /m2 to 1014 /m2, therefore the mean
dislocation spacing varies from 0.1 µm to 3 µm. Dislocation patters, i.e. the cell-like
structure is often formed in these materials with a characteristic size scale of 10 times
the mean dislocation spacing, therefore a specimen size not larger than 1 µm to 30 µm is
desired. It is worth to mention that although dislocation density and the characteristic
size of the cell-structure depend on the applied plastic strain and sample size, their ratio
remains the same [128, 29].

In situ micropillar deformation demands high requirements on the sample. Outstand-
ing technological proficiency is required to prepare such samples which meet all those
requirements. Without going into details the following procedure was performed to
achieve the appropriate surface quality, specimen size, initial dislocation density and
orientation.

1. An industry-standard cast Al - 5%Mg alloy was used. The typical grain size was in
the order of millimetres.

2. A cubic shaped sample was cut by mechanical cutting. The untouched surface was
used later for the measurements.

3. The surface was finely etched and electropolished in a mixture of percholric acid
and D2 electrolyte under 60 mA/mm2.
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4. Orientation of many grains was measured with electron back-scatter diffraction.
The grain with an orientation closest to < 123 > was selected. Its precise orientation
was determined.

5. The sample was cut with electric discharge machine so that the normal surface of
the selected grain is oriented to the < 123 > direction (multiple slip) within the
precision of machining.

6. Electropolishing under 60 mA/mm2.

7. Heat treatment at 200 ◦C for 72 hour was performed.

8. Electropolishing under 30 mA/mm2.

9. Predeformation: compression along the direction < 123 > with a load of 20 MPa.

10. The initial dislocation density was measured by X-ray line profile analysis and by
electron transmission microscopy, its value was 2 · 1013 /m2. The ideal specimen
size was determined as 4 µm × 4 µm × 13 µm with a rectangular shape meaning
that the height/width ratio was 3:1, a commonly applied ratio in earlier studies.

After the sample preparation the fabrication process has been started.

1. A surrounding hole was hewed around the micropillar by a large 30 nA Ga ion
current. The active region during the milling is marked by a yellow grid in Fig. 6.1.
In this step the surface of the sample was perpendicular to the ion beam.

2. The surface was then covered with a thin Pt film. The purpose of this Pt cap
is two-fold. First it protects the underlying Al pillar from further perpendicular
fabrication which helps to maintain the definite shape of the side of square-shaped
pillar. Second the amorphous Pt layer due to its large microhardness helps to
decrease the misalignment and surface effects between the tip of the indentor and
the sample during the compression test. This latter makes the stress below the Pt
cap more homogeneous therefore the intermittent plastic response will come from
the body of the pillar.

3. The top of the pillar was marked at the middle with a cross to help further
alignment.

4. The stage was then changed which tilted the sample by 52° and then the sample
was re-tilted by 7° so that the ion beam hit the surface of the sample from 45°.
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5. This was followed by further individual milling steps indicated in Fig. 6.2.

6. The tapering was further decreased by a final polishing step with a small ion
current of 100 mA and acceleration voltage from 10 kV to 20 kV over-tilted by
1° with respect to the normal of the surface [73]. During this step the Pt layer
protected the top of the surface. The Pt layer was not damaged considerably.

Fig. 6.1 Both latheral and annular approaches were used during micropillar fabrication.
(a) The pillar was first hewed from the surface. FIB was directed from the point of view
perpendicular to the surface marked by the yellow grid at 30 nA current and at high
voltage to create a whole around the pillar to fasten up further fabrication. The limb at
the bottom provides a good view angle during the compression test.
(b) During the final milling step the sample was tilted by 45° and a smaller ion current
of 5 nA was used. The FIB was directed from the point of view to the yellow grid. In this
step the top of the micropillar was already coated by a thin layer of Pt for protection.

Apart from the rough digging mentioned in the first step, high milling angles were
used in step 5. Despite the lower digging speed of the last milling steps the whole process
was 2.5 to 3 times faster then the commonly used perpendicular-only ion beam setup
[54]. The last step may also help to decrease the Ga ion implantation [11] even though it
could be improved or revised [34].

The following points sum up the most important features of the milling procedure
proposed in this study.

• Micropillars can be fabricated from any part of the flat surface of the bulk sample.
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• Micropillar preparation is touchless, thus damage or predeformation of the pillar
can be arbitrary predefined or completely avoided during the the entire production
procedure.

• The final shape of the pillar is taper-free, i.e. the inclination of the side of the pillar
was less than ±0.5°.

• The method is considerably faster than the one suggested earlier, with a net mean
milling time of less than 4 h for the pillar size used in this study (4 × 4 × 12 µm3).

• FIB induced pillar hardening due to Ga implantation is decreased.

6.3 In situ device
For an in situ micromechanical test the testing device has to fit into the vacuum chamber
of the SEM. Such compression devices are commercially available, yet we used an
inexpensive solution. The device easily fits into the vacuum chamber of a FEI Quanta
3D SEM1. A schematic sketch is shown in Fig. 6.3.

Two linear ultrasonic motors (denoted by X and Y in Fig. 6.3) position the sample in
the x and y directions. The AE detector is mounted on the top of the motors X and Y. In
z direction the sample can be moved by two motors. The first stage is moved by a gross
linear step motor for raw movement moving the sample 0.1 mm close to the indentation
tip. The second stage is moved by a piezoelectric motor (piezoelectric positioning, PEP)
with a resolution of 0.1 nm. Only this stage is used for the compression test. The
in-house fabricated spring – which has a low longitudinal but high transversal stiffness –
is mounted onto the PEP stage and its movement is registered by the Z distance sensor,
a capacitive sensor with a resolution of 0.1 nm. With this latter two units both the
deformation of the sample and the force can be determined. The deformation of the
sample is ϵ = d − e, where d is the prescribed movement of the PEP stage (by Z fine)
and e is the measured elongation of the spring (by Z distance). The acting force can be
calculated from F = k · e, where k is the spring constant determined from calibration.
For pillar compression a flat punch diamond tip was used. To avoid static charges each
item was grounded and a weakly conducting boron-doped tip was used.

To benefit from the high precision motors and sensors thermal and elastic elongation
of the device must be prevented during the compression tests which take typically several
minutes. To keep the temperature of the sample, X and Y motors constant, a Peltier

1Produced by FEI, Hillsboro, Oregon, USA
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Fig. 6.2 Step 5 during pillar fabrication is detailed in this figure. Ion current was 5 nA.
(a) Right after the raw pillar fabrication showed in Fig 6.1a. the sample was rotated
around the pillar axis by a total of 45°. FIB was directed to two rectangular area merked
by a red grid.
(b) The sample was rotated by 180° around the pillar axis. FIB was directed to the
yellow grid to form the same sides of the sample but from the other direction.
(c) The sample was rotated by 90° around the pillar axis and the beam was directed to
the green grid.
(d) The sample was rotated by 180° around the pillar axis to finish the shaping of the
last two sides. FIB is directed onto the blue grid area.
(e) Steps a-d already gave a rectangular shaped pillar but to gain an even smoother
shape they were repeated under 1 nA first and 0.1 nA second. The final pillar is shown
in the inset.
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cooling system was also mounted. The cold point of the cooling system was mounted
onto the stage while the hot point was mounted onto the Quanta 3D SEM’s appropriate,
preconceived spot for Peltier cooling. This setup stabilised the temperature of the sample
at 15 ◦C. As the spring behaves as an harmonic oscillator one has to deal with this
disturbing effect. In an in-air environment air flows between the lamellae providing the
necessary damping, but this is not the case in a vacuum chamber. Strong permanent
magnets were installed next to the spring body to generate eddy current in order to
provide the necessary damping.

Fig. 6.3 The X, Y, Z fine, Z gross and Z distance sensor are commercially available
products while the frame, the cooling, and the Z force motor are in-house designed.

To capture the phenomena caused by the PLC effect and dislocation avalanches, a
minimum data collection rate of 1 kHz is required along with a fast feedback controlling
system, faster than any commercially available products. An analogous proportional-
integral-derivative-type feedback electronics is developed in-house and used along with a
fast 16 bit AD converter. The range and resolution parameters available for our device
are summarised in table 6.2

Table 6.2 The main parameters of our NanoTest device. The force sensor has two
operating modes and can be improved or adjusted as the spring is interchangeable.

Part name total range resolution accuracy
X and Y stages ±8 mm 0.5 µm 0.01 µm
Z gross stage 9 mm 2 µm 0.5 µm
Z fine stage 35 µm 1 nm 0.1 nm
Force sensor 20 mN and 50 mN 1 µN and 2.5 µN 1 µN and 2.5 µN

6.4 Acoustic emission measurements
An AE measuring system was installed right below the sample to study the dynamic
processes during the compression of the micropillars. An AE detector detects the
transient elastic waves generated by fast elastic energy release processes. Such signals
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are originated from localised structural rearrangements, such as collective dislocation
motion or twinning. As a consequence AE detectors can provide information on dynamic
phenomena involved in plastic deformation [42].

AE signals can be used in bulk materials to identify the deformation mechanisms
activated at different stages of the stress-strain curve [13, 119, 28, 63]. The motion of a
single dislocation creates vibration with a characteristic energy below the sensitivity of
AE detectors. At least dozens or hundreds of dislocations must move at the same time
to generate an "audible" signal for AE detectors meaning that AE signals correspond to
collective dislocation motion [100]. AE detection was already used in bulk samples, as
the crackling or avalanche-like plastic response does not only characterise micron-scale
objects [119], but due to the huge number of simultaneously moving dislocations in bulk
materials, the contribution of each avalanche to the total strain is smaller and smaller as
the specimen size increases which results in a smooth stress-strain curve at a specimen
size of a millimetre. Therefore AE can be a valuable technique on the macro scale to
provide information about the underlying mechanism that cannot be revealed from the
stress-strain curves solely. To our knowledge, the first successful investigation of AE
signals from micron-sized pillars was performed in the framework of this study.

A Physical Acoustics PCI-2 acquistion board was used to capture and store the
preamplified AE signals from the detector until the readout. A 60 dB gain was applied on
the direct signal of the detector between the frequency range from 100 kHz to 1200 kHz
then the board mentioned sampled the signal at a 2 MHz rate between ±10 V using a
18 bit A/D converter. The noise of the card (without detector) is 17 dB and with the
detector attached to the surface inside the vacuum chamber was not larger than 24 dB,
which is in agreement with the product bulletin provided by the product manufacturer. In
our experiment a threshold level 26 dB was used. The signal was recorded simultaneously
with the stress and strain data.

The series of micropillars were fabricated from the same grain. The sample was
pressed against the AE transducer using a metallic spring. To improve the acoustic
contact, vacuum grease was also used to fill up the gap between the AE transducer and
the sample.

A constant strain rate was applied on the Al - 5%Mg micropillar during the test. The
calculated force and the AE signal recorded are plotted in Fig. 6.4. As it can be seen
in the figure the sample shows the well-known PLC instability. It is suspected that the
stress drops correspond to the collective depinning of the dislocations from the solute
atoms as obstacles generating a measurable AE signal marked by the four red lines. From
the negative slope of stress-real strain curve one can identify the strep-drops.
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Fig. 6.4 The load and the local maximum of the AE signal versus time obtained from a
micropillar compression test under constant strain rate are plotted.
(a) Inset a shows a typical stress drop enlarged.
(b) Inset b shows the waveform of an individual AE peak on a ms scale.

Further investigations are required to unfold how stress drops caused by the PLC
instability differ from the stress drops caused by dislocation avalanches. Such a comparison
could be set up using non-PLC capable pure Al micropillars. As seen in Fig. 6.4a,
large AE signal is detected right before the onset of the stress drop. The PLC effect
can suppress or at least compete with the intrinsic intermittent dislocation motion
originated from dislocation avalanches, especially at size scale of the fabricated micropillar
(4 µm3 × 4 µm3 × 12 µm3). This two effects screen the well-known periodic stress drop
structure of the stress-strain curve by introducing uncorrelated stress-drops due to
dislocation avalanches.

The distinguishable large peaks in the acoustic signal shown in Fig. 6.4b indicate that
AS signal detection related to dislocation avalanches may be feasible even for samples
with a small volume of 100 µm3.

6.5 Summary
The plastic response caused by the external stress shows intermittent characteristic at
the micron scale, a phenomenon not observed in bulk samples. Although the stress-strain
curve from compression test differs in general from sample to sample but they may share
similar behaviour and an approach based on statistical investigation can be suitable to
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unravel the underlying stochastic processes and identify some parameter characterising
the system examined. Therefore numerous tests must be performed requiring micropillars
are needed. For that reason the efficiency of the technique used for micropillar fabrication
must be improved in order to produce micropillars in a number suitable for statistical
ensembling.

A high precision, fast-feedback micromechanical compression device was used in our
laboratory to measure the stress and strain during the compression with extra care. All
the data and the in situ SEM arrangement validate the plausible assumptions based on
AE signal detection. The unit of the three mutually supportive investigation method
gives an original tool suitable to perform micromechanical tests at the aim of revealing
the stochastic properties of micron scale plasticity.

Notes in regard to the thesis
In this study technological advancement in micropillar fabrication and compression
were introduced. It is well emphasised how important they are in order to start mass
investigation on micron scale plasticity and a demonstrative example was also given.
At this stage one cannot compare yet the properties of micron scale plasticity obtained
theoretically with the ones observed experimentally in this study, but the step made
here is elementary necessary to achieve this goal. Ongoing research with new results are
already available but not achieved the state of a publishable level.

My specific contribution to this study is the following. I played a role in the selection
and pretreatment of the cast aluminum and I was also involved in the dislocation density
measurement performed by X-ray line profile analysis. Even though many times it
required abilities not associated with the skills of a doctoral student in physics, these
engineering-like challenges must have been solved to take a step further in the field of
micron scale plasticity.

I look forward for challenges in the improvement of the force sensor, the AE signal
detection and the data analysis. I believe the resource requested is given to fabricate
numerous PLC and non-PLC micropillars, the compression test would serve valuable
information on their behaviour and a comparison with bulk samples could provide the
next step further for characterising micron scale plasticity.



Chapter 7

Summary, összefoglaló

In English
The topic of my doctoral thesis was inspired by the diversity of the collective and
stochastic properties of dislocations. Nowadays the size scales accessible for computational
simulations and experiments overlap for crystalline materials. They can be modelled
with computers and can be investigated by, for example, scanning electron microscopes,
even in an in-situ deformation setup too.

As the first step of my thesis I approached the issue from a theoretical point of view.
I developed a cellular automaton model based on the continuum theory of dislocations
and investigated the role of the relevant parameters in the region of small deformations.
The model handles the flow stress on cell-level (τw) and it is considered as a random
variable and calibrated via lower scale, discrete dislocation dynamic (DDD) simulations.
The expected value of τw and the size of the applied discrete plastic strain on the cells are
calibrated via the comparison of the stress-strain curve of the CA model and two other
DDD models. The efficiency of the multiscale modelling is reflected on that that beyond
the fitted properties of the model it shows the same type of universality classes with the
DDD simulations. Based on the findings a plasticity model has been also introduced.

The CA model is applicable on materials with internal disorder that undergo strain
softening, if the fracture is due to strain localisation. To model this behaviour a
softening mechanism has been introduced. The disorder in the material is provided
by the distribution of τw. The results of the simulations show, that in materials with
higher disorder the applicable highest stress is significantly larger, and failure occurs at
considerably larger plastic strain.

The CA models used above have strong assumptions on dislocation correlations.
To this end the equation of motions of the CA model is extended with stress terms
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attributable to these correlations. Linear stability analysis (LSA) shows the possibility
of dislocation pattern formation and link the free parameters of the model to the
characteristic wavelength of the pattern. My simulation results obtained from this CA
model follows well the prediction of the LSA, so does a non-discrete model, where in
contrary to the extremal dynamics of the CA, hydrodynamic-like transport equations
are used. Despite the elemental differences between the models they both built upon
new stress terms attributed to the more precise continuum theory, and therefore they
indeed show qualitatively same results, showing the robustness of the theory.

In the last part of my thesis I approached the topic from an experimental point of view.
In the micron scale the plastic deformation of crystalline materials show avalanche-like
behaviour. The key of the research work is the recognition, that in this size scale the
deformation response of each micron-sized sample is different from sample to sample,
therefore, characterisation of materials must rely on a statistical approach. This requires
a large amount of data measured on the samples, and the origin of the data measured
must be well interpreted and evaluated. To this end, on the one hand, a new micropillar-
fabrication method is proposed facilitating the mass production of the samples with the
required shape. On the other hand, a unique experimental setup has been implemented
making it possible to track the in-situ compression procedure faster than ever before in
an electron microscope, and due to an attached acoustic emission detector coupling the
avalanches observed with the acoustic signals detected became possible.

Magyarul
Doktori tézisem témáját a diszlokációk mozgásának kollektív és sztochasztikus tulajdon-
ságainak a sokszínűsége biztosította. Ma már a vizsgált kristályos anyagok méretskálái
összeérnek a numerikus szimulációs és a kísérleti oldalról: olyan anyagok modellezhetőek
számítógéppel, amelyek vizsgálhatóak pl. pásztázó elektronmikroszkópban, akár in-situ
deformáció közben is.

Doktori munkám első lépéseként elméleti úton közelítettem meg a témakört. A
diszlokációk kontinuum-elméleti leírására épülő sejtautomata (CA) modellt fejlesztettem
és vizsgáltam a releváns paraméterek szerepét a kis deformációk tartományában. A CA
modellben a cellaszintű folyáshatárt (τw-t) véletlen változóként kezeltem, és alacsonyabb
skálájú, diszkrét diszlokációdinamikai modellek alapján kalibráltam. A τw várható
értékét és a cellákban alkalmazott diszkrét deformációs lépés nagyságát pedig a CA, és
két másik DDD modell feszültség-deformációs görbéi alapján kalibráltam. A CA modell
eredményessége abban mutatkozik meg, hogy az illesztett tulajdonságokon felül a modell
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azonos típusú univerzális skálázási tulajdonságokat mutat, mint a DDD szimulációk. Az
eredmények alapján egy plaszticitás modell is bemutatásra került.

A CA modell alkalmazható olyan alakítási lágyulást szenvedő anyagok törésének
modellezésére is, ahol a törést a deformáció lokalizáció okozza. Ehhez bevezettem a
modellben egy lágyulási mechanizmust. Az így kapott modellben a rendszer rendezetlen-
ségét a τw eloszlása biztosítja. A szimulációk eredménye azt mutatta, hogy a nagyobb
rendezetlenségű anyagokban az alkalmazható maximális feszültség jelentősen nő és jóval
nagyobb plasztikus deformáció után következik be a törés.

A fentebb használt CA modell erős feltételezéseket tesz a diszlokáció korrelációkra.
Ezért a CA modell mozgásegyenleteit kiegészítettem olyan további feszültségtagokkal,
amelyek eredete a korrelációkra vezethető vissza. Lineáris stabilitásanalízis (LSA) alapján
tudható, hogy lehetőség van diszlokációmintázatok fejlődésére, valamint az LSA kapcsola-
tot teremt a modell szabad paraméterei és a mintázat jellemző hullámhossza között. A CA
szimulációs eredményei azt mutatták, hogy a modell jól követi az LSA jóslatát, hasonlóan
egy nem diszkrét, és a CA modell extrém dinamikájával szemben egy hidrodinamika-
szerű transzport-egyenletet használó modellel. Ez a kétfajta megvalósítás alapvetően
különbözik egymástól, de ugyanazokon, a pontosabb kontinuumelmélethez tartozó új
erőkön alapulnak, és eredményeink alapján éppen ezért minőségileg azonos eredményt is
adnak, amely mutatja az elmélet robusztusságát.

A doktori munkámat a téma kísérleti oldalról való megközelítésével zártam. Itt a
mikron méretű fémes anyagok plasztikus deformációjában megjelenő lavinaszerű viselkedés
vizsgálata volt az előtérben. A munka kulcseleme, hogy ezen a méretskálán minden egyes
mikroméretű kristály deformációs válasza más és más, így az anyagoknak csak statisztikai
értelemben adhatunk tulajdonságokat. Ehhez elengedhetetlen, hogy nagymennyiségű
adatot lehessen a mintákról összegyűjteni, és hogy a mért adatok fizikai háttere világos
legyen. Ennek elősegítése céljából egyrészt egy új mikrooszlop-megmunkálási eljárást
javasoltunk, amellyel minden eddiginél gyorsabban lehet a kívánt alakú mikrooszlopokat
előállítani. Másrészt egy unikális kísérleti összeállítást valósítottunk meg, amelynek
segítségével minden eddiginél gyorsabb lekövetéssel lehetséges a mikrooszlopok összeny-
omásának in-situ elektronmikroszkópos vizsgálata, így egy csatolt akusztikus emissziós
detektorral pontosan párosítani tudjuk a diszlokáció lavinákat és az érzékelt akusztikus
jeleket.
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Appendix A

Dimensionless units

In the case when dislocation cores can be considered pointlike (e.g. all the size scales are
orders of magnitude larger), dislocation systems are invariant under the following scaling
transformation:

r 7→ r/c (A.1)
γ 7→ c · γ (A.2)
τ 7→ c · τ, (A.3)

(A.4)

where r is the spatial coordinate, γ is the plastic shear strain, and τ is the shear stress
(c > 0). This universal feature is a consequence of the 1/r type (scale-free) decay of the
stress field of the dislocation. This also means that in an infinite dislocation system only
one length scale can appear besides the size of the Burgers vector b, the mean dislocation
distance ρ−1/2, where ρ is the average total dislocation density. We, therefore, introduce a
dimensionless unit system by choosing c = ρ−1/2 and divide all the quantities mentioned
before with their corresponding natural material specific unit,

r′ =r/ρ−1/2 = r/ρ−1/2 (A.5)
γ′ =ρ−1/2γ/b = γ/

(
bρ1/2

)
(A.6)

τ ′ =ρ−1/2 · τ/

(
µb

2π (1 − ν)

)
= τ/

(
µbρ1/2

2π (1 − ν)

)
, (A.7)

where µ is the shear modulus, ν is the Poisson ratio. At many parts of this thesis, these
dimensionless units are used. This interesting and useful principle is elaborated in the
work of Zaiser and Sandfeld [136].
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