Tehát előző órán láttuk, hogy
u
k
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWG1bWaaSbaaSqaaiaadUgaaeqaaaaa@4B11@
és
v
k
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWG2bWaaSbaaSqaaiaadUgaaeqaaaaa@4B12@
-ra az alábbi feltételek adódtak:
u
k
2
−
v
k
2
=
1
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWG1bWaa0baaSqaaiaadUgaaeaacaaIYaaaaOGaeyOeI0IaamODamaaDaaaleaacaWGRbaabaGaaGOmaaaakiabg2da9iaaigdaaaa@5164@
és
[
e
k
+
n
v
(
k
)
]
u
k
v
k
+
n
v
(
k
)
(
u
k
2
+
v
k
2
)
=
0
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaadaWadaqaaiaadwgadaWgaaWcbaGaaC4AaaqabaGccqGHRaWkcaWGUbGaamODamaabmaabaGaaC4AaaGaayjkaiaawMcaaaGaay5waiaaw2faaiaadwhadaWgaaWcbaGaam4AaaqabaGccaWG2bWaaSbaaSqaaiaadUgaaeqaaOGaey4kaSIaamOBaiaadAhadaqadaqaaiaahUgaaiaawIcacaGLPaaadaqadaqaaiaadwhadaqhaaWcbaGaam4AaaqaaiaaikdaaaGccqGHRaWkcaWG2bWaa0baaSqaaiaadUgaaeaacaaIYaaaaaGccaGLOaGaayzkaaGaeyypa0JaaGimaaaa@65C2@
. Utóbbi abból jött, hogy azt akartuk,
hogy
α
k
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqaHXoqydaWgaaWcbaGaaC4Aaaqabaaaaa@4BBA@
és
α
k
+
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqaHXoqydaqhaaWcbaGaaC4AaaqaaiabgUcaRaaaaaa@4C9D@
bevezetésével a Hamilton operátor
diagonális legyen, azaz a
H
=
U
+
H
11
+
H
20
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGibGaeyypa0JaamyvaiabgUcaRiaadIeadaWgaaWcbaGaaGymaiaaigdaaeqaaOGaey4kaSIaamisamaaBaaaleaacaaIYaGaaGimaaqabaaaaa@5254@
egyenletből a
H
20
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGibWaaSbaaSqaaiaaikdacaaIWaaabeaaaaa@4B6A@
tagra
H
20
=
0
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGibWaaSbaaSqaaiaaikdacaaIWaaabeaakiabg2da9iaaicdaaaa@4D34@
fennálljon.
u
k
=
ch
χ
k
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWG1bWaaSbaaSqaaiaadUgaaeqaaOGaeyypa0Jaci4yaiaacIgacqaHhpWydaWgaaWcbaGaam4Aaaqabaaaaa@50C9@
és
v
k
=
sh
χ
k
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWG2bWaaSbaaSqaaiaadUgaaeqaaOGaeyypa0Jaci4CaiaacIgacqaHhpWydaWgaaWcbaGaam4Aaaqabaaaaa@50DA@
választással
u
k
2
−
v
k
2
=
1
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWG1bWaa0baaSqaaiaadUgaaeaacaaIYaaaaOGaeyOeI0IaamODamaaDaaaleaacaWGRbaabaGaaGOmaaaakiabg2da9iaaigdaaaa@5164@
egyenletet azonnal kielégítettük.
A
sh
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaaciGGZbGaaiiAaaaa@4AE0@
és
ch
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaaciGGJbGaaiiAaaaa@4AD0@
függvények azonosságait
felhasználva vegyük észre a következőket!
2
u
k
v
k
=
sh
(
2
χ
k
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaaIYaGaamyDamaaBaaaleaacaWGRbaabeaakiaadAhadaWgaaWcbaGaam4AaaqabaGccqGH9aqpciGGZbGaaiiAamaabmaabaGaaGOmaiabeE8aJnaaBaaaleaacaWGRbaabeaaaOGaayjkaiaawMcaaaaa@5605@
u
k
2
+
v
k
2
=
ch
(
2
χ
k
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWG1bWaa0baaSqaaiaadUgaaeaacaaIYaaaaOGaey4kaSIaamODamaaDaaaleaacaWGRbaabaGaaGOmaaaakiabg2da9iGacogacaGGObWaaeWaaeaacaaIYaGaeq4Xdm2aaSbaaSqaaiaadUgaaeqaaaGccaGLOaGaayzkaaaaaa@5795@
Felhasználva, hogy
H
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGibaaaa@49C8@
-t diagonálisnak szeretnénk,
th
(
2
χ
k
)
=
−
n
v
(
k
)
e
k
+
n
v
(
k
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaaciGG0bGaaiiAamaabmaabaGaaGOmaiabeE8aJnaaBaaaleaacaWGRbaabeaaaOGaayjkaiaawMcaaiabg2da9iabgkHiTmaalaaabaGaamOBaiaadAhadaqadaqaaiaahUgaaiaawIcacaGLPaaaaeaacaWGLbWaaSbaaSqaaiaahUgaaeqaaOGaey4kaSIaamOBaiaadAhadaqadaqaaiaahUgaaiaawIcacaGLPaaaaaaaaa@5DD2@
adódik. Ebből
sh
(
2
χ
k
)
=
−
n
v
(
k
)
E
(
k
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaaciGGZbGaaiiAamaabmaabaGaaGOmaiabeE8aJnaaBaaaleaacaWGRbaabeaaaOGaayjkaiaawMcaaiabg2da9iabgkHiTmaalaaabaGaamOBaiaadAhadaqadaqaaiaahUgaaiaawIcacaGLPaaaaeaacaWGfbWaaeWaaeaacaWHRbaacaGLOaGaayzkaaaaaaaa@59B7@
és
ch
(
2
χ
k
)
=
e
k
+
n
v
(
k
)
E
(
k
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaaciGGJbGaaiiAamaabmaabaGaaGOmaiabeE8aJnaaBaaaleaacaWGRbaabeaaaOGaayjkaiaawMcaaiabg2da9maalaaabaGaamyzamaaBaaaleaacaWHRbaabeaakiabgUcaRiaad6gacaWG2bWaaeWaaeaacaWHRbaacaGLOaGaayzkaaaabaGaamyramaabmaabaGaaC4AaaGaayjkaiaawMcaaaaaaaa@5BB0@
adódik, ahol
E
(
k
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIjxAHbstHrhAaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gatuuDJXwAK1uy0HwmaeXbfv3ySLgzG0uy0Hgip5wzaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeu0xh8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaiaabiWacmaaeaqabeaafaGbaCaaaOqaaiaadweadaqadaqaaiaahUgaaiaawIcacaGLPaaaaaa@52BD@
még nem biztos, hogy épp a korábban keresett. Visszaírva
azonban a
sh
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIjxAHbstHrhAaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gatuuDJXwAK1uy0HwmaeXbfv3ySLgzG0uy0Hgip5wzaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeu0xh8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaiaabiWacmaaeaqabeaafaGbaCaaaOqaaiGacohacaGGObaaaa@515B@
és
ch
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIjxAHbstHrhAaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gatuuDJXwAK1uy0HwmaeXbfv3ySLgzG0uy0Hgip5wzaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeu0xh8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaiaabiWacmaaeaqabeaafaGbaCaaaOqaaiGacogacaGGObaaaa@514B@
függvények kétszeres szögértékeit
az egyszeresekre, s ezt behelyettesítve a még ki nem elégített
egyenletre, láthatjuk, hogy az teljesül, így
E
(
k
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIjxAHbstHrhAaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gatuuDJXwAK1uy0HwmaeXbfv3ySLgzG0uy0Hgip5wzaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeu0xh8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaiaabiWacmaaeaqabeaafaGbaCaaaOqaaiaadweadaqadaqaaiaahUgaaiaawIcacaGLPaaaaaa@52BD@
valóban a keresett mennyiséggel
egyenlő.
A kvázirészecskék diszperziós relációja
Ebből már kifejezhető
E
(
k
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGfbWaaeWaaeaacaWHRbaacaGLOaGaayzkaaaaaa@4C42@
:
E
(
k
)
=
[
e
k
+
n
v
(
k
)
]
2
+
n
2
v
2
(
k
)
=
E
k
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGfbWaaeWaaeaacaWHRbaacaGLOaGaayzkaaGaeyypa0ZaaOaaaeaadaWadaqaaiaadwgadaWgaaWcbaGaaC4AaaqabaGccqGHRaWkcaWGUbGaamODamaabmaabaGaaC4AaaGaayjkaiaawMcaaaGaay5waiaaw2faamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaad6gadaahaaWcbeqaaiaaikdaaaGccaWG2bWaaWbaaSqabeaacaaIYaaaaOWaaeWaaeaacaWHRbaacaGLOaGaayzkaaaaleqaaOGaeyypa0JaamyramaaBaaaleaacaWHRbaabeaaaaa@61D6@
továbbá
u
k
2
=
1
2
[
e
k
+
n
v
(
k
)
E
k
+
1
]
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWG1bWaa0baaSqaaiaadUgaaeaacaaIYaaaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaadaWadaqaamaalaaabaGaamyzamaaBaaaleaacaWHRbaabeaakiabgUcaRiaad6gacaWG2bWaaeWaaeaacaWHRbaacaGLOaGaayzkaaaabaGaamyramaaBaaaleaacaWHRbaabeaaaaGccqGHRaWkcaaIXaaacaGLBbGaayzxaaaaaa@5B59@
v
k
2
=
1
2
[
e
k
+
n
v
(
k
)
E
k
−
1
]
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWG1bWaa0baaSqaaiaadUgaaeaacaaIYaaaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaadaWadaqaamaalaaabaGaamyzamaaBaaaleaacaWHRbaabeaakiabgUcaRiaad6gacaWG2bWaaeWaaeaacaWHRbaacaGLOaGaayzkaaaabaGaamyramaaBaaaleaacaWHRbaabeaaaaGccqGHsislcaaIXaaacaGLBbGaayzxaaaaaa@5B64@
Ábrázolhatjuk az
E
(
k
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGfbWaaeWaaeaacaWHRbaacaGLOaGaayzkaaaaaa@4C42@
függvényt. Kicsi
k
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWHRbaaaa@49EF@
esetén
E
k
≈
2
n
v
(
0
)
e
k
∼
k
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGfbWaaSbaaSqaaiaahUgaaeqaaOGaeyisIS7aaOaaaeaacaaIYaGaamOBaiaadAhadaqadaqaaiaaicdaaiaawIcacaGLPaaacaWGLbWaaSbaaSqaaiaahUgaaeqaaaqabaGccqWI8iIocaWGRbaaaa@55CA@
, mivel
e
k
∼
k
2
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGLbWaaSbaaSqaaiaahUgaaeqaaOGaeSipIOJaaC4AamaaCaaaleqabaGaaGOmaaaaaaa@4E15@
, tehát lineárisként indul a
függvény. Ezeket a gerjesztéseket nevezhetjük fononoknak. A
közelítésben feltettük, hogy a kölcsönhatás gyenge, így az
erős kölcsönhatásokat nem tudja leírni, ami pl. a rotonokat
okozza (pl
H
e
4
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGibGaamyzamaaCaaaleqabaGaaGinaaaaaaa@4B9D@
esetében). Állítás, hogy a gyenge
kölcsönhatású közelítés az inflexiós környékét jól leírja.
A
kondenzátumon kívüli atomok száma
N
'
=
∑
k
≠
0
〈
B
E
C
|
a
k
+
a
k
|
B
E
C
〉
=
∑
k
≠
0
〈
B
E
C
|
v
k
2
α
k
α
k
+
+
u
k
2
α
k
+
α
k
︸
0
járulék
+
...
|
B
E
C
〉
=
∑
k
≠
0
v
k
2
=
V
∫
d
3
k
(
2
π
)
3
v
k
2
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGobGaai4jaiabg2da9maaqafabaWaa4raaeaacaWGcbGaamyraiaadoeaaeqacaGLPmIaay5bSdGaamyyamaaDaaaleaacaWHRbaabaGaey4kaScaaOGaamyyamaaBaaaleaacaWHRbaabeaakmaaEiaabeqaaiaadkeacaWGfbGaam4qaaGaay5bSlaawQYiaaWcbaGaaC4AaiabgcMi5kaaicdaaeqaniabggHiLdGccqGH9aqpdaaeqbqaamaadmaabaGaamODamaaDaaaleaacaWGRbaabaGaaGOmaaaakiabgUcaRmaaEeaabaGaamOqaiaadweacaWGdbaabeGaayzkJiaawEa7aiaadAhadaqhaaWcbaGaam4AaaqaaiaaikdaaaGccqaHXoqydaWgaaWcbaGaaC4AaaqabaGccqaHXoqydaqhaaWcbaGaaC4AaaqaaiabgUcaRaaakiabgUcaRmaayaaabaGaamyDamaaDaaaleaacaWGRbaabaGaaGOmaaaakiabeg7aHnaaDaaaleaacaWHRbaabaGaey4kaScaaOGaeqySde2aaSbaaSqaaiaahUgaaeqaaaqaaiaaicdacaqGGaGaaeOAaiaabgoacaqGYbGaaeyDaiaabYgacaqGPdGaae4AaaGccaGL44pacqGHRaWkcaGGUaGaaiOlaiaac6cadaGhcaqabeaacaWGcbGaamyraiaadoeaaiaawEa7caGLQmcaaiaawUfacaGLDbaaaSqaaiaahUgacqGHGjsUcaaIWaaabeqdcqGHris5aOGaeyypa0ZaaabuaeaacaWG2bWaa0baaSqaaiaadUgaaeaacaaIYaaaaaqaaiaahUgacqGHGjsUcaaIWaaabeqdcqGHris5aOGaeyypa0JaamOvamaapeaabaWaaSaaaeaacaWGKbWaaWbaaSqabeaacaaIZaaaaOGaam4AaaqaamaabmaabaGaaGOmaiabec8aWbGaayjkaiaawMcaamaaCaaaleqabaGaaG4maaaaaaGccaWG2bWaa0baaSqaaiaadUgaaeaacaaIYaaaaaqabeqaniabgUIiYdaaaa@AF6C@
Ahol az összegre
vonatkozó közelítést (határátmenetet) alkalmaztuk. A szög
szerinti integrálást elvégezve
N
'
=
V
4
π
(
2
π
)
3
∫
0
∞
d
k
⋅
k
2
1
2
[
−
1
+
e
k
+
n
v
(
0
)
E
k
]
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGobGaai4jaiabg2da9iaadAfadaWcaaqaaiaaisdacqaHapaCaeaadaqadaqaaiaaikdacqaHapaCaiaawIcacaGLPaaadaahaaWcbeqaaiaaiodaaaaaaOWaa8qCaeaacaWGKbGaam4AaiabgwSixlaadUgadaahaaWcbeqaaiaaikdaaaGcdaWcaaqaaiaaigdaaeaacaaIYaaaamaadmaabaGaeyOeI0IaaGymaiabgUcaRmaalaaabaGaamyzamaaBaaaleaacaWGRbaabeaakiabgUcaRiaad6gacaWG2bWaaeWaaeaacaaIWaaacaGLOaGaayzkaaaabaGaamyramaaBaaaleaacaWGRbaabeaaaaaakiaawUfacaGLDbaaaSqaaiaaicdaaeaacqGHEisPa0Gaey4kIipaaaa@6D9B@
Használjuk a
e
k
n
v
(
0
)
=
z
2
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaadaWcaaqaaiaadwgadaWgaaWcbaGaam4AaaqabaaakeaacaWGUbGaamODamaabmaabaGaaGimaaGaayjkaiaawMcaaaaacqGH9aqpcaWG6bWaaWbaaSqabeaacaaIYaaaaaaa@523A@
helyettesítést, ekkor
z
=
k
ξ
B
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWG6bGaeyypa0Jaam4Aaiabe67a4naaBaaaleaacaWGcbaabeaaaaa@4EA6@
és
ξ
B
=
ℏ
2
m
n
v
(
0
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqaH+oaEdaWgaaWcbaGaamOqaaqabaGccqGH9aqpqaaaaaaaaaWdbmaalaaabaGaeS4dHGgabaWaaOaaaeaacaaIYaGaamyBaiaad6gacaWG2bWaaeWaaeaacaaIWaaacaGLOaGaayzkaaaaleqaaaaaaaa@5414@
, így
N
'
=
V
4
π
2
1
ξ
B
3
∫
0
∞
d
z
⋅
z
2
[
−
1
+
z
2
+
1
(
z
4
+
2
z
2
)
1
/
2
]
=
8
N
2
π
n
a
3
+
...
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGobGaai4jaiabg2da9maalaaabaGaamOvaaqaaiaaisdacqaHapaCdaahaaWcbeqaaiaaikdaaaaaaOWaaSaaaeaacaaIXaaabaGaeqOVdG3aa0baaSqaaiaadkeaaeaacaaIZaaaaaaakmaapehabaGaamizaiaadQhacqGHflY1caWG6bWaaWbaaSqabeaacaaIYaaaaOWaamWaaeaacqGHsislcaaIXaGaey4kaSYaaSaaaeaacaWG6bWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGymaaqaamaabmaabaGaamOEamaaCaaaleqabaGaaGinaaaakiabgUcaRiaaikdacaWG6bWaaWbaaSqabeaacaaIYaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIXaGaai4laiaaikdaaaaaaaGccaGLBbGaayzxaaaaleaacaaIWaaabaGaeyOhIukaniabgUIiYdGccqGH9aqpdaWcaaqaaiaaiIdacaWGobaabaGaaGOmamaakaaabaGaeqiWdahaleqaaaaakmaakaaabaGaamOBaiaadggadaahaaWcbeqaaiaaiodaaaaabeaakiabgUcaRiaac6cacaGGUaGaaiOlaaaa@7B8A@
ahol az
a
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGHbaaaa@49E1@
szórási hosszt a
v
(
0
)
=
4
π
ℏ
2
a
m
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWG2bWaaeWaaeaacaaIWaaacaGLOaGaayzkaaGaeyypa0deaaaaaaaaa8qadaWcaaqaa8aacaaI0aGaeqiWda3dbiabl+qiOnaaCaaaleqabaGaaGOmaaaakiaadggaaeaacaWGTbaaaaaa@53FD@
egyenlet definiálja. Ez a potenciál
az
r
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWHYbaaaa@49F6@
helyen:
v
(
r
)
=
4
π
ℏ
2
a
m
δ
(
3
)
(
r
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWG2bWaaeWaaeaacaWHYbaacaGLOaGaayzkaaGaeyypa0deaaaaaaaaa8qadaWcaaqaa8aacaaI0aGaeqiWda3dbiabl+qiOnaaCaaaleqabaGaaGOmaaaakiaadggaaeaacaWGTbaaaiabes7aKnaaCaaaleqabaWaaeWaaeaacaaIZaaacaGLOaGaayzkaaaaaOWaaeWaaeaacaWHYbaacaGLOaGaayzkaaaaaa@5AE4@
Láthatjuk, hogy
a
=
0
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGHbGaeyypa0JaaGimaaaa@4BA1@
esetén – ami a kölcsönhatás nélküli
gáznak felel meg – nincs a kondenzátumon kívül részecske, azaz
N
'
=
0
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGobGaai4jaiabg2da9iaaicdaaaa@4C39@
.
N
0
=
N
−
N
'
=
N
[
1
−
8
3
π
⋅
n
a
3
︸
D
.
lan param
,
≪
1
+
...
]
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGobWaaSbaaSqaaiaaicdaaeqaaOGaeyypa0JaamOtaiabgkHiTiaad6eacaGGNaGaeyypa0JaamOtamaadmaabaGaaGymaiabgkHiTmaalaaabaGaaGioaaqaaiaaiodadaGcaaqaaiabec8aWbWcbeaaaaGccqGHflY1daagaaqaamaakaaabaGaamOBaiaadggadaahaaWcbeqaaiaaiodaaaaabeaaaeaacaqGebGaaiOlaiaabYgacaqGHbGaaeOBaiaabccacaqGWbGaaeyyaiaabkhacaqGHbGaaeyBaiaabYcacaqGGaGaeSOAI0JaaeymaaGccaGL44pacqGHRaWkcaGGUaGaaiOlaiaac6caaiaawUfacaGLDbaaaaa@6ED0@
Kondenzált Bose rendszerek véges
hőmérsékleten
Perturbációszámítás, nem ideális gáz vizsgálata
A Hamilton operátor:
H
=
∑
k
e
k
a
k
+
a
k
+
1
2
V
∑
k
1
,
k
2
,
k
3
,
k
4
k
1
+
k
2
=
k
3
+
k
4
v
(
k
1
−
k
3
)
a
k
1
+
a
k
2
+
a
k
3
a
k
4
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGibGaeyypa0ZaaabuaeaacaWGLbWaaSbaaSqaaiaahUgaaeqaaOGaamyyamaaDaaaleaacaWHRbaabaGaey4kaScaaOGaamyyamaaBaaaleaacaWHRbaabeaaaeaacaWHRbaabeqdcqGHris5aOGaey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaiaadAfaaaWaaabuaeaacaWG2bWaaeWaaeaacaWHRbWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaaC4AamaaBaaaleaacaaIZaaabeaaaOGaayjkaiaawMcaaiaadggadaqhaaWcbaGaaC4AamaaBaaameaacaaIXaaabeaaaSqaaiabgUcaRaaakiaadggadaqhaaWcbaGaaC4AamaaBaaameaacaaIYaaabeaaaSqaaiabgUcaRaaakiaadggadaWgaaWcbaGaaC4AamaaBaaameaacaaIZaaabeaaaSqabaGccaWGHbWaaSbaaSqaaiaahUgadaWgaaadbaGaaGinaaqabaaaleqaaaabaeqabaGaaC4AamaaBaaameaacaaIXaaabeaaliaacYcacaWHRbWaaSbaaWqaaiaaikdaaeqaaSGaaiilaiaahUgadaWgaaadbaGaaG4maaqabaWccaGGSaGaaC4AamaaBaaameaacaaI0aaabeaaaSqaaiaahUgadaWgaaadbaGaaGymaaqabaWccqGHRaWkcaWHRbWaaSbaaWqaaiaaikdaaeqaaSGaeyypa0JaaC4AamaaBaaameaacaaIZaaabeaaliabgUcaRiaahUgadaWgaaadbaGaaGinaaqabaaaaSqab0GaeyyeIuoaaaa@837D@
ahol
v
(
k
)
=
4
π
ℏ
2
a
/
m
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWG2bWaaeWaaeaacaWHRbaacaGLOaGaayzkaaGaeyypa0JaaGinaiabec8aWbbaaaaaaaaapeGaeS4dHG2aaWbaaSqabeaacaaIYaaaaOGaamyyaiaac+cacaWGTbaaaa@54BB@
.
K
=
H
−
μ
N
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGlbGaeyypa0JaamisaiabgkHiTiabeY7aTjaad6eaaaa@4F14@
.
T
<
T
c
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGubGaeyipaWJaamivamaaBaaaleaacaWGJbaabeaaaaa@4CC5@
esetén előírjuk, hogy
〈
a
0
〉
=
N
0
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaadaaadaqaaiaadggadaWgaaWcbaGaaGimaaqabaaakiaawMYicaGLQmcacqGH9aqpdaGcaaqaaiaad6eadaWgaaWcbaGaaGimaaqabaaabeaaaaa@4F70@
. Ez persze csalás, de nem baj.
Milyen szimmetria sérül ezáltal? Nézzük az
a
k
↦
a
k
e
i
Θ
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGHbWaaSbaaSqaaiaahUgaaeqaaOGaeSOPHeMaamyyamaaBaaaleaacaWHRbaabeaakiaadwgadaahaaWcbeqaaiaadMgacqqHyoquaaaaaa@5250@
és a
a
k
+
↦
a
k
+
e
−
i
Θ
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGHbWaa0baaSqaaiaahUgaaeaacqGHRaWkaaGccqWIMgsycaWGHbWaa0baaSqaaiaahUgaaeaacqGHRaWkaaGccaWGLbWaaWbaaSqabeaacqGHsislcaWGPbGaeuiMdefaaaaa@5503@
transzformációt! Ez a (globális)
U
(
1
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGvbWaaeWaaeaacaaIXaaacaGLOaGaayzkaaaaaa@4C19@
szimmetria (szimmetria, azaz a transzformációt
elvégezhetjük a mérhető paraméterek változása nélkül). A
megadott előírás ezt sérti. Goldstone tétele szerint pedig
sérülő folytonos (globális) szimmetria gap nélküli gerjesztéseket
eredményez. Vezessük be a
b
k
=
a
k
−
N
0
δ
k
,0
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGIbWaaSbaaSqaaiaahUgaaeqaaOGaeyypa0JaamyyamaaBaaaleaacaWHRbaabeaakiabgkHiTmaakaaabaGaamOtamaaBaaaleaacaaIWaaabeaaaeqaaOGaeqiTdq2aaSbaaSqaaiaahUgacaGGSaGaaGimaaqabaaaaa@5511@
és a
b
k
+
=
a
k
+
−
N
0
δ
k
,0
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGIbWaa0baaSqaaiaahUgaaeaacqGHRaWkaaGccqGH9aqpcaWGHbWaa0baaSqaaiaahUgaaeaacqGHRaWkaaGccqGHsisldaGcaaqaaiaad6eadaWgaaWcbaGaaGimaaqabaaabeaakiabes7aKnaaBaaaleaacaWHRbGaaiilaiaaicdaaeqaaaaa@56D7@
jelöléseket! Most írjuk be ezt a
Hamilton operátorba! Vigyázat, hosszú lesz!
∑
k
(
e
k
−
μ
)
a
k
+
a
k
=
∑
k
(
e
k
−
μ
)
(
b
k
+
+
N
0
δ
k
,0
)
(
b
k
+
N
0
δ
k
,0
)
=
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaadaaeqbqaamaabmaabaGaamyzamaaBaaaleaacaWGRbaabeaakiabgkHiTiabeY7aTbGaayjkaiaawMcaaiaadggadaqhaaWcbaGaaC4AaaqaaiabgUcaRaaakiaadggadaWgaaWcbaGaaC4AaaqabaaabaGaaC4Aaaqab0GaeyyeIuoakiabg2da9maaqafabaWaaeWaaeaacaWGLbWaaSbaaSqaaiaadUgaaeqaaOGaeyOeI0IaeqiVd0gacaGLOaGaayzkaaWaaeWaaeaacaWGIbWaa0baaSqaaiaahUgaaeaacqGHRaWkaaGccqGHRaWkdaGcaaqaaiaad6eadaWgaaWcbaGaaGimaaqabaaabeaakiabes7aKnaaBaaaleaacaWHRbGaaiilaiaaicdaaeqaaaGccaGLOaGaayzkaaWaaeWaaeaacaWGIbWaaSbaaSqaaiaahUgaaeqaaOGaey4kaSYaaOaaaeaacaWGobWaaSbaaSqaaiaaicdaaeqaaaqabaGccqaH0oazdaWgaaWcbaGaaC4AaiaacYcacaaIWaaabeaaaOGaayjkaiaawMcaaiabg2da9aWcbaGaaC4Aaaqab0GaeyyeIuoaaaa@7898@
=
∑
k
(
e
k
−
μ
)
[
b
k
+
b
k
+
N
0
(
b
k
+
+
b
k
)
δ
k
,0
+
N
0
δ
k
,0
]
=
∑
k
(
e
k
−
μ
)
b
k
+
b
k
︸
K
0
−
μ
N
(
b
0
+
b
0
+
)
︸
K
1
'
−
μ
N
0
︸
K
0
'
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqGH9aqpdaaeqbqaamaabmaabaGaamyzamaaBaaaleaacaWGRbaabeaakiabgkHiTiabeY7aTbGaayjkaiaawMcaamaadmaabaGaamOyamaaDaaaleaacaWHRbaabaGaey4kaScaaOGaamOyamaaBaaaleaacaWHRbaabeaakiabgUcaRiaad6eadaWgaaWcbaGaaGimaaqabaGcdaqadaqaaiaadkgadaqhaaWcbaGaaC4AaaqaaiabgUcaRaaakiabgUcaRiaadkgadaWgaaWcbaGaaC4AaaqabaaakiaawIcacaGLPaaacqaH0oazdaWgaaWcbaGaaC4AaiaacYcacaaIWaaabeaakiabgUcaRiaad6eadaWgaaWcbaGaaGimaaqabaGccqaH0oazdaWgaaWcbaGaaC4AaiaacYcacaaIWaaabeaaaOGaay5waiaaw2faaiabg2da9aWcbaGaaC4Aaaqab0GaeyyeIuoakmaayaaabaWaaabuaeaadaqadaqaaiaadwgadaWgaaWcbaGaaC4AaaqabaGccqGHsislcqaH8oqBaiaawIcacaGLPaaacaWGIbWaa0baaSqaaiaahUgaaeaacqGHRaWkaaGccaWGIbWaaSbaaSqaaiaahUgaaeqaaaqaaiaahUgaaeqaniabggHiLdaaleaacaWGlbWaaSbaaWqaaiaaicdaaeqaaaGccaGL44pacqGHsisldaagaaqaaiabeY7aTnaakaaabaGaamOtaaWcbeaakmaabmaabaGaamOyamaaBaaaleaacaaIWaaabeaakiabgUcaRiaadkgadaqhaaWcbaGaaGimaaqaaiabgUcaRaaaaOGaayjkaiaawMcaaaWcbaGaam4samaaBaaameaacaaIXaaabeaaliaacEcaaOGaayjo+dGaeyOeI0YaaGbaaeaacqaH8oqBcaWGobWaaSbaaSqaaiaaicdaaeqaaaqaaiaadUeadaWgaaadbaGaaGimaaqabaWccaGGNaaakiaawIJ=aaaa@9A47@
A kölcsönhatási rész:
v
(
0
)
2
V
⋅
∑
k
1
,
k
2
,
k
3
,
k
4
k
1
+
k
2
=
k
3
+
k
4
a
k
1
+
a
k
2
+
a
k
3
a
k
4
=
K
I
,4
+
K
I
,3
+
K
I
,1
+
K
I
,0
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaadaWcaaqaaiaadAhadaqadaqaaiaaicdaaiaawIcacaGLPaaaaeaacaaIYaGaamOvaaaadaaeqbqaaiaadggadaqhaaWcbaGaaC4AamaaBaaameaacaaIXaaabeaaaSqaaiabgUcaRaaakiaadggadaqhaaWcbaGaaC4AamaaBaaameaacaaIYaaabeaaaSqaaiabgUcaRaaakiaadggadaWgaaWcbaGaaC4AamaaBaaameaacaaIZaaabeaaaSqabaGccaWGHbWaaSbaaSqaaiaahUgadaWgaaadbaGaaGinaaqabaaaleqaaaabaeqabaGaaC4AamaaBaaameaacaaIXaaabeaaliaacYcacaWHRbWaaSbaaWqaaiaaikdaaeqaaSGaaiilaiaahUgadaWgaaadbaGaaG4maaqabaWccaGGSaGaaC4AamaaBaaameaacaaI0aaabeaaaSqaaiaahUgadaWgaaadbaGaaGymaaqabaWccqGHRaWkcaWHRbWaaSbaaWqaaiaaikdaaeqaaSGaeyypa0JaaC4AamaaBaaameaacaaIZaaabeaaliabgUcaRiaahUgadaWgaaadbaGaaGinaaqabaaaaSqab0GaeyyeIuoakiabg2da9iaadUeadaWgaaWcbaGaamysaiaacYcacaaI0aaabeaakiabgUcaRiaadUeadaWgaaWcbaGaamysaiaacYcacaaIZaaabeaakiabgUcaRiaadUeadaWgaaWcbaGaamysaiaacYcacaaIXaaabeaakiabgUcaRiaadUeadaWgaaWcbaGaamysaiaacYcacaaIWaaabeaaaaa@8297@
ahol
K
I
,4
=
1
2
V
⋅
∑
k
1
,
k
2
,
k
3
,
k
4
k
1
+
k
2
=
k
3
+
k
4
b
k
1
+
b
k
2
+
b
k
3
b
k
4
v
(
k
1
−
k
3
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGlbWaaSbaaSqaaiaadMeacaGGSaGaaGinaaqabaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaaIYaGaamOvaaaacqGHflY1daaeqbqaaiaadkgadaqhaaWcbaGaaC4AamaaBaaameaacaaIXaaabeaaaSqaaiabgUcaRaaakiaadkgadaqhaaWcbaGaaC4AamaaBaaameaacaaIYaaabeaaaSqaaiabgUcaRaaakiaadkgadaWgaaWcbaGaaC4AamaaBaaameaacaaIZaaabeaaaSqabaGccaWGIbWaaSbaaSqaaiaahUgadaWgaaadbaGaaGinaaqabaaaleqaaOGaamODamaabmaabaGaaC4AamaaBaaaleaacaaIXaaabeaakiabgkHiTiaahUgadaWgaaWcbaGaaG4maaqabaaakiaawIcacaGLPaaaaSabaeqabaGaaC4AamaaBaaameaacaaIXaaabeaaliaacYcacaWHRbWaaSbaaWqaaiaaikdaaeqaaSGaaiilaiaahUgadaWgaaadbaGaaG4maaqabaWccaGGSaGaaC4AamaaBaaameaacaaI0aaabeaaaSqaaiaahUgadaWgaaadbaGaaGymaaqabaWccqGHRaWkcaWHRbWaaSbaaWqaaiaaikdaaeqaaSGaeyypa0JaaC4AamaaBaaameaacaaIZaaabeaaliabgUcaRiaahUgadaWgaaadbaGaaGinaaqabaaaaSqab0GaeyyeIuoaaaa@7D50@
K
I
,3
=
N
0
v
(
0
)
2
V
⋅
∑
k
1
,
k
2
,
k
3
,
k
4
k
1
+
k
2
=
k
3
+
k
4
(
b
k
1
+
b
k
2
+
b
k
3
δ
k
4
,0
+
b
k
1
+
b
k
2
+
b
k
4
δ
k
3
,0
+
b
k
1
+
b
k
3
b
k
4
δ
k
2
,0
+
b
k
2
+
b
k
3
b
k
4
δ
k
1
,0
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGlbWaaSbaaSqaaiaadMeacaGGSaGaaG4maaqabaGccqGH9aqpdaWcaaqaamaakaaabaGaamOtamaaBaaaleaacaaIWaaabeaaaeqaaOGaamODamaabmaabaGaaGimaaGaayjkaiaawMcaaaqaaiaaikdacaWGwbaaaiabgwSixpaaqafabaWaaeWaaeaacaWGIbWaa0baaSqaaiaahUgadaWgaaadbaGaaGymaaqabaaaleaacqGHRaWkaaGccaWGIbWaa0baaSqaaiaahUgadaWgaaadbaGaaGOmaaqabaaaleaacqGHRaWkaaGccaWGIbWaaSbaaSqaaiaahUgadaWgaaadbaGaaG4maaqabaaaleqaaOGaeqiTdq2aaSbaaSqaaiaahUgadaWgaaadbaGaaGinaaqabaWccaGGSaGaaGimaaqabaGccqGHRaWkcaWGIbWaa0baaSqaaiaahUgadaWgaaadbaGaaGymaaqabaaaleaacqGHRaWkaaGccaWGIbWaa0baaSqaaiaahUgadaWgaaadbaGaaGOmaaqabaaaleaacqGHRaWkaaGccaWGIbWaaSbaaSqaaiaahUgadaWgaaadbaGaaGinaaqabaaaleqaaOGaeqiTdq2aaSbaaSqaaiaahUgadaWgaaadbaGaaG4maaqabaWccaGGSaGaaGimaaqabaGccqGHRaWkcaWGIbWaa0baaSqaaiaahUgadaWgaaadbaGaaGymaaqabaaaleaacqGHRaWkaaGccaWGIbWaaSbaaSqaaiaahUgadaWgaaadbaGaaG4maaqabaaaleqaaOGaamOyamaaBaaaleaacaWHRbWaaSbaaWqaaiaaisdaaeqaaaWcbeaakiabes7aKnaaBaaaleaacaWHRbWaaSbaaWqaaiaaikdaaeqaaSGaaiilaiaaicdaaeqaaOGaey4kaSIaamOyamaaDaaaleaacaWHRbWaaSbaaWqaaiaaikdaaeqaaaWcbaGaey4kaScaaOGaamOyamaaBaaaleaacaWHRbWaaSbaaWqaaiaaiodaaeqaaaWcbeaakiaadkgadaWgaaWcbaGaaC4AamaaBaaameaacaaI0aaabeaaaSqabaGccqaH0oazdaWgaaWcbaGaaC4AamaaBaaameaacaaIXaaabeaaliaacYcacaaIWaaabeaaaOGaayjkaiaawMcaaaWceaqabeaacaWHRbWaaSbaaWqaaiaaigdaaeqaaSGaaiilaiaahUgadaWgaaadbaGaaGOmaaqabaWccaGGSaGaaC4AamaaBaaameaacaaIZaaabeaaliaacYcacaWHRbWaaSbaaWqaaiaaisdaaeqaaaWcbaGaaC4AamaaBaaameaacaaIXaaabeaaliabgUcaRiaahUgadaWgaaadbaGaaGOmaaqabaWccqGH9aqpcaWHRbWaaSbaaWqaaiaaiodaaeqaaSGaey4kaSIaaC4AamaaBaaameaacaaI0aaabeaaaaWcbeqdcqGHris5aaaa@AF05@
K
I
,2
=
N
0
2
V
⋅
∑
k
1
,
k
2
,
k
3
,
k
4
k
1
+
k
2
=
k
3
+
k
4
(
b
k
1
+
b
k
2
+
δ
k
3
,0
δ
k
4
,0
+
b
k
1
+
δ
k
2
,0
b
k
3
δ
k
4
,0
+
δ
k
1
,0
b
k
2
+
b
k
3
δ
k
4
,0
+
+
δ
k
1
,0
b
k
2
+
δ
k
3
,0
b
k
4
+
b
k
1
+
δ
k
2
,0
δ
k
3
,0
b
k
4
+
δ
k
1
,0
δ
k
2
,0
b
k
3
b
k
4
)
v
(
k
1
−
k
3
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGlbWaaSbaaSqaaiaadMeacaGGSaGaaGOmaaqabaGccqGH9aqpdaWcaaqaaiaad6eadaWgaaWcbaGaaGimaaqabaaakeaacaaIYaGaamOvaaaacqGHflY1daaeqbqaamaabmaaeaqabeaacaWGIbWaa0baaSqaaiaahUgadaWgaaadbaGaaGymaaqabaaaleaacqGHRaWkaaGccaWGIbWaa0baaSqaaiaahUgadaWgaaadbaGaaGOmaaqabaaaleaacqGHRaWkaaGccqaH0oazdaWgaaWcbaGaaC4AamaaBaaameaacaaIZaaabeaaliaacYcacaaIWaaabeaakiabes7aKnaaBaaaleaacaWHRbWaaSbaaWqaaiaaisdaaeqaaSGaaiilaiaaicdaaeqaaOGaey4kaSIaamOyamaaDaaaleaacaWHRbWaaSbaaWqaaiaaigdaaeqaaaWcbaGaey4kaScaaOGaeqiTdq2aaSbaaSqaaiaahUgadaWgaaadbaGaaGOmaaqabaWccaGGSaGaaGimaaqabaGccaWGIbWaaSbaaSqaaiaahUgadaWgaaadbaGaaG4maaqabaaaleqaaOGaeqiTdq2aaSbaaSqaaiaahUgadaWgaaadbaGaaGinaaqabaWccaGGSaGaaGimaaqabaGccqGHRaWkcqaH0oazdaWgaaWcbaGaaC4AamaaBaaameaacaaIXaaabeaaliaacYcacaaIWaaabeaakiaadkgadaqhaaWcbaGaaC4AamaaBaaameaacaaIYaaabeaaaSqaaiabgUcaRaaakiaadkgadaWgaaWcbaGaaC4AamaaBaaameaacaaIZaaabeaaaSqabaGccqaH0oazdaWgaaWcbaGaaC4AamaaBaaameaacaaI0aaabeaaliaacYcacaaIWaaabeaakiabgUcaRaqaaiabgUcaRiabes7aKnaaBaaaleaacaWHRbWaaSbaaWqaaiaaigdaaeqaaSGaaiilaiaaicdaaeqaaOGaamOyamaaDaaaleaacaWHRbWaaSbaaWqaaiaaikdaaeqaaaWcbaGaey4kaScaaOGaeqiTdq2aaSbaaSqaaiaahUgadaWgaaadbaGaaG4maaqabaWccaGGSaGaaGimaaqabaGccaWGIbWaaSbaaSqaaiaahUgadaWgaaadbaGaaGinaaqabaaaleqaaOGaey4kaSIaamOyamaaDaaaleaacaWHRbWaaSbaaWqaaiaaigdaaeqaaaWcbaGaey4kaScaaOGaeqiTdq2aaSbaaSqaaiaahUgadaWgaaadbaGaaGOmaaqabaWccaGGSaGaaGimaaqabaGccqaH0oazdaWgaaWcbaGaaC4AamaaBaaameaacaaIZaaabeaaliaacYcacaaIWaaabeaakiaadkgadaWgaaWcbaGaaC4AamaaBaaameaacaaI0aaabeaaaSqabaGccqGHRaWkcqaH0oazdaWgaaWcbaGaaC4AamaaBaaameaacaaIXaaabeaaliaacYcacaaIWaaabeaakiabes7aKnaaBaaaleaacaWHRbWaaSbaaWqaaiaaikdaaeqaaSGaaiilaiaaicdaaeqaaOGaamOyamaaBaaaleaacaWHRbWaaSbaaWqaaiaaiodaaeqaaaWcbeaakiaadkgadaWgaaWcbaGaaC4AamaaBaaameaacaaI0aaabeaaaSqabaaaaOGaayjkaiaawMcaaaWceaqabeaacaWHRbWaaSbaaWqaaiaaigdaaeqaaSGaaiilaiaahUgadaWgaaadbaGaaGOmaaqabaWccaGGSaGaaC4AamaaBaaameaacaaIZaaabeaaliaacYcacaWHRbWaaSbaaWqaaiaaisdaaeqaaaWcbaGaaC4AamaaBaaameaacaaIXaaabeaaliabgUcaRiaahUgadaWgaaadbaGaaGOmaaqabaWccqGH9aqpcaWHRbWaaSbaaWqaaiaaiodaaeqaaSGaey4kaSIaaC4AamaaBaaameaacaaI0aaabeaaaaWcbeqdcqGHris5aOGaamODamaabmaabaGaaC4AamaaBaaaleaacaaIXaaabeaakiabgkHiTiaahUgadaWgaaWcbaGaaG4maaqabaaakiaawIcacaGLPaaaaaa@DF15@
K
I
,1
=
N
0
3
/
2
2
V
v
(
0
)
(
2
b
0
+
+
2
b
0
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGlbWaaSbaaSqaaiaadMeacaGGSaGaaGymaaqabaGccqGH9aqpdaWcaaqaaiaad6eadaqhaaWcbaGaaGimaaqaaiaaiodacaGGVaGaaGOmaaaaaOqaaiaaikdacaWGwbaaaiaadAhadaqadaqaaiaaicdaaiaawIcacaGLPaaadaqadaqaaiaaikdacaWGIbWaa0baaSqaaiaaicdaaeaacqGHRaWkaaGccqGHRaWkcaaIYaGaamOyamaaBaaaleaacaaIWaaabeaaaOGaayjkaiaawMcaaaaa@5E89@
valamint
K
I
,0
=
N
0
2
2
V
v
(
0
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGlbWaaSbaaSqaaiaadMeacaGGSaGaaGimaaqabaGccqGH9aqpdaWcaaqaaiaad6eadaqhaaWcbaGaaGimaaqaaiaaikdaaaaakeaacaaIYaGaamOvaaaacaWG2bWaaeWaaeaacaaIWaaacaGLOaGaayzkaaaaaa@54A4@
Így tömör írásmódban
U
=
K
0
+
∑
i
=
0
4
K
I
,
i
+
K
0
'
+
K
1
'
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGvbGaeyypa0Jaam4samaaBaaaleaacaaIWaaabeaakiabgUcaRmaaqahabaGaam4samaaBaaaleaacaWGjbGaaiilaiaadMgaaeqaaOGaey4kaSIaam4samaaBaaaleaacaaIWaaabeaakiaacEcacqGHRaWkcaWGlbWaaSbaaSqaaiaaigdaaeqaaOGaai4jaaWcbaGaamyAaiabg2da9iaaicdaaeaacaaI0aaaniabggHiLdaaaa@5D38@
Green-függvény
Definiáljuk a következő Green-függvényeket!
G
1,1
(
k
,
τ
)
:
=
−
〈
T
τ
[
b
k
(
τ
)
⋅
b
k
+
(
0
)
]
〉
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGhbWaaSbaaSqaaiaaigdacaGGSaGaaGymaaqabaGcdaqadaqaaiaahUgacaGGSaGaeqiXdqhacaGLOaGaayzkaaGaaiOoaiabg2da9iabgkHiTmaaamaabaGaamivamaaBaaaleaacqaHepaDaeqaaOWaamWaaeaacaWGIbWaaSbaaSqaaiaahUgaaeqaaOWaaeWaaeaacqaHepaDaiaawIcacaGLPaaacqGHflY1caWGIbWaa0baaSqaaiaahUgaaeaacqGHRaWkaaGcdaqadaqaaiaaicdaaiaawIcacaGLPaaaaiaawUfacaGLDbaaaiaawMYicaGLQmcaaaa@673C@
ahol az operátor
τ
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqaHepaDaaa@4AC0@
függése ezt jelenti:
O
(
τ
)
=
e
K
τ
ℏ
O
S
e
−
K
τ
ℏ
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGpbWaaeWaaeaacqaHepaDaiaawIcacaGLPaaacqGH9aqpcaWGLbWaaWbaaSqabeaadaWcaaqaaiaadUeacqaHepaDaeaaqaaaaaaaaaWdbiabl+qiObaaaaGcpaGaam4tamaaBaaaleaacaWGtbaabeaakiaadwgadaahaaWcbeqaaiabgkHiTmaalaaabaGaam4saiabes8a0bqaa8qacqWIpecAaaaaaaaa@5B05@
várható értéke
〈
O
〉
=
S
p
(
ρ
G
O
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaadaaadaqaaiaad+eaaiaawMYicaGLQmcacqGH9aqpcaWGtbGaamiCamaabmaabaGaeqyWdi3aaSbaaSqaaiaadEeaaeqaaOGaam4taaGaayjkaiaawMcaaaaa@5391@
ahol
ρ
G
=
e
−
β
K
Z
G
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqaHbpGCdaWgaaWcbaGaam4raaqabaGccqGH9aqpcaWGLbWaaWbaaSqabeaadaWcaaqaaiabgkHiTiabek7aIjaadUeaaeaacaWGAbWaaSbaaWqaaiaadEeaaeqaaaaaaaaaaa@5320@
Ebből látszik, hogy a vannak olyan
operátorok, melyek várható értéke nem 0, noha megváltoztatják
a részecskeszámot. Soktestprobéma I órán ezt a Green-függvényt
használtuk. Az új, további függvények:
G
1,2
(
k
,
τ
)
=
−
〈
T
τ
[
b
−
k
(
τ
)
b
k
(
0
)
]
〉
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGhbWaaSbaaSqaaiaaigdacaGGSaGaaGOmaaqabaGcdaqadaqaaiaahUgacaGGSaGaeqiXdqhacaGLOaGaayzkaaGaeyypa0JaeyOeI0YaaaWaaeaacaWGubWaaSbaaSqaaiabes8a0bqabaGcdaWadaqaaiaadkgadaWgaaWcbaGaeyOeI0IaaC4AaaqabaGcdaqadaqaaiabes8a0bGaayjkaiaawMcaaiaadkgadaWgaaWcbaGaaC4AaaqabaGcdaqadaqaaiaaicdaaiaawIcacaGLPaaaaiaawUfacaGLDbaaaiaawMYicaGLQmcaaaa@643F@
G
2,1
(
k
,
τ
)
=
−
〈
T
τ
[
b
−
k
+
(
τ
)
b
k
+
(
0
)
]
〉
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGhbWaaSbaaSqaaiaaikdacaGGSaGaaGymaaqabaGcdaqadaqaaiaahUgacaGGSaGaeqiXdqhacaGLOaGaayzkaaGaeyypa0JaeyOeI0YaaaWaaeaacaWGubWaaSbaaSqaaiabes8a0bqabaGcdaWadaqaaiaadkgadaqhaaWcbaGaeyOeI0IaaC4AaaqaaiabgUcaRaaakmaabmaabaGaeqiXdqhacaGLOaGaayzkaaGaamOyamaaDaaaleaacaWHRbaabaGaey4kaScaaOWaaeWaaeaacaaIWaaacaGLOaGaayzkaaaacaGLBbGaayzxaaaacaGLPmIaayPkJaaaaa@6605@
G
2,2
(
k
,
τ
)
=
−
〈
T
τ
[
b
−
k
+
(
τ
)
b
−
k
(
0
)
]
〉
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGhbWaaSbaaSqaaiaaikdacaGGSaGaaGOmaaqabaGcdaqadaqaaiaahUgacaGGSaGaeqiXdqhacaGLOaGaayzkaaGaeyypa0JaeyOeI0YaaaWaaeaacaWGubWaaSbaaSqaaiabes8a0bqabaGcdaWadaqaaiaadkgadaqhaaWcbaGaeyOeI0IaaC4AaaqaaiabgUcaRaaakmaabmaabaGaeqiXdqhacaGLOaGaayzkaaGaamOyamaaBaaaleaacqGHsislcaWHRbaabeaakmaabmaabaGaaGimaaGaayjkaiaawMcaaaGaay5waiaaw2faaaGaayzkJiaawQYiaaaa@6610@
A fenti függvényekben
T
τ
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGubWaaSbaaSqaaiabes8a0bqabaaaaa@4BC5@
időrendező operátor: a nagyobb
argumentumú kerül „balra”, azonos argumentum esetén pedig a
keresztes kerül „balra”.
A Green függvények között az alábbi összefüggések érvényesek.
G
2,1
(
k
,
τ
)
=
G
1,2
(
−
k
,
−
τ
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGhbWaaSbaaSqaaiaaikdacaGGSaGaaGymaaqabaGcdaqadaqaaiaahUgacaGGSaGaeqiXdqhacaGLOaGaayzkaaGaeyypa0Jaam4ramaaBaaaleaacaaIXaGaaiilaiaaikdaaeqaaOWaaeWaaeaacqGHsislcaWHRbGaaiilaiabgkHiTiabes8a0bGaayjkaiaawMcaaaaa@5C11@
G
1,1
(
k
,
τ
)
=
G
2,2
(
−
k
,
τ
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGhbWaaSbaaSqaaiaaigdacaGGSaGaaGymaaqabaGcdaqadaqaaiaahUgacaGGSaGaeqiXdqhacaGLOaGaayzkaaGaeyypa0Jaam4ramaaBaaaleaacaaIYaGaaiilaiaaikdaaeqaaOWaaeWaaeaacqGHsislcaWHRbGaaiilaiabes8a0bGaayjkaiaawMcaaaaa@5B24@
Ezeket a
függvényeket mátrixba foglalhatjuk:
G
(
k
,
τ
)
=
(
G
1,1
G
1,2
G
2,1
G
2,2
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGhbWaaeWaaeaacaWHRbGaaiilaiabes8a0bGaayjkaiaawMcaaiabg2da9maabmaabaqbaeqabiGaaaqaaiaadEeadaWgaaWcbaGaaGymaiaacYcacaaIXaaabeaaaOqaaiaadEeadaWgaaWcbaGaaGymaiaacYcacaaIYaaabeaaaOqaaiaadEeadaWgaaWcbaGaaGOmaiaacYcacaaIXaaabeaaaOqaaiaadEeadaWgaaWcbaGaaGOmaiaacYcacaaIYaaabeaaaaaakiaawIcacaGLPaaaaaa@5DFC@
Általános összefüggés, hogy
G
α
,
β
(
k
,
i
ω
n
)
=
∫
0
β
ℏ
G
α
,
β
(
k
,
τ
)
e
i
ω
n
τ
d
τ
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGhbWaaSbaaSqaaiabeg7aHjaacYcacqaHYoGyaeqaaOWaaeWaaeaacaWHRbGaaiilaiaadMgacqaHjpWDdaWgaaWcbaGaamOBaaqabaaakiaawIcacaGLPaaacqGH9aqpdaWdXbqaaiaadEeadaWgaaWcbaGaeqySdeMaaiilaiabek7aIbqabaGcdaqadaqaaiaahUgacaGGSaGaeqiXdqhacaGLOaGaayzkaaGaamyzamaaCaaaleqabaGaamyAaiabeM8a3naaBaaameaacaWGUbaabeaaliabes8a0baakiaadsgacqaHepaDaSqaaiaaicdaaeaacqaHYoGyqaaaaaaaaaWdbiabl+qiObqdpaGaey4kIipaaaa@6F7E@
ahol
ω
n
=
2
n
π
β
ℏ
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqaHjpWDdaWgaaWcbaGaamOBaaqabaGccqGH9aqpdaWcaaqaaiaaikdacaWGUbGaeqiWdahabaGaeqOSdigeaaaaaaaaa8qacqWIpecAaaaaaa@535D@
, mivel valamennyi
G
α
,
β
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGhbWaaSbaaSqaaiabeg7aHjaacYcacqaHYoGyaeqaaaaa@4DE3@
periodikus
β
ℏ
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqaHYoGyqaaaaaaaaaWdbiabl+qiObaa@4BE5@
szerint a 2. argumentumában,
illetve
G
α
,
β
(
k
,
τ
)
=
1
β
ℏ
∑
n
G
(
k
,
i
ω
n
)
e
−
i
ω
n
τ
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGhbWaaSbaaSqaaiabeg7aHjaacYcacqaHYoGyaeqaaOWaaeWaaeaacaWHRbGaaiilaiabes8a0bGaayjkaiaawMcaaiabg2da9maalaaabaGaaGymaaqaaiabek7aIbbaaaaaaaaapeGaeS4dHGgaa8aadaaeqbqaaiaadEeadaqadaqaaiaahUgacaGGSaGaamyAaiabeM8a3naaBaaaleaacaWGUbaabeaaaOGaayjkaiaawMcaaiaadwgadaahaaWcbeqaaiabgkHiTiaadMgacqaHjpWDdaWgaaadbaGaamOBaaqabaWccqaHepaDaaaabaGaamOBaaqab0GaeyyeIuoaaaa@6A40@
A szabad Green-függvények:
G
1,1
(
0
)
(
k
,
i
ω
n
)
=
1
i
ω
n
−
ℏ
−
1
(
e
k
−
μ
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGhbWaa0baaSqaaiaaigdacaGGSaGaaGymaaqaamaabmaabaGaaGimaaGaayjkaiaawMcaaaaakmaabmaabaGaaC4AaiaacYcacaWGPbGaeqyYdC3aaSbaaSqaaiaad6gaaeqaaaGccaGLOaGaayzkaaGaeyypa0ZaaSaaaeaacaaIXaaabaGaamyAaiabeM8a3naaBaaaleaacaWGUbaabeaakiabgkHiTabaaaaaaaaapeGaeS4dHG2aaWbaaSqabeaacqGHsislcaaIXaaaaOWaaeWaaeaacaWGLbWaaSbaaSqaaiaadUgaaeqaaOGaeyOeI0IaeqiVd0gacaGLOaGaayzkaaaaaaaa@657E@
G
2,2
0
(
k
,
i
ω
n
)
=
1
−
i
ω
n
−
ℏ
−
1
(
e
k
−
μ
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGhbWaa0baaSqaaiaaikdacaGGSaGaaGOmaaqaaiaaicdaaaGcdaqadaqaaiaahUgacaGGSaGaamyAaiabeM8a3naaBaaaleaacaWGUbaabeaaaOGaayjkaiaawMcaaiabg2da9maalaaabaGaaGymaaqaaiabgkHiTiaadMgacqaHjpWDdaWgaaWcbaGaamOBaaqabaGccqGHsislqaaaaaaaaaWdbiabl+qiOnaaCaaaleqabaGaeyOeI0IaaGymaaaakmaabmaabaGaamyzamaaBaaaleaacaWGRbaabeaakiabgkHiTiabeY7aTbGaayjkaiaawMcaaaaaaaa@64E4@
G
1,2
0
(
k
,
i
ω
n
)
=
0
=
G
2,1
0
(
k
,
i
ω
n
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGhbWaa0baaSqaaiaaigdacaGGSaGaaGOmaaqaaiaaicdaaaGcdaqadaqaaiaahUgacaGGSaGaamyAaiabeM8a3naaBaaaleaacaWGUbaabeaaaOGaayjkaiaawMcaaiabg2da9iaaicdacqGH9aqpcaWGhbWaa0baaSqaaiaaikdacaGGSaGaaGymaaqaaiaaicdaaaGcdaqadaqaaiaahUgacaGGSaGaamyAaiabeM8a3naaBaaaleaacaWGUbaabeaaaOGaayjkaiaawMcaaaaa@61AB@
Feynman-diagramok
Milyen Feynman-digramok
fordulhatnak elő? A perturbáció most
K
1
'
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGlbWaaSbaaSqaaiaaigdaaeqaaOGaai4jaaaa@4B67@
és
K
I
,
i
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGlbWaaSbaaSqaaiaadMeacaGGSaGaamyAaaqabaaaaa@4C63@
,
i
∈
{
1,...,4
}
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGPbGaeyicI48aaiWaaeaacaaIXaGaaiilaiaac6cacaGGUaGaaiOlaiaacYcacaaI0aaacaGL7bGaayzFaaaaaa@528D@
(Soktestprobléma I-ben csak a
K
I
,4
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGlbWaaSbaaSqaaiaadMeacaGGSaGaaGinaaqabaaaaa@4C33@
volt).
K
I
,4
=
1
2
V
⋅
∑
k
1
,
k
2
,
k
3
,
k
4
k
1
+
k
2
=
k
3
+
k
4
b
k
1
+
b
k
2
+
b
k
3
b
k
4
v
(
k
1
−
k
3
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGlbWaaSbaaSqaaiaadMeacaGGSaGaaGinaaqabaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaaIYaGaamOvaaaacqGHflY1daaeqbqaaiaadkgadaqhaaWcbaGaaC4AamaaBaaameaacaaIXaaabeaaaSqaaiabgUcaRaaakiaadkgadaqhaaWcbaGaaC4AamaaBaaameaacaaIYaaabeaaaSqaaiabgUcaRaaakiaadkgadaWgaaWcbaGaaC4AamaaBaaameaacaaIZaaabeaaaSqabaGccaWGIbWaaSbaaSqaaiaahUgadaWgaaadbaGaaGinaaqabaaaleqaaOGaamODamaabmaabaGaaC4AamaaBaaaleaacaaIXaaabeaakiabgkHiTiaahUgadaWgaaWcbaGaaG4maaqabaaakiaawIcacaGLPaaaaSabaeqabaGaaC4AamaaBaaameaacaaIXaaabeaaliaacYcacaWHRbWaaSbaaWqaaiaaikdaaeqaaSGaaiilaiaahUgadaWgaaadbaGaaG4maaqabaWccaGGSaGaaC4AamaaBaaameaacaaI0aaabeaaaSqaaiaahUgadaWgaaadbaGaaGymaaqabaWccqGHRaWkcaWHRbWaaSbaaWqaaiaaikdaaeqaaSGaeyypa0JaaC4AamaaBaaameaacaaIZaaabeaaliabgUcaRiaahUgadaWgaaadbaGaaGinaaqabaaaaSqab0GaeyyeIuoaaaa@7D50@
(a tavalyiaknak megfelelően)
Az egyik tagja a
K
I
,3
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGlbWaaSbaaSqaaiaadMeacaGGSaGaaG4maaqabaaaaa@4C32@
-nak:
N
0
v
(
0
)
2
V
⋅
∑
k
1
,
k
2
,
k
3
,
k
4
k
1
+
k
2
=
k
3
+
k
4
b
k
1
+
b
k
2
+
b
k
3
δ
k
4
,0
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaadaWcaaqaamaakaaabaGaamOtamaaBaaaleaacaaIWaaabeaaaeqaaOGaamODamaabmaabaGaaGimaaGaayjkaiaawMcaaaqaaiaaikdacaWGwbaaaiabgwSixpaaqafabaGaamOyamaaDaaaleaacaWHRbWaaSbaaWqaaiaaigdaaeqaaaWcbaGaey4kaScaaOGaamOyamaaDaaaleaacaWHRbWaaSbaaWqaaiaaikdaaeqaaaWcbaGaey4kaScaaOGaamOyamaaBaaaleaacaWHRbWaaSbaaWqaaiaaiodaaeqaaaWcbeaakiabes7aKnaaBaaaleaacaWHRbWaaSbaaWqaaiaaisdaaeqaaSGaaiilaiaaicdaaeqaaaabaeqabaGaaC4AamaaBaaameaacaaIXaaabeaaliaacYcacaWHRbWaaSbaaWqaaiaaikdaaeqaaSGaaiilaiaahUgadaWgaaadbaGaaG4maaqabaWccaGGSaGaaC4AamaaBaaameaacaaI0aaabeaaaSqaaiaahUgadaWgaaadbaGaaGymaaqabaWccqGHRaWkcaWHRbWaaSbaaWqaaiaaikdaaeqaaSGaeyypa0JaaC4AamaaBaaameaacaaIZaaabeaaliabgUcaRiaahUgadaWgaaadbaGaaGinaaqabaaaaSqab0GaeyyeIuoaaaa@7834@
a kör egy
N
0
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaadaGcaaqaaiaad6eadaWgaaWcbaGaaGimaaqabaaabeaaaaa@4AC4@
szorzót jelöl
Az egyik tagja a
K
I
,2
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGlbWaaSbaaSqaaiaadMeacaGGSaGaaGOmaaqabaaaaa@4C31@
-nek
N
0
2
V
⋅
∑
k
1
,
k
2
,
k
3
,
k
4
k
1
+
k
2
=
k
3
+
k
4
δ
k
1
,0
b
k
2
+
b
k
3
δ
k
4
,0
v
(
k
1
−
k
3
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaadaWcaaqaaiaad6eadaWgaaWcbaGaaGimaaqabaaakeaacaaIYaGaamOvaaaacqGHflY1daaeqbqaaiabes7aKnaaBaaaleaacaWHRbWaaSbaaWqaaiaaigdaaeqaaSGaaiilaiaaicdaaeqaaOGaamOyamaaDaaaleaacaWHRbWaaSbaaWqaaiaaikdaaeqaaaWcbaGaey4kaScaaOGaamOyamaaBaaaleaacaWHRbWaaSbaaWqaaiaaiodaaeqaaaWcbeaakiabes7aKnaaBaaaleaacaWHRbWaaSbaaWqaaiaaisdaaeqaaSGaaiilaiaaicdaaeqaaaabaeqabaGaaC4AamaaBaaameaacaaIXaaabeaaliaacYcacaWHRbWaaSbaaWqaaiaaikdaaeqaaSGaaiilaiaahUgadaWgaaadbaGaaG4maaqabaWccaGGSaGaaC4AamaaBaaameaacaaI0aaabeaaaSqaaiaahUgadaWgaaadbaGaaGymaaqabaWccqGHRaWkcaWHRbWaaSbaaWqaaiaaikdaaeqaaSGaeyypa0JaaC4AamaaBaaameaacaaIZaaabeaaliabgUcaRiaahUgadaWgaaadbaGaaGinaaqabaaaaSqab0GaeyyeIuoakiaadAhadaqadaqaaiaahUgadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWHRbWaaSbaaSqaaiaaiodaaeqaaaGccaGLOaGaayzkaaaaaa@7D71@
K
I
,1
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGlbWaaSbaaSqaaiaadMeacaGGSaGaaGymaaqabaaaaa@4C30@
eltüntető részéhez tartozik
N
0
3
/
2
2
V
v
(
0
)
b
0
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaadaWcaaqaaiaad6eadaqhaaWcbaGaaGimaaqaaiaaiodacaGGVaGaaGOmaaaaaOqaaiaaikdacaWGwbaaaiaadAhadaqadaqaaiaaicdaaiaawIcacaGLPaaacaWGIbWaaSbaaSqaaiaaicdaaeqaaaaa@539D@
K
I
,0
=
N
0
2
2
V
v
(
0
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGlbWaaSbaaSqaaiaadMeacaGGSaGaaGimaaqabaGccqGH9aqpdaWcaaqaaiaad6eadaqhaaWcbaGaaGimaaqaaiaaikdaaaaakeaacaaIYaGaamOvaaaacaWG2bWaaeWaaeaacaaIWaaacaGLOaGaayzkaaaaaa@54A4@
K
1
'
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGlbWaaSbaaSqaaiaaigdaaeqaaOGaai4jaaaa@4B67@
egyik tagja (az eltüntető
operátorral)
(
−
μ
)
N
0
b
0
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaadaqadaqaaiabgkHiTiabeY7aTbGaayjkaiaawMcaamaakaaabaGaamOtamaaBaaaleaacaaIWaaabeaaaeqaaOGaamOyamaaBaaaleaacaaIWaaabeaaaaa@50C7@
a háromszög a
−
μ
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqGHsislcqaH8oqBaaa@4B9E@
-vel való szorzást jelöli
K
1
'
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGlbWaaSbaaSqaaiaaigdaaeqaaOGaai4jaaaa@4B67@
másik tagja (a keltő operátorral):
(
−
μ
)
N
0
b
0
+
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaadaqadaqaaiabgkHiTiabeY7aTbGaayjkaiaawMcaamaakaaabaGaamOtamaaBaaaleaacaaIWaaabeaaaeqaaOGaamOyamaaDaaaleaacaaIWaaabaGaey4kaScaaaaa@51AA@
K
0
'
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGlbWaaSbaaSqaaiaaicdaaeqaaOGaai4jaaaa@4B66@