Tehát előző órán láttuk, hogy u k MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWG1bWaaSbaaSqaaiaadUgaaeqaaaaa@4B11@ és v k MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWG2bWaaSbaaSqaaiaadUgaaeqaaaaa@4B12@ -ra az alábbi feltételek adódtak: u k 2 v k 2 = 1 MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWG1bWaa0baaSqaaiaadUgaaeaacaaIYaaaaOGaeyOeI0IaamODamaaDaaaleaacaWGRbaabaGaaGOmaaaakiabg2da9iaaigdaaaa@5164@ és [ e k + n v ( k ) ] u k v k + n v ( k ) ( u k 2 + v k 2 ) = 0 MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaadaWadaqaaiaadwgadaWgaaWcbaGaaC4AaaqabaGccqGHRaWkcaWGUbGaamODamaabmaabaGaaC4AaaGaayjkaiaawMcaaaGaay5waiaaw2faaiaadwhadaWgaaWcbaGaam4AaaqabaGccaWG2bWaaSbaaSqaaiaadUgaaeqaaOGaey4kaSIaamOBaiaadAhadaqadaqaaiaahUgaaiaawIcacaGLPaaadaqadaqaaiaadwhadaqhaaWcbaGaam4AaaqaaiaaikdaaaGccqGHRaWkcaWG2bWaa0baaSqaaiaadUgaaeaacaaIYaaaaaGccaGLOaGaayzkaaGaeyypa0JaaGimaaaa@65C2@ . Utóbbi abból jött, hogy azt akartuk, hogy α k MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqaHXoqydaWgaaWcbaGaaC4Aaaqabaaaaa@4BBA@ és α k + MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqaHXoqydaqhaaWcbaGaaC4AaaqaaiabgUcaRaaaaaa@4C9D@ bevezetésével a Hamilton operátor diagonális legyen, azaz a H = U + H 11 + H 20 MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGibGaeyypa0JaamyvaiabgUcaRiaadIeadaWgaaWcbaGaaGymaiaaigdaaeqaaOGaey4kaSIaamisamaaBaaaleaacaaIYaGaaGimaaqabaaaaa@5254@ egyenletből a H 20 MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGibWaaSbaaSqaaiaaikdacaaIWaaabeaaaaa@4B6A@ tagra H 20 = 0 MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGibWaaSbaaSqaaiaaikdacaaIWaaabeaakiabg2da9iaaicdaaaa@4D34@ fennálljon. u k = ch χ k MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWG1bWaaSbaaSqaaiaadUgaaeqaaOGaeyypa0Jaci4yaiaacIgacqaHhpWydaWgaaWcbaGaam4Aaaqabaaaaa@50C9@ és v k = sh χ k MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWG2bWaaSbaaSqaaiaadUgaaeqaaOGaeyypa0Jaci4CaiaacIgacqaHhpWydaWgaaWcbaGaam4Aaaqabaaaaa@50DA@ választással u k 2 v k 2 = 1 MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWG1bWaa0baaSqaaiaadUgaaeaacaaIYaaaaOGaeyOeI0IaamODamaaDaaaleaacaWGRbaabaGaaGOmaaaakiabg2da9iaaigdaaaa@5164@ egyenletet azonnal kielégítettük.

A sh MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaaciGGZbGaaiiAaaaa@4AE0@ és ch MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaaciGGJbGaaiiAaaaa@4AD0@ függvények azonosságait felhasználva vegyük észre a következőket! 2 u k v k = sh ( 2 χ k ) MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaaIYaGaamyDamaaBaaaleaacaWGRbaabeaakiaadAhadaWgaaWcbaGaam4AaaqabaGccqGH9aqpciGGZbGaaiiAamaabmaabaGaaGOmaiabeE8aJnaaBaaaleaacaWGRbaabeaaaOGaayjkaiaawMcaaaaa@5605@ u k 2 + v k 2 = ch ( 2 χ k ) MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWG1bWaa0baaSqaaiaadUgaaeaacaaIYaaaaOGaey4kaSIaamODamaaDaaaleaacaWGRbaabaGaaGOmaaaakiabg2da9iGacogacaGGObWaaeWaaeaacaaIYaGaeq4Xdm2aaSbaaSqaaiaadUgaaeqaaaGccaGLOaGaayzkaaaaaa@5795@ Felhasználva, hogy H MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGibaaaa@49C8@ -t diagonálisnak szeretnénk, th ( 2 χ k ) = n v ( k ) e k + n v ( k ) MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaaciGG0bGaaiiAamaabmaabaGaaGOmaiabeE8aJnaaBaaaleaacaWGRbaabeaaaOGaayjkaiaawMcaaiabg2da9iabgkHiTmaalaaabaGaamOBaiaadAhadaqadaqaaiaahUgaaiaawIcacaGLPaaaaeaacaWGLbWaaSbaaSqaaiaahUgaaeqaaOGaey4kaSIaamOBaiaadAhadaqadaqaaiaahUgaaiaawIcacaGLPaaaaaaaaa@5DD2@ adódik. Ebből  sh ( 2 χ k ) = n v ( k ) E ( k ) MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaaciGGZbGaaiiAamaabmaabaGaaGOmaiabeE8aJnaaBaaaleaacaWGRbaabeaaaOGaayjkaiaawMcaaiabg2da9iabgkHiTmaalaaabaGaamOBaiaadAhadaqadaqaaiaahUgaaiaawIcacaGLPaaaaeaacaWGfbWaaeWaaeaacaWHRbaacaGLOaGaayzkaaaaaaaa@59B7@ és ch ( 2 χ k ) = e k + n v ( k ) E ( k ) MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaaciGGJbGaaiiAamaabmaabaGaaGOmaiabeE8aJnaaBaaaleaacaWGRbaabeaaaOGaayjkaiaawMcaaiabg2da9maalaaabaGaamyzamaaBaaaleaacaWHRbaabeaakiabgUcaRiaad6gacaWG2bWaaeWaaeaacaWHRbaacaGLOaGaayzkaaaabaGaamyramaabmaabaGaaC4AaaGaayjkaiaawMcaaaaaaaa@5BB0@ adódik, ahol E ( k ) MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIjxAHbstHrhAaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gatuuDJXwAK1uy0HwmaeXbfv3ySLgzG0uy0Hgip5wzaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeu0xh8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaiaabiWacmaaeaqabeaafaGbaCaaaOqaaiaadweadaqadaqaaiaahUgaaiaawIcacaGLPaaaaaa@52BD@ még nem biztos, hogy épp a korábban keresett. Visszaírva azonban a sh MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIjxAHbstHrhAaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gatuuDJXwAK1uy0HwmaeXbfv3ySLgzG0uy0Hgip5wzaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeu0xh8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaiaabiWacmaaeaqabeaafaGbaCaaaOqaaiGacohacaGGObaaaa@515B@ és ch MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIjxAHbstHrhAaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gatuuDJXwAK1uy0HwmaeXbfv3ySLgzG0uy0Hgip5wzaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeu0xh8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaiaabiWacmaaeaqabeaafaGbaCaaaOqaaiGacogacaGGObaaaa@514B@ függvények kétszeres szögértékeit az egyszeresekre, s ezt behelyettesítve a még ki nem elégített egyenletre, láthatjuk, hogy az teljesül, így E ( k ) MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIjxAHbstHrhAaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gatuuDJXwAK1uy0HwmaeXbfv3ySLgzG0uy0Hgip5wzaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeu0xh8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaiaabiWacmaaeaqabeaafaGbaCaaaOqaaiaadweadaqadaqaaiaahUgaaiaawIcacaGLPaaaaaa@52BD@ valóban a keresett mennyiséggel egyenlő.

A kvázirészecskék diszperziós relációja

Ebből már kifejezhető E ( k ) MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGfbWaaeWaaeaacaWHRbaacaGLOaGaayzkaaaaaa@4C42@ : E ( k ) = [ e k + n v ( k ) ] 2 + n 2 v 2 ( k ) = E k MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGfbWaaeWaaeaacaWHRbaacaGLOaGaayzkaaGaeyypa0ZaaOaaaeaadaWadaqaaiaadwgadaWgaaWcbaGaaC4AaaqabaGccqGHRaWkcaWGUbGaamODamaabmaabaGaaC4AaaGaayjkaiaawMcaaaGaay5waiaaw2faamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaad6gadaahaaWcbeqaaiaaikdaaaGccaWG2bWaaWbaaSqabeaacaaIYaaaaOWaaeWaaeaacaWHRbaacaGLOaGaayzkaaaaleqaaOGaeyypa0JaamyramaaBaaaleaacaWHRbaabeaaaaa@61D6@ továbbá u k 2 = 1 2 [ e k + n v ( k ) E k + 1 ] MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWG1bWaa0baaSqaaiaadUgaaeaacaaIYaaaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaadaWadaqaamaalaaabaGaamyzamaaBaaaleaacaWHRbaabeaakiabgUcaRiaad6gacaWG2bWaaeWaaeaacaWHRbaacaGLOaGaayzkaaaabaGaamyramaaBaaaleaacaWHRbaabeaaaaGccqGHRaWkcaaIXaaacaGLBbGaayzxaaaaaa@5B59@ v k 2 = 1 2 [ e k + n v ( k ) E k 1 ] MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWG1bWaa0baaSqaaiaadUgaaeaacaaIYaaaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaadaWadaqaamaalaaabaGaamyzamaaBaaaleaacaWHRbaabeaakiabgUcaRiaad6gacaWG2bWaaeWaaeaacaWHRbaacaGLOaGaayzkaaaabaGaamyramaaBaaaleaacaWHRbaabeaaaaGccqGHsislcaaIXaaacaGLBbGaayzxaaaaaa@5B64@ Ábrázolhatjuk az E ( k ) MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGfbWaaeWaaeaacaWHRbaacaGLOaGaayzkaaaaaa@4C42@ függvényt. Kicsi k MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWHRbaaaa@49EF@ esetén E k 2 n v ( 0 ) e k k MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGfbWaaSbaaSqaaiaahUgaaeqaaOGaeyisIS7aaOaaaeaacaaIYaGaamOBaiaadAhadaqadaqaaiaaicdaaiaawIcacaGLPaaacaWGLbWaaSbaaSqaaiaahUgaaeqaaaqabaGccqWI8iIocaWGRbaaaa@55CA@ , mivel e k k 2 MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGLbWaaSbaaSqaaiaahUgaaeqaaOGaeSipIOJaaC4AamaaCaaaleqabaGaaGOmaaaaaaa@4E15@ , tehát lineárisként indul a függvény. Ezeket a gerjesztéseket nevezhetjük fononoknak. A közelítésben feltettük, hogy a kölcsönhatás gyenge, így az erős kölcsönhatásokat nem tudja leírni, ami pl. a rotonokat okozza (pl H e 4 MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGibGaamyzamaaCaaaleqabaGaaGinaaaaaaa@4B9D@ esetében). Állítás, hogy a gyenge kölcsönhatású közelítés az inflexiós környékét jól leírja.

A kondenzátumon kívüli atomok száma

N ' = k 0 B E C | a k + a k | B E C = k 0 B E C | v k 2 α k α k + + u k 2 α k + α k 0  járulék + ... | B E C = k 0 v k 2 = V d 3 k ( 2 π ) 3 v k 2 MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGobGaai4jaiabg2da9maaqafabaWaa4raaeaacaWGcbGaamyraiaadoeaaeqacaGLPmIaay5bSdGaamyyamaaDaaaleaacaWHRbaabaGaey4kaScaaOGaamyyamaaBaaaleaacaWHRbaabeaakmaaEiaabeqaaiaadkeacaWGfbGaam4qaaGaay5bSlaawQYiaaWcbaGaaC4AaiabgcMi5kaaicdaaeqaniabggHiLdGccqGH9aqpdaaeqbqaamaadmaabaGaamODamaaDaaaleaacaWGRbaabaGaaGOmaaaakiabgUcaRmaaEeaabaGaamOqaiaadweacaWGdbaabeGaayzkJiaawEa7aiaadAhadaqhaaWcbaGaam4AaaqaaiaaikdaaaGccqaHXoqydaWgaaWcbaGaaC4AaaqabaGccqaHXoqydaqhaaWcbaGaaC4AaaqaaiabgUcaRaaakiabgUcaRmaayaaabaGaamyDamaaDaaaleaacaWGRbaabaGaaGOmaaaakiabeg7aHnaaDaaaleaacaWHRbaabaGaey4kaScaaOGaeqySde2aaSbaaSqaaiaahUgaaeqaaaqaaiaaicdacaqGGaGaaeOAaiaabgoacaqGYbGaaeyDaiaabYgacaqGPdGaae4AaaGccaGL44pacqGHRaWkcaGGUaGaaiOlaiaac6cadaGhcaqabeaacaWGcbGaamyraiaadoeaaiaawEa7caGLQmcaaiaawUfacaGLDbaaaSqaaiaahUgacqGHGjsUcaaIWaaabeqdcqGHris5aOGaeyypa0ZaaabuaeaacaWG2bWaa0baaSqaaiaadUgaaeaacaaIYaaaaaqaaiaahUgacqGHGjsUcaaIWaaabeqdcqGHris5aOGaeyypa0JaamOvamaapeaabaWaaSaaaeaacaWGKbWaaWbaaSqabeaacaaIZaaaaOGaam4AaaqaamaabmaabaGaaGOmaiabec8aWbGaayjkaiaawMcaamaaCaaaleqabaGaaG4maaaaaaGccaWG2bWaa0baaSqaaiaadUgaaeaacaaIYaaaaaqabeqaniabgUIiYdaaaa@AF6C@ Ahol az összegre vonatkozó közelítést (határátmenetet) alkalmaztuk. A szög szerinti integrálást elvégezve N ' = V 4 π ( 2 π ) 3 0 d k k 2 1 2 [ 1 + e k + n v ( 0 ) E k ] MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGobGaai4jaiabg2da9iaadAfadaWcaaqaaiaaisdacqaHapaCaeaadaqadaqaaiaaikdacqaHapaCaiaawIcacaGLPaaadaahaaWcbeqaaiaaiodaaaaaaOWaa8qCaeaacaWGKbGaam4AaiabgwSixlaadUgadaahaaWcbeqaaiaaikdaaaGcdaWcaaqaaiaaigdaaeaacaaIYaaaamaadmaabaGaeyOeI0IaaGymaiabgUcaRmaalaaabaGaamyzamaaBaaaleaacaWGRbaabeaakiabgUcaRiaad6gacaWG2bWaaeWaaeaacaaIWaaacaGLOaGaayzkaaaabaGaamyramaaBaaaleaacaWGRbaabeaaaaaakiaawUfacaGLDbaaaSqaaiaaicdaaeaacqGHEisPa0Gaey4kIipaaaa@6D9B@ Használjuk a e k n v ( 0 ) = z 2 MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaadaWcaaqaaiaadwgadaWgaaWcbaGaam4AaaqabaaakeaacaWGUbGaamODamaabmaabaGaaGimaaGaayjkaiaawMcaaaaacqGH9aqpcaWG6bWaaWbaaSqabeaacaaIYaaaaaaa@523A@ helyettesítést, ekkor z = k ξ B MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWG6bGaeyypa0Jaam4Aaiabe67a4naaBaaaleaacaWGcbaabeaaaaa@4EA6@ és ξ B = 2 m n v ( 0 ) MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqaH+oaEdaWgaaWcbaGaamOqaaqabaGccqGH9aqpqaaaaaaaaaWdbmaalaaabaGaeS4dHGgabaWaaOaaaeaacaaIYaGaamyBaiaad6gacaWG2bWaaeWaaeaacaaIWaaacaGLOaGaayzkaaaaleqaaaaaaaa@5414@ , így N ' = V 4 π 2 1 ξ B 3 0 d z z 2 [ 1 + z 2 + 1 ( z 4 + 2 z 2 ) 1 / 2 ] = 8 N 2 π n a 3 + ... MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGobGaai4jaiabg2da9maalaaabaGaamOvaaqaaiaaisdacqaHapaCdaahaaWcbeqaaiaaikdaaaaaaOWaaSaaaeaacaaIXaaabaGaeqOVdG3aa0baaSqaaiaadkeaaeaacaaIZaaaaaaakmaapehabaGaamizaiaadQhacqGHflY1caWG6bWaaWbaaSqabeaacaaIYaaaaOWaamWaaeaacqGHsislcaaIXaGaey4kaSYaaSaaaeaacaWG6bWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGymaaqaamaabmaabaGaamOEamaaCaaaleqabaGaaGinaaaakiabgUcaRiaaikdacaWG6bWaaWbaaSqabeaacaaIYaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIXaGaai4laiaaikdaaaaaaaGccaGLBbGaayzxaaaaleaacaaIWaaabaGaeyOhIukaniabgUIiYdGccqGH9aqpdaWcaaqaaiaaiIdacaWGobaabaGaaGOmamaakaaabaGaeqiWdahaleqaaaaakmaakaaabaGaamOBaiaadggadaahaaWcbeqaaiaaiodaaaaabeaakiabgUcaRiaac6cacaGGUaGaaiOlaaaa@7B8A@ ahol az a MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGHbaaaa@49E1@ szórási hosszt a v ( 0 ) = 4 π 2 a m MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWG2bWaaeWaaeaacaaIWaaacaGLOaGaayzkaaGaeyypa0deaaaaaaaaa8qadaWcaaqaa8aacaaI0aGaeqiWda3dbiabl+qiOnaaCaaaleqabaGaaGOmaaaakiaadggaaeaacaWGTbaaaaaa@53FD@ egyenlet definiálja. Ez a potenciál az r MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWHYbaaaa@49F6@ helyen: v ( r ) = 4 π 2 a m δ ( 3 ) ( r ) MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWG2bWaaeWaaeaacaWHYbaacaGLOaGaayzkaaGaeyypa0deaaaaaaaaa8qadaWcaaqaa8aacaaI0aGaeqiWda3dbiabl+qiOnaaCaaaleqabaGaaGOmaaaakiaadggaaeaacaWGTbaaaiabes7aKnaaCaaaleqabaWaaeWaaeaacaaIZaaacaGLOaGaayzkaaaaaOWaaeWaaeaacaWHYbaacaGLOaGaayzkaaaaaa@5AE4@ Láthatjuk, hogy a = 0 MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGHbGaeyypa0JaaGimaaaa@4BA1@ esetén – ami a kölcsönhatás nélküli gáznak felel meg – nincs a kondenzátumon kívül részecske, azaz N ' = 0 MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGobGaai4jaiabg2da9iaaicdaaaa@4C39@ . N 0 = N N ' = N [ 1 8 3 π n a 3 D . lan param 1 + ... ] MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGobWaaSbaaSqaaiaaicdaaeqaaOGaeyypa0JaamOtaiabgkHiTiaad6eacaGGNaGaeyypa0JaamOtamaadmaabaGaaGymaiabgkHiTmaalaaabaGaaGioaaqaaiaaiodadaGcaaqaaiabec8aWbWcbeaaaaGccqGHflY1daagaaqaamaakaaabaGaamOBaiaadggadaahaaWcbeqaaiaaiodaaaaabeaaaeaacaqGebGaaiOlaiaabYgacaqGHbGaaeOBaiaabccacaqGWbGaaeyyaiaabkhacaqGHbGaaeyBaiaabYcacaqGGaGaeSOAI0JaaeymaaGccaGL44pacqGHRaWkcaGGUaGaaiOlaiaac6caaiaawUfacaGLDbaaaaa@6ED0@

Kondenzált Bose rendszerek véges hőmérsékleten

Perturbációszámítás, nem ideális gáz vizsgálata

A Hamilton operátor: H = k e k a k + a k + 1 2 V k 1 , k 2 , k 3 , k 4 k 1 + k 2 = k 3 + k 4 v ( k 1 k 3 ) a k 1 + a k 2 + a k 3 a k 4 MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGibGaeyypa0ZaaabuaeaacaWGLbWaaSbaaSqaaiaahUgaaeqaaOGaamyyamaaDaaaleaacaWHRbaabaGaey4kaScaaOGaamyyamaaBaaaleaacaWHRbaabeaaaeaacaWHRbaabeqdcqGHris5aOGaey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaiaadAfaaaWaaabuaeaacaWG2bWaaeWaaeaacaWHRbWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaaC4AamaaBaaaleaacaaIZaaabeaaaOGaayjkaiaawMcaaiaadggadaqhaaWcbaGaaC4AamaaBaaameaacaaIXaaabeaaaSqaaiabgUcaRaaakiaadggadaqhaaWcbaGaaC4AamaaBaaameaacaaIYaaabeaaaSqaaiabgUcaRaaakiaadggadaWgaaWcbaGaaC4AamaaBaaameaacaaIZaaabeaaaSqabaGccaWGHbWaaSbaaSqaaiaahUgadaWgaaadbaGaaGinaaqabaaaleqaaaabaeqabaGaaC4AamaaBaaameaacaaIXaaabeaaliaacYcacaWHRbWaaSbaaWqaaiaaikdaaeqaaSGaaiilaiaahUgadaWgaaadbaGaaG4maaqabaWccaGGSaGaaC4AamaaBaaameaacaaI0aaabeaaaSqaaiaahUgadaWgaaadbaGaaGymaaqabaWccqGHRaWkcaWHRbWaaSbaaWqaaiaaikdaaeqaaSGaeyypa0JaaC4AamaaBaaameaacaaIZaaabeaaliabgUcaRiaahUgadaWgaaadbaGaaGinaaqabaaaaSqab0GaeyyeIuoaaaa@837D@ ahol v ( k ) = 4 π 2 a / m MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWG2bWaaeWaaeaacaWHRbaacaGLOaGaayzkaaGaeyypa0JaaGinaiabec8aWbbaaaaaaaaapeGaeS4dHG2aaWbaaSqabeaacaaIYaaaaOGaamyyaiaac+cacaWGTbaaaa@54BB@ . K = H μ N MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGlbGaeyypa0JaamisaiabgkHiTiabeY7aTjaad6eaaaa@4F14@ .

T < T c MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGubGaeyipaWJaamivamaaBaaaleaacaWGJbaabeaaaaa@4CC5@ esetén előírjuk, hogy a 0 = N 0 MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaadaaadaqaaiaadggadaWgaaWcbaGaaGimaaqabaaakiaawMYicaGLQmcacqGH9aqpdaGcaaqaaiaad6eadaWgaaWcbaGaaGimaaqabaaabeaaaaa@4F70@ . Ez persze csalás, de nem baj. Milyen szimmetria sérül ezáltal? Nézzük az a k a k e i Θ MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGHbWaaSbaaSqaaiaahUgaaeqaaOGaeSOPHeMaamyyamaaBaaaleaacaWHRbaabeaakiaadwgadaahaaWcbeqaaiaadMgacqqHyoquaaaaaa@5250@ és a a k + a k + e i Θ MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGHbWaa0baaSqaaiaahUgaaeaacqGHRaWkaaGccqWIMgsycaWGHbWaa0baaSqaaiaahUgaaeaacqGHRaWkaaGccaWGLbWaaWbaaSqabeaacqGHsislcaWGPbGaeuiMdefaaaaa@5503@ transzformációt! Ez a (globális) U ( 1 ) MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGvbWaaeWaaeaacaaIXaaacaGLOaGaayzkaaaaaa@4C19@ szimmetria (szimmetria, azaz a transzformációt elvégezhetjük a mérhető paraméterek változása nélkül). A megadott előírás ezt sérti. Goldstone tétele szerint pedig sérülő folytonos (globális) szimmetria gap nélküli gerjesztéseket eredményez. Vezessük be a b k = a k N 0 δ k ,0 MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGIbWaaSbaaSqaaiaahUgaaeqaaOGaeyypa0JaamyyamaaBaaaleaacaWHRbaabeaakiabgkHiTmaakaaabaGaamOtamaaBaaaleaacaaIWaaabeaaaeqaaOGaeqiTdq2aaSbaaSqaaiaahUgacaGGSaGaaGimaaqabaaaaa@5511@ és a b k + = a k + N 0 δ k ,0 MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGIbWaa0baaSqaaiaahUgaaeaacqGHRaWkaaGccqGH9aqpcaWGHbWaa0baaSqaaiaahUgaaeaacqGHRaWkaaGccqGHsisldaGcaaqaaiaad6eadaWgaaWcbaGaaGimaaqabaaabeaakiabes7aKnaaBaaaleaacaWHRbGaaiilaiaaicdaaeqaaaaa@56D7@ jelöléseket! Most írjuk be ezt a Hamilton operátorba! Vigyázat, hosszú lesz! k ( e k μ ) a k + a k = k ( e k μ ) ( b k + + N 0 δ k ,0 ) ( b k + N 0 δ k ,0 ) = MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaadaaeqbqaamaabmaabaGaamyzamaaBaaaleaacaWGRbaabeaakiabgkHiTiabeY7aTbGaayjkaiaawMcaaiaadggadaqhaaWcbaGaaC4AaaqaaiabgUcaRaaakiaadggadaWgaaWcbaGaaC4AaaqabaaabaGaaC4Aaaqab0GaeyyeIuoakiabg2da9maaqafabaWaaeWaaeaacaWGLbWaaSbaaSqaaiaadUgaaeqaaOGaeyOeI0IaeqiVd0gacaGLOaGaayzkaaWaaeWaaeaacaWGIbWaa0baaSqaaiaahUgaaeaacqGHRaWkaaGccqGHRaWkdaGcaaqaaiaad6eadaWgaaWcbaGaaGimaaqabaaabeaakiabes7aKnaaBaaaleaacaWHRbGaaiilaiaaicdaaeqaaaGccaGLOaGaayzkaaWaaeWaaeaacaWGIbWaaSbaaSqaaiaahUgaaeqaaOGaey4kaSYaaOaaaeaacaWGobWaaSbaaSqaaiaaicdaaeqaaaqabaGccqaH0oazdaWgaaWcbaGaaC4AaiaacYcacaaIWaaabeaaaOGaayjkaiaawMcaaiabg2da9aWcbaGaaC4Aaaqab0GaeyyeIuoaaaa@7898@ = k ( e k μ ) [ b k + b k + N 0 ( b k + + b k ) δ k ,0 + N 0 δ k ,0 ] = k ( e k μ ) b k + b k K 0 μ N ( b 0 + b 0 + ) K 1 ' μ N 0 K 0 ' MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqGH9aqpdaaeqbqaamaabmaabaGaamyzamaaBaaaleaacaWGRbaabeaakiabgkHiTiabeY7aTbGaayjkaiaawMcaamaadmaabaGaamOyamaaDaaaleaacaWHRbaabaGaey4kaScaaOGaamOyamaaBaaaleaacaWHRbaabeaakiabgUcaRiaad6eadaWgaaWcbaGaaGimaaqabaGcdaqadaqaaiaadkgadaqhaaWcbaGaaC4AaaqaaiabgUcaRaaakiabgUcaRiaadkgadaWgaaWcbaGaaC4AaaqabaaakiaawIcacaGLPaaacqaH0oazdaWgaaWcbaGaaC4AaiaacYcacaaIWaaabeaakiabgUcaRiaad6eadaWgaaWcbaGaaGimaaqabaGccqaH0oazdaWgaaWcbaGaaC4AaiaacYcacaaIWaaabeaaaOGaay5waiaaw2faaiabg2da9aWcbaGaaC4Aaaqab0GaeyyeIuoakmaayaaabaWaaabuaeaadaqadaqaaiaadwgadaWgaaWcbaGaaC4AaaqabaGccqGHsislcqaH8oqBaiaawIcacaGLPaaacaWGIbWaa0baaSqaaiaahUgaaeaacqGHRaWkaaGccaWGIbWaaSbaaSqaaiaahUgaaeqaaaqaaiaahUgaaeqaniabggHiLdaaleaacaWGlbWaaSbaaWqaaiaaicdaaeqaaaGccaGL44pacqGHsisldaagaaqaaiabeY7aTnaakaaabaGaamOtaaWcbeaakmaabmaabaGaamOyamaaBaaaleaacaaIWaaabeaakiabgUcaRiaadkgadaqhaaWcbaGaaGimaaqaaiabgUcaRaaaaOGaayjkaiaawMcaaaWcbaGaam4samaaBaaameaacaaIXaaabeaaliaacEcaaOGaayjo+dGaeyOeI0YaaGbaaeaacqaH8oqBcaWGobWaaSbaaSqaaiaaicdaaeqaaaqaaiaadUeadaWgaaadbaGaaGimaaqabaWccaGGNaaakiaawIJ=aaaa@9A47@ A kölcsönhatási rész: v ( 0 ) 2 V k 1 , k 2 , k 3 , k 4 k 1 + k 2 = k 3 + k 4 a k 1 + a k 2 + a k 3 a k 4 = K I ,4 + K I ,3 + K I ,1 + K I ,0 MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaadaWcaaqaaiaadAhadaqadaqaaiaaicdaaiaawIcacaGLPaaaaeaacaaIYaGaamOvaaaadaaeqbqaaiaadggadaqhaaWcbaGaaC4AamaaBaaameaacaaIXaaabeaaaSqaaiabgUcaRaaakiaadggadaqhaaWcbaGaaC4AamaaBaaameaacaaIYaaabeaaaSqaaiabgUcaRaaakiaadggadaWgaaWcbaGaaC4AamaaBaaameaacaaIZaaabeaaaSqabaGccaWGHbWaaSbaaSqaaiaahUgadaWgaaadbaGaaGinaaqabaaaleqaaaabaeqabaGaaC4AamaaBaaameaacaaIXaaabeaaliaacYcacaWHRbWaaSbaaWqaaiaaikdaaeqaaSGaaiilaiaahUgadaWgaaadbaGaaG4maaqabaWccaGGSaGaaC4AamaaBaaameaacaaI0aaabeaaaSqaaiaahUgadaWgaaadbaGaaGymaaqabaWccqGHRaWkcaWHRbWaaSbaaWqaaiaaikdaaeqaaSGaeyypa0JaaC4AamaaBaaameaacaaIZaaabeaaliabgUcaRiaahUgadaWgaaadbaGaaGinaaqabaaaaSqab0GaeyyeIuoakiabg2da9iaadUeadaWgaaWcbaGaamysaiaacYcacaaI0aaabeaakiabgUcaRiaadUeadaWgaaWcbaGaamysaiaacYcacaaIZaaabeaakiabgUcaRiaadUeadaWgaaWcbaGaamysaiaacYcacaaIXaaabeaakiabgUcaRiaadUeadaWgaaWcbaGaamysaiaacYcacaaIWaaabeaaaaa@8297@ ahol K I ,4 = 1 2 V k 1 , k 2 , k 3 , k 4 k 1 + k 2 = k 3 + k 4 b k 1 + b k 2 + b k 3 b k 4 v ( k 1 k 3 ) MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGlbWaaSbaaSqaaiaadMeacaGGSaGaaGinaaqabaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaaIYaGaamOvaaaacqGHflY1daaeqbqaaiaadkgadaqhaaWcbaGaaC4AamaaBaaameaacaaIXaaabeaaaSqaaiabgUcaRaaakiaadkgadaqhaaWcbaGaaC4AamaaBaaameaacaaIYaaabeaaaSqaaiabgUcaRaaakiaadkgadaWgaaWcbaGaaC4AamaaBaaameaacaaIZaaabeaaaSqabaGccaWGIbWaaSbaaSqaaiaahUgadaWgaaadbaGaaGinaaqabaaaleqaaOGaamODamaabmaabaGaaC4AamaaBaaaleaacaaIXaaabeaakiabgkHiTiaahUgadaWgaaWcbaGaaG4maaqabaaakiaawIcacaGLPaaaaSabaeqabaGaaC4AamaaBaaameaacaaIXaaabeaaliaacYcacaWHRbWaaSbaaWqaaiaaikdaaeqaaSGaaiilaiaahUgadaWgaaadbaGaaG4maaqabaWccaGGSaGaaC4AamaaBaaameaacaaI0aaabeaaaSqaaiaahUgadaWgaaadbaGaaGymaaqabaWccqGHRaWkcaWHRbWaaSbaaWqaaiaaikdaaeqaaSGaeyypa0JaaC4AamaaBaaameaacaaIZaaabeaaliabgUcaRiaahUgadaWgaaadbaGaaGinaaqabaaaaSqab0GaeyyeIuoaaaa@7D50@
K I ,3 = N 0 v ( 0 ) 2 V k 1 , k 2 , k 3 , k 4 k 1 + k 2 = k 3 + k 4 ( b k 1 + b k 2 + b k 3 δ k 4 ,0 + b k 1 + b k 2 + b k 4 δ k 3 ,0 + b k 1 + b k 3 b k 4 δ k 2 ,0 + b k 2 + b k 3 b k 4 δ k 1 ,0 ) MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGlbWaaSbaaSqaaiaadMeacaGGSaGaaG4maaqabaGccqGH9aqpdaWcaaqaamaakaaabaGaamOtamaaBaaaleaacaaIWaaabeaaaeqaaOGaamODamaabmaabaGaaGimaaGaayjkaiaawMcaaaqaaiaaikdacaWGwbaaaiabgwSixpaaqafabaWaaeWaaeaacaWGIbWaa0baaSqaaiaahUgadaWgaaadbaGaaGymaaqabaaaleaacqGHRaWkaaGccaWGIbWaa0baaSqaaiaahUgadaWgaaadbaGaaGOmaaqabaaaleaacqGHRaWkaaGccaWGIbWaaSbaaSqaaiaahUgadaWgaaadbaGaaG4maaqabaaaleqaaOGaeqiTdq2aaSbaaSqaaiaahUgadaWgaaadbaGaaGinaaqabaWccaGGSaGaaGimaaqabaGccqGHRaWkcaWGIbWaa0baaSqaaiaahUgadaWgaaadbaGaaGymaaqabaaaleaacqGHRaWkaaGccaWGIbWaa0baaSqaaiaahUgadaWgaaadbaGaaGOmaaqabaaaleaacqGHRaWkaaGccaWGIbWaaSbaaSqaaiaahUgadaWgaaadbaGaaGinaaqabaaaleqaaOGaeqiTdq2aaSbaaSqaaiaahUgadaWgaaadbaGaaG4maaqabaWccaGGSaGaaGimaaqabaGccqGHRaWkcaWGIbWaa0baaSqaaiaahUgadaWgaaadbaGaaGymaaqabaaaleaacqGHRaWkaaGccaWGIbWaaSbaaSqaaiaahUgadaWgaaadbaGaaG4maaqabaaaleqaaOGaamOyamaaBaaaleaacaWHRbWaaSbaaWqaaiaaisdaaeqaaaWcbeaakiabes7aKnaaBaaaleaacaWHRbWaaSbaaWqaaiaaikdaaeqaaSGaaiilaiaaicdaaeqaaOGaey4kaSIaamOyamaaDaaaleaacaWHRbWaaSbaaWqaaiaaikdaaeqaaaWcbaGaey4kaScaaOGaamOyamaaBaaaleaacaWHRbWaaSbaaWqaaiaaiodaaeqaaaWcbeaakiaadkgadaWgaaWcbaGaaC4AamaaBaaameaacaaI0aaabeaaaSqabaGccqaH0oazdaWgaaWcbaGaaC4AamaaBaaameaacaaIXaaabeaaliaacYcacaaIWaaabeaaaOGaayjkaiaawMcaaaWceaqabeaacaWHRbWaaSbaaWqaaiaaigdaaeqaaSGaaiilaiaahUgadaWgaaadbaGaaGOmaaqabaWccaGGSaGaaC4AamaaBaaameaacaaIZaaabeaaliaacYcacaWHRbWaaSbaaWqaaiaaisdaaeqaaaWcbaGaaC4AamaaBaaameaacaaIXaaabeaaliabgUcaRiaahUgadaWgaaadbaGaaGOmaaqabaWccqGH9aqpcaWHRbWaaSbaaWqaaiaaiodaaeqaaSGaey4kaSIaaC4AamaaBaaameaacaaI0aaabeaaaaWcbeqdcqGHris5aaaa@AF05@
K I ,2 = N 0 2 V k 1 , k 2 , k 3 , k 4 k 1 + k 2 = k 3 + k 4 ( b k 1 + b k 2 + δ k 3 ,0 δ k 4 ,0 + b k 1 + δ k 2 ,0 b k 3 δ k 4 ,0 + δ k 1 ,0 b k 2 + b k 3 δ k 4 ,0 + + δ k 1 ,0 b k 2 + δ k 3 ,0 b k 4 + b k 1 + δ k 2 ,0 δ k 3 ,0 b k 4 + δ k 1 ,0 δ k 2 ,0 b k 3 b k 4 ) v ( k 1 k 3 ) MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGlbWaaSbaaSqaaiaadMeacaGGSaGaaGOmaaqabaGccqGH9aqpdaWcaaqaaiaad6eadaWgaaWcbaGaaGimaaqabaaakeaacaaIYaGaamOvaaaacqGHflY1daaeqbqaamaabmaaeaqabeaacaWGIbWaa0baaSqaaiaahUgadaWgaaadbaGaaGymaaqabaaaleaacqGHRaWkaaGccaWGIbWaa0baaSqaaiaahUgadaWgaaadbaGaaGOmaaqabaaaleaacqGHRaWkaaGccqaH0oazdaWgaaWcbaGaaC4AamaaBaaameaacaaIZaaabeaaliaacYcacaaIWaaabeaakiabes7aKnaaBaaaleaacaWHRbWaaSbaaWqaaiaaisdaaeqaaSGaaiilaiaaicdaaeqaaOGaey4kaSIaamOyamaaDaaaleaacaWHRbWaaSbaaWqaaiaaigdaaeqaaaWcbaGaey4kaScaaOGaeqiTdq2aaSbaaSqaaiaahUgadaWgaaadbaGaaGOmaaqabaWccaGGSaGaaGimaaqabaGccaWGIbWaaSbaaSqaaiaahUgadaWgaaadbaGaaG4maaqabaaaleqaaOGaeqiTdq2aaSbaaSqaaiaahUgadaWgaaadbaGaaGinaaqabaWccaGGSaGaaGimaaqabaGccqGHRaWkcqaH0oazdaWgaaWcbaGaaC4AamaaBaaameaacaaIXaaabeaaliaacYcacaaIWaaabeaakiaadkgadaqhaaWcbaGaaC4AamaaBaaameaacaaIYaaabeaaaSqaaiabgUcaRaaakiaadkgadaWgaaWcbaGaaC4AamaaBaaameaacaaIZaaabeaaaSqabaGccqaH0oazdaWgaaWcbaGaaC4AamaaBaaameaacaaI0aaabeaaliaacYcacaaIWaaabeaakiabgUcaRaqaaiabgUcaRiabes7aKnaaBaaaleaacaWHRbWaaSbaaWqaaiaaigdaaeqaaSGaaiilaiaaicdaaeqaaOGaamOyamaaDaaaleaacaWHRbWaaSbaaWqaaiaaikdaaeqaaaWcbaGaey4kaScaaOGaeqiTdq2aaSbaaSqaaiaahUgadaWgaaadbaGaaG4maaqabaWccaGGSaGaaGimaaqabaGccaWGIbWaaSbaaSqaaiaahUgadaWgaaadbaGaaGinaaqabaaaleqaaOGaey4kaSIaamOyamaaDaaaleaacaWHRbWaaSbaaWqaaiaaigdaaeqaaaWcbaGaey4kaScaaOGaeqiTdq2aaSbaaSqaaiaahUgadaWgaaadbaGaaGOmaaqabaWccaGGSaGaaGimaaqabaGccqaH0oazdaWgaaWcbaGaaC4AamaaBaaameaacaaIZaaabeaaliaacYcacaaIWaaabeaakiaadkgadaWgaaWcbaGaaC4AamaaBaaameaacaaI0aaabeaaaSqabaGccqGHRaWkcqaH0oazdaWgaaWcbaGaaC4AamaaBaaameaacaaIXaaabeaaliaacYcacaaIWaaabeaakiabes7aKnaaBaaaleaacaWHRbWaaSbaaWqaaiaaikdaaeqaaSGaaiilaiaaicdaaeqaaOGaamOyamaaBaaaleaacaWHRbWaaSbaaWqaaiaaiodaaeqaaaWcbeaakiaadkgadaWgaaWcbaGaaC4AamaaBaaameaacaaI0aaabeaaaSqabaaaaOGaayjkaiaawMcaaaWceaqabeaacaWHRbWaaSbaaWqaaiaaigdaaeqaaSGaaiilaiaahUgadaWgaaadbaGaaGOmaaqabaWccaGGSaGaaC4AamaaBaaameaacaaIZaaabeaaliaacYcacaWHRbWaaSbaaWqaaiaaisdaaeqaaaWcbaGaaC4AamaaBaaameaacaaIXaaabeaaliabgUcaRiaahUgadaWgaaadbaGaaGOmaaqabaWccqGH9aqpcaWHRbWaaSbaaWqaaiaaiodaaeqaaSGaey4kaSIaaC4AamaaBaaameaacaaI0aaabeaaaaWcbeqdcqGHris5aOGaamODamaabmaabaGaaC4AamaaBaaaleaacaaIXaaabeaakiabgkHiTiaahUgadaWgaaWcbaGaaG4maaqabaaakiaawIcacaGLPaaaaaa@DF15@
K I ,1 = N 0 3 / 2 2 V v ( 0 ) ( 2 b 0 + + 2 b 0 ) MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGlbWaaSbaaSqaaiaadMeacaGGSaGaaGymaaqabaGccqGH9aqpdaWcaaqaaiaad6eadaqhaaWcbaGaaGimaaqaaiaaiodacaGGVaGaaGOmaaaaaOqaaiaaikdacaWGwbaaaiaadAhadaqadaqaaiaaicdaaiaawIcacaGLPaaadaqadaqaaiaaikdacaWGIbWaa0baaSqaaiaaicdaaeaacqGHRaWkaaGccqGHRaWkcaaIYaGaamOyamaaBaaaleaacaaIWaaabeaaaOGaayjkaiaawMcaaaaa@5E89@ valamint
K I ,0 = N 0 2 2 V v ( 0 ) MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGlbWaaSbaaSqaaiaadMeacaGGSaGaaGimaaqabaGccqGH9aqpdaWcaaqaaiaad6eadaqhaaWcbaGaaGimaaqaaiaaikdaaaaakeaacaaIYaGaamOvaaaacaWG2bWaaeWaaeaacaaIWaaacaGLOaGaayzkaaaaaa@54A4@ Így tömör írásmódban U = K 0 + i = 0 4 K I , i + K 0 ' + K 1 ' MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGvbGaeyypa0Jaam4samaaBaaaleaacaaIWaaabeaakiabgUcaRmaaqahabaGaam4samaaBaaaleaacaWGjbGaaiilaiaadMgaaeqaaOGaey4kaSIaam4samaaBaaaleaacaaIWaaabeaakiaacEcacqGHRaWkcaWGlbWaaSbaaSqaaiaaigdaaeqaaOGaai4jaaWcbaGaamyAaiabg2da9iaaicdaaeaacaaI0aaaniabggHiLdaaaa@5D38@

Green-függvény

Definiáljuk a következő Green-függvényeket!

G 1,1 ( k , τ ) : = T τ [ b k ( τ ) b k + ( 0 ) ] MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGhbWaaSbaaSqaaiaaigdacaGGSaGaaGymaaqabaGcdaqadaqaaiaahUgacaGGSaGaeqiXdqhacaGLOaGaayzkaaGaaiOoaiabg2da9iabgkHiTmaaamaabaGaamivamaaBaaaleaacqaHepaDaeqaaOWaamWaaeaacaWGIbWaaSbaaSqaaiaahUgaaeqaaOWaaeWaaeaacqaHepaDaiaawIcacaGLPaaacqGHflY1caWGIbWaa0baaSqaaiaahUgaaeaacqGHRaWkaaGcdaqadaqaaiaaicdaaiaawIcacaGLPaaaaiaawUfacaGLDbaaaiaawMYicaGLQmcaaaa@673C@

ahol az operátor τ MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqaHepaDaaa@4AC0@ függése ezt jelenti: O ( τ ) = e K τ O S e K τ MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGpbWaaeWaaeaacqaHepaDaiaawIcacaGLPaaacqGH9aqpcaWGLbWaaWbaaSqabeaadaWcaaqaaiaadUeacqaHepaDaeaaqaaaaaaaaaWdbiabl+qiObaaaaGcpaGaam4tamaaBaaaleaacaWGtbaabeaakiaadwgadaahaaWcbeqaaiabgkHiTmaalaaabaGaam4saiabes8a0bqaa8qacqWIpecAaaaaaaaa@5B05@ várható értéke O = S p ( ρ G O ) MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaadaaadaqaaiaad+eaaiaawMYicaGLQmcacqGH9aqpcaWGtbGaamiCamaabmaabaGaeqyWdi3aaSbaaSqaaiaadEeaaeqaaOGaam4taaGaayjkaiaawMcaaaaa@5391@ ahol ρ G = e β K Z G MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqaHbpGCdaWgaaWcbaGaam4raaqabaGccqGH9aqpcaWGLbWaaWbaaSqabeaadaWcaaqaaiabgkHiTiabek7aIjaadUeaaeaacaWGAbWaaSbaaWqaaiaadEeaaeqaaaaaaaaaaa@5320@ Ebből látszik, hogy a vannak olyan operátorok, melyek várható értéke nem 0, noha megváltoztatják a részecskeszámot. Soktestprobéma I órán ezt a Green-függvényt használtuk. Az új, további függvények:

G 1,2 ( k , τ ) = T τ [ b k ( τ ) b k ( 0 ) ] MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGhbWaaSbaaSqaaiaaigdacaGGSaGaaGOmaaqabaGcdaqadaqaaiaahUgacaGGSaGaeqiXdqhacaGLOaGaayzkaaGaeyypa0JaeyOeI0YaaaWaaeaacaWGubWaaSbaaSqaaiabes8a0bqabaGcdaWadaqaaiaadkgadaWgaaWcbaGaeyOeI0IaaC4AaaqabaGcdaqadaqaaiabes8a0bGaayjkaiaawMcaaiaadkgadaWgaaWcbaGaaC4AaaqabaGcdaqadaqaaiaaicdaaiaawIcacaGLPaaaaiaawUfacaGLDbaaaiaawMYicaGLQmcaaaa@643F@

G 2,1 ( k , τ ) = T τ [ b k + ( τ ) b k + ( 0 ) ] MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGhbWaaSbaaSqaaiaaikdacaGGSaGaaGymaaqabaGcdaqadaqaaiaahUgacaGGSaGaeqiXdqhacaGLOaGaayzkaaGaeyypa0JaeyOeI0YaaaWaaeaacaWGubWaaSbaaSqaaiabes8a0bqabaGcdaWadaqaaiaadkgadaqhaaWcbaGaeyOeI0IaaC4AaaqaaiabgUcaRaaakmaabmaabaGaeqiXdqhacaGLOaGaayzkaaGaamOyamaaDaaaleaacaWHRbaabaGaey4kaScaaOWaaeWaaeaacaaIWaaacaGLOaGaayzkaaaacaGLBbGaayzxaaaacaGLPmIaayPkJaaaaa@6605@

G 2,2 ( k , τ ) = T τ [ b k + ( τ ) b k ( 0 ) ] MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGhbWaaSbaaSqaaiaaikdacaGGSaGaaGOmaaqabaGcdaqadaqaaiaahUgacaGGSaGaeqiXdqhacaGLOaGaayzkaaGaeyypa0JaeyOeI0YaaaWaaeaacaWGubWaaSbaaSqaaiabes8a0bqabaGcdaWadaqaaiaadkgadaqhaaWcbaGaeyOeI0IaaC4AaaqaaiabgUcaRaaakmaabmaabaGaeqiXdqhacaGLOaGaayzkaaGaamOyamaaBaaaleaacqGHsislcaWHRbaabeaakmaabmaabaGaaGimaaGaayjkaiaawMcaaaGaay5waiaaw2faaaGaayzkJiaawQYiaaaa@6610@

A fenti függvényekben T τ MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGubWaaSbaaSqaaiabes8a0bqabaaaaa@4BC5@ időrendező operátor: a nagyobb argumentumú kerül „balra”, azonos argumentum esetén pedig a keresztes kerül „balra”.

A Green függvények között az alábbi összefüggések érvényesek.
G 2,1 ( k , τ ) = G 1,2 ( k , τ ) MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGhbWaaSbaaSqaaiaaikdacaGGSaGaaGymaaqabaGcdaqadaqaaiaahUgacaGGSaGaeqiXdqhacaGLOaGaayzkaaGaeyypa0Jaam4ramaaBaaaleaacaaIXaGaaiilaiaaikdaaeqaaOWaaeWaaeaacqGHsislcaWHRbGaaiilaiabgkHiTiabes8a0bGaayjkaiaawMcaaaaa@5C11@
G 1,1 ( k , τ ) = G 2,2 ( k , τ ) MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGhbWaaSbaaSqaaiaaigdacaGGSaGaaGymaaqabaGcdaqadaqaaiaahUgacaGGSaGaeqiXdqhacaGLOaGaayzkaaGaeyypa0Jaam4ramaaBaaaleaacaaIYaGaaiilaiaaikdaaeqaaOWaaeWaaeaacqGHsislcaWHRbGaaiilaiabes8a0bGaayjkaiaawMcaaaaa@5B24@
Ezeket a függvényeket mátrixba foglalhatjuk:
G ( k , τ ) = ( G 1,1 G 1,2 G 2,1 G 2,2 ) MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGhbWaaeWaaeaacaWHRbGaaiilaiabes8a0bGaayjkaiaawMcaaiabg2da9maabmaabaqbaeqabiGaaaqaaiaadEeadaWgaaWcbaGaaGymaiaacYcacaaIXaaabeaaaOqaaiaadEeadaWgaaWcbaGaaGymaiaacYcacaaIYaaabeaaaOqaaiaadEeadaWgaaWcbaGaaGOmaiaacYcacaaIXaaabeaaaOqaaiaadEeadaWgaaWcbaGaaGOmaiaacYcacaaIYaaabeaaaaaakiaawIcacaGLPaaaaaa@5DFC@
Általános összefüggés, hogy
G α , β ( k , i ω n ) = 0 β G α , β ( k , τ ) e i ω n τ d τ MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGhbWaaSbaaSqaaiabeg7aHjaacYcacqaHYoGyaeqaaOWaaeWaaeaacaWHRbGaaiilaiaadMgacqaHjpWDdaWgaaWcbaGaamOBaaqabaaakiaawIcacaGLPaaacqGH9aqpdaWdXbqaaiaadEeadaWgaaWcbaGaeqySdeMaaiilaiabek7aIbqabaGcdaqadaqaaiaahUgacaGGSaGaeqiXdqhacaGLOaGaayzkaaGaamyzamaaCaaaleqabaGaamyAaiabeM8a3naaBaaameaacaWGUbaabeaaliabes8a0baakiaadsgacqaHepaDaSqaaiaaicdaaeaacqaHYoGyqaaaaaaaaaWdbiabl+qiObqdpaGaey4kIipaaaa@6F7E@ ahol ω n = 2 n π β MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqaHjpWDdaWgaaWcbaGaamOBaaqabaGccqGH9aqpdaWcaaqaaiaaikdacaWGUbGaeqiWdahabaGaeqOSdigeaaaaaaaaa8qacqWIpecAaaaaaa@535D@ , mivel valamennyi G α , β MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGhbWaaSbaaSqaaiabeg7aHjaacYcacqaHYoGyaeqaaaaa@4DE3@ periodikus β MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqaHYoGyqaaaaaaaaaWdbiabl+qiObaa@4BE5@ szerint a 2. argumentumában, illetve G α , β ( k , τ ) = 1 β n G ( k , i ω n ) e i ω n τ MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGhbWaaSbaaSqaaiabeg7aHjaacYcacqaHYoGyaeqaaOWaaeWaaeaacaWHRbGaaiilaiabes8a0bGaayjkaiaawMcaaiabg2da9maalaaabaGaaGymaaqaaiabek7aIbbaaaaaaaaapeGaeS4dHGgaa8aadaaeqbqaaiaadEeadaqadaqaaiaahUgacaGGSaGaamyAaiabeM8a3naaBaaaleaacaWGUbaabeaaaOGaayjkaiaawMcaaiaadwgadaahaaWcbeqaaiabgkHiTiaadMgacqaHjpWDdaWgaaadbaGaamOBaaqabaWccqaHepaDaaaabaGaamOBaaqab0GaeyyeIuoaaaa@6A40@ A szabad Green-függvények: G 1,1 ( 0 ) ( k , i ω n ) = 1 i ω n 1 ( e k μ ) MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGhbWaa0baaSqaaiaaigdacaGGSaGaaGymaaqaamaabmaabaGaaGimaaGaayjkaiaawMcaaaaakmaabmaabaGaaC4AaiaacYcacaWGPbGaeqyYdC3aaSbaaSqaaiaad6gaaeqaaaGccaGLOaGaayzkaaGaeyypa0ZaaSaaaeaacaaIXaaabaGaamyAaiabeM8a3naaBaaaleaacaWGUbaabeaakiabgkHiTabaaaaaaaaapeGaeS4dHG2aaWbaaSqabeaacqGHsislcaaIXaaaaOWaaeWaaeaacaWGLbWaaSbaaSqaaiaadUgaaeqaaOGaeyOeI0IaeqiVd0gacaGLOaGaayzkaaaaaaaa@657E@
G 2,2 0 ( k , i ω n ) = 1 i ω n 1 ( e k μ ) MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGhbWaa0baaSqaaiaaikdacaGGSaGaaGOmaaqaaiaaicdaaaGcdaqadaqaaiaahUgacaGGSaGaamyAaiabeM8a3naaBaaaleaacaWGUbaabeaaaOGaayjkaiaawMcaaiabg2da9maalaaabaGaaGymaaqaaiabgkHiTiaadMgacqaHjpWDdaWgaaWcbaGaamOBaaqabaGccqGHsislqaaaaaaaaaWdbiabl+qiOnaaCaaaleqabaGaeyOeI0IaaGymaaaakmaabmaabaGaamyzamaaBaaaleaacaWGRbaabeaakiabgkHiTiabeY7aTbGaayjkaiaawMcaaaaaaaa@64E4@
G 1,2 0 ( k , i ω n ) = 0 = G 2,1 0 ( k , i ω n ) MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGhbWaa0baaSqaaiaaigdacaGGSaGaaGOmaaqaaiaaicdaaaGcdaqadaqaaiaahUgacaGGSaGaamyAaiabeM8a3naaBaaaleaacaWGUbaabeaaaOGaayjkaiaawMcaaiabg2da9iaaicdacqGH9aqpcaWGhbWaa0baaSqaaiaaikdacaGGSaGaaGymaaqaaiaaicdaaaGcdaqadaqaaiaahUgacaGGSaGaamyAaiabeM8a3naaBaaaleaacaWGUbaabeaaaOGaayjkaiaawMcaaaaa@61AB@

Feynman-diagramok

Milyen Feynman-digramok fordulhatnak elő? A perturbáció most K 1 ' MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGlbWaaSbaaSqaaiaaigdaaeqaaOGaai4jaaaa@4B67@ és K I , i MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGlbWaaSbaaSqaaiaadMeacaGGSaGaamyAaaqabaaaaa@4C63@ , i { 1,...,4 } MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGPbGaeyicI48aaiWaaeaacaaIXaGaaiilaiaac6cacaGGUaGaaiOlaiaacYcacaaI0aaacaGL7bGaayzFaaaaaa@528D@ (Soktestprobléma I-ben csak a K I ,4 MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGlbWaaSbaaSqaaiaadMeacaGGSaGaaGinaaqabaaaaa@4C33@ volt).

K I ,4 = 1 2 V k 1 , k 2 , k 3 , k 4 k 1 + k 2 = k 3 + k 4 b k 1 + b k 2 + b k 3 b k 4 v ( k 1 k 3 ) MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGlbWaaSbaaSqaaiaadMeacaGGSaGaaGinaaqabaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaaIYaGaamOvaaaacqGHflY1daaeqbqaaiaadkgadaqhaaWcbaGaaC4AamaaBaaameaacaaIXaaabeaaaSqaaiabgUcaRaaakiaadkgadaqhaaWcbaGaaC4AamaaBaaameaacaaIYaaabeaaaSqaaiabgUcaRaaakiaadkgadaWgaaWcbaGaaC4AamaaBaaameaacaaIZaaabeaaaSqabaGccaWGIbWaaSbaaSqaaiaahUgadaWgaaadbaGaaGinaaqabaaaleqaaOGaamODamaabmaabaGaaC4AamaaBaaaleaacaaIXaaabeaakiabgkHiTiaahUgadaWgaaWcbaGaaG4maaqabaaakiaawIcacaGLPaaaaSabaeqabaGaaC4AamaaBaaameaacaaIXaaabeaaliaacYcacaWHRbWaaSbaaWqaaiaaikdaaeqaaSGaaiilaiaahUgadaWgaaadbaGaaG4maaqabaWccaGGSaGaaC4AamaaBaaameaacaaI0aaabeaaaSqaaiaahUgadaWgaaadbaGaaGymaaqabaWccqGHRaWkcaWHRbWaaSbaaWqaaiaaikdaaeqaaSGaeyypa0JaaC4AamaaBaaameaacaaIZaaabeaaliabgUcaRiaahUgadaWgaaadbaGaaGinaaqabaaaaSqab0GaeyyeIuoaaaa@7D50@  
(a tavalyiaknak megfelelően)

Az egyik tagja a K I ,3 MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGlbWaaSbaaSqaaiaadMeacaGGSaGaaG4maaqabaaaaa@4C32@ -nak:

N 0 v ( 0 ) 2 V k 1 , k 2 , k 3 , k 4 k 1 + k 2 = k 3 + k 4 b k 1 + b k 2 + b k 3 δ k 4 ,0 MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaadaWcaaqaamaakaaabaGaamOtamaaBaaaleaacaaIWaaabeaaaeqaaOGaamODamaabmaabaGaaGimaaGaayjkaiaawMcaaaqaaiaaikdacaWGwbaaaiabgwSixpaaqafabaGaamOyamaaDaaaleaacaWHRbWaaSbaaWqaaiaaigdaaeqaaaWcbaGaey4kaScaaOGaamOyamaaDaaaleaacaWHRbWaaSbaaWqaaiaaikdaaeqaaaWcbaGaey4kaScaaOGaamOyamaaBaaaleaacaWHRbWaaSbaaWqaaiaaiodaaeqaaaWcbeaakiabes7aKnaaBaaaleaacaWHRbWaaSbaaWqaaiaaisdaaeqaaSGaaiilaiaaicdaaeqaaaabaeqabaGaaC4AamaaBaaameaacaaIXaaabeaaliaacYcacaWHRbWaaSbaaWqaaiaaikdaaeqaaSGaaiilaiaahUgadaWgaaadbaGaaG4maaqabaWccaGGSaGaaC4AamaaBaaameaacaaI0aaabeaaaSqaaiaahUgadaWgaaadbaGaaGymaaqabaWccqGHRaWkcaWHRbWaaSbaaWqaaiaaikdaaeqaaSGaeyypa0JaaC4AamaaBaaameaacaaIZaaabeaaliabgUcaRiaahUgadaWgaaadbaGaaGinaaqabaaaaSqab0GaeyyeIuoaaaa@7834@  
a kör egy N 0 MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaadaGcaaqaaiaad6eadaWgaaWcbaGaaGimaaqabaaabeaaaaa@4AC4@ szorzót jelöl

Az egyik tagja a K I ,2 MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGlbWaaSbaaSqaaiaadMeacaGGSaGaaGOmaaqabaaaaa@4C31@ -nek

N 0 2 V k 1 , k 2 , k 3 , k 4 k 1 + k 2 = k 3 + k 4 δ k 1 ,0 b k 2 + b k 3 δ k 4 ,0 v ( k 1 k 3 ) MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaadaWcaaqaaiaad6eadaWgaaWcbaGaaGimaaqabaaakeaacaaIYaGaamOvaaaacqGHflY1daaeqbqaaiabes7aKnaaBaaaleaacaWHRbWaaSbaaWqaaiaaigdaaeqaaSGaaiilaiaaicdaaeqaaOGaamOyamaaDaaaleaacaWHRbWaaSbaaWqaaiaaikdaaeqaaaWcbaGaey4kaScaaOGaamOyamaaBaaaleaacaWHRbWaaSbaaWqaaiaaiodaaeqaaaWcbeaakiabes7aKnaaBaaaleaacaWHRbWaaSbaaWqaaiaaisdaaeqaaSGaaiilaiaaicdaaeqaaaabaeqabaGaaC4AamaaBaaameaacaaIXaaabeaaliaacYcacaWHRbWaaSbaaWqaaiaaikdaaeqaaSGaaiilaiaahUgadaWgaaadbaGaaG4maaqabaWccaGGSaGaaC4AamaaBaaameaacaaI0aaabeaaaSqaaiaahUgadaWgaaadbaGaaGymaaqabaWccqGHRaWkcaWHRbWaaSbaaWqaaiaaikdaaeqaaSGaeyypa0JaaC4AamaaBaaameaacaaIZaaabeaaliabgUcaRiaahUgadaWgaaadbaGaaGinaaqabaaaaSqab0GaeyyeIuoakiaadAhadaqadaqaaiaahUgadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWHRbWaaSbaaSqaaiaaiodaaeqaaaGccaGLOaGaayzkaaaaaa@7D71@  

K I ,1 MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGlbWaaSbaaSqaaiaadMeacaGGSaGaaGymaaqabaaaaa@4C30@ eltüntető részéhez tartozik

N 0 3 / 2 2 V v ( 0 ) b 0 MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaadaWcaaqaaiaad6eadaqhaaWcbaGaaGimaaqaaiaaiodacaGGVaGaaGOmaaaaaOqaaiaaikdacaWGwbaaaiaadAhadaqadaqaaiaaicdaaiaawIcacaGLPaaacaWGIbWaaSbaaSqaaiaaicdaaeqaaaaa@539D@  

K I ,0 = N 0 2 2 V v ( 0 ) MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGlbWaaSbaaSqaaiaadMeacaGGSaGaaGimaaqabaGccqGH9aqpdaWcaaqaaiaad6eadaqhaaWcbaGaaGimaaqaaiaaikdaaaaakeaacaaIYaGaamOvaaaacaWG2bWaaeWaaeaacaaIWaaacaGLOaGaayzkaaaaaa@54A4@  

K 1 ' MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGlbWaaSbaaSqaaiaaigdaaeqaaOGaai4jaaaa@4B67@ egyik tagja (az eltüntető operátorral)

( μ ) N 0 b 0 MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaadaqadaqaaiabgkHiTiabeY7aTbGaayjkaiaawMcaamaakaaabaGaamOtamaaBaaaleaacaaIWaaabeaaaeqaaOGaamOyamaaBaaaleaacaaIWaaabeaaaaa@50C7@
a háromszög a μ MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqGHsislcqaH8oqBaaa@4B9E@ -vel való szorzást jelöli

K 1 ' MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGlbWaaSbaaSqaaiaaigdaaeqaaOGaai4jaaaa@4B67@ másik tagja (a keltő operátorral):

( μ ) N 0 b 0 + MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaadaqadaqaaiabgkHiTiabeY7aTbGaayjkaiaawMcaamaakaaabaGaamOtamaaBaaaleaacaaIWaaabeaaaeqaaOGaamOyamaaDaaaleaacaaIWaaabaGaey4kaScaaaaa@51AA@

K 0 ' MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGlbWaaSbaaSqaaiaaicdaaeqaaOGaai4jaaaa@4B66@