Terjesszük ki a Green-függvényt a komplex félsíkon, hogy megkapjuk a gerjesztéseket! i ω n ω + i ε MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGPbGaeqyYdC3aaSbaaSqaaiaad6gaaeqaaOGaeyOKH4QaeqyYdCNaey4kaSIaamyAaiabew7aLbaa@5410@ Hol divergál G 1,1 ( B ) ( k , i ω n ) MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGhbWaa0baaSqaaiaaigdacaGGSaGaaGymaaqaamaabmaabaGaamOqaaGaayjkaiaawMcaaaaakmaabmaabaGaaC4AaiaacYcacaWGPbGaeqyYdC3aaSbaaSqaaiaad6gaaeqaaaGccaGLOaGaayzkaaaaaa@5585@ függvény? Ahol a nevezője 0. Ezek adják meg az elemi gerjesztéseket. Ezeknek a frekvenciái, vagyis ahol D ( B ) ( k , i ω n ) | ω = E k = 0 MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaadaabcaqaaiaadseadaahaaWcbeqaamaabmaabaGaamOqaaGaayjkaiaawMcaaaaakmaabmaabaGaaC4AaiaacYcacaWGPbGaeqyYdC3aaSbaaSqaaiaad6gaaeqaaaGccaGLOaGaayzkaaaacaGLiWoadaWgaaWcbaGaeqyYdCNaeyypa0JaeS4dHGMaamyramaaBaaameaacaWHRbaabeaaaSqabaGccqGH9aqpcaaIWaaaaa@5CDA@ : 0 = E k 2 2 ( e k + n 0 v ( k ) ) 2 + 2 n 0 2 v 2 ( k ) MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaaIWaGaeyypa0JaamyramaaDaaaleaacaWHRbaabaGaaGOmaaaakiabgkHiTiabl+qiOnaaCaaaleqabaGaeyOeI0IaaGOmaaaakmaabmaabaGaamyzamaaBaaaleaacaWHRbaabeaakiabgUcaRiaad6gadaWgaaWcbaGaaGimaaqabaGccaWG2bWaaeWaaeaacaWHRbaacaGLOaGaayzkaaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaeS4dHG2aaWbaaSqabeaacqGHsislcaaIYaaaaOGaamOBamaaDaaaleaacaaIWaaabaGaaGOmaaaakiaadAhadaahaaWcbeqaaiaaikdaaaGcdaqadaqaaiaahUgaaiaawIcacaGLPaaaaaa@6725@ ebből kifejezhető: E k = e k ( e k +2 n 0 v( k ) ) MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIjxAHbstHrhAaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gatuuDJXwAK1uy0HwmaeXbfv3ySLgzG0uy0Hgip5wzaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeu0xh8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaiaabiWacmaaeaqabeaafaGbaCaaaOqaaiabl+qiOjaadweadaWgaaWcbaGaaC4AaaqabaGccqGH9aqpdaGcaaqaaiaadwgadaWgaaWcbaGaaC4AaaqabaGcdaqadaqaaiaadwgadaWgaaWcbaGaaC4AaaqabaGccqGHRaWkcaaIYaGaamOBamaaBaaaleaacaaIWaaabeaakiaadAhadaqadaqaaiaahUgaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaSqabaaaaa@605D@ mely kicsi k MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWHRbaaaa@49EF@ értékekre: E k c k MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGfbWaaSbaaSqaaiaahUgaaeqaaOGaeyisISRaeS4dHGMaam4yaiabgwSixlaadUgaaaa@51EB@ , ahol e k = 2 k 2 2 m MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGLbWaaSbaaSqaaiaahUgaaeqaaOGaeyypa0ZaaSaaaeaacqWIpecAdaahaaWcbeqaaiaaikdaaaGccaWGRbWaaWbaaSqabeaacaaIYaaaaaGcbaGaaGOmaiaad2gaaaaaaa@51D2@ összefüggést helyettesítettünk be és c = n 0 v ( 0 ) m MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGJbGaeyypa0ZaaOaaaeaadaWcaaqaaiaad6gadaWgaaWcbaGaaGimaaqabaGccaWG2bWaaeWaaeaacaaIWaaacaGLOaGaayzkaaaabaGaamyBaaaaaSqabaaaaa@5127@ a Bogoljubov hangsebesség.

D ( k , i ω n ) = ( i ω n 1 E k ) ( i ω n + 1 E k ) MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGebWaaeWaaeaacaWHRbGaaiilaiaadMgacqaHjpWDdaWgaaWcbaGaamOBaaqabaaakiaawIcacaGLPaaacqGH9aqpdaqadaqaaiaadMgacqaHjpWDdaWgaaWcbaGaamOBaaqabaGccqGHsislcqWIpecAdaahaaWcbeqaaiabgkHiTiaaigdaaaGccaWGfbWaaSbaaSqaaiaadUgaaeqaaaGccaGLOaGaayzkaaWaaeWaaeaacaWGPbGaeqyYdC3aaSbaaSqaaiaad6gaaeqaaOGaey4kaSIaeS4dHG2aaWbaaSqabeaacqGHsislcaaIXaaaaOGaamyramaaBaaaleaacaWGRbaabeaaaOGaayjkaiaawMcaaaaa@6874@ , így G 1,1 ( B ) ( k , i ω n ) MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGhbWaa0baaSqaaiaaigdacaGGSaGaaGymaaqaamaabmaabaGaamOqaaGaayjkaiaawMcaaaaakmaabmaabaGaaC4AaiaacYcacaWGPbGaeqyYdC3aaSbaaSqaaiaad6gaaeqaaaGccaGLOaGaayzkaaaaaa@5585@ parciális törtek alakjában felírva: G 1,1 ( B ) ( k , i ω n ) = u k 2 i ω n 1 E k v k 2 i ω n + 1 E k MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGhbWaa0baaSqaaiaaigdacaGGSaGaaGymaaqaamaabmaabaGaamOqaaGaayjkaiaawMcaaaaakmaabmaabaGaaC4AaiaacYcacaWGPbGaeqyYdC3aaSbaaSqaaiaad6gaaeqaaaGccaGLOaGaayzkaaGaeyypa0ZaaSaaaeaacaWG1bWaa0baaSqaaiaadUgaaeaacaaIYaaaaaGcbaGaamyAaiabeM8a3naaBaaaleaacaWGUbaabeaakiabgkHiTiabl+qiOnaaCaaaleqabaGaeyOeI0IaaGymaaaakiaadweadaWgaaWcbaGaaC4AaaqabaaaaOGaeyOeI0YaaSaaaeaacaWG2bWaa0baaSqaaiaadUgaaeaacaaIYaaaaaGcbaGaamyAaiabeM8a3naaBaaaleaacaWGUbaabeaakiabgUcaRiabl+qiOnaaCaaaleqabaGaeyOeI0IaaGymaaaakiaadweadaWgaaWcbaGaaC4Aaaqabaaaaaaa@70D8@ ahol u k 2 = 1 2 [ 1 + e k + n 0 v ( k ) E k ] MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWG1bWaa0baaSqaaiaadUgaaeaacaaIYaaaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaadaWadaqaaiaaigdacqGHRaWkdaWcaaqaaiaadwgadaWgaaWcbaGaaC4AaaqabaGccqGHRaWkcaWGUbWaaSbaaSqaaiaaicdaaeqaaOGaamODamaabmaabaGaaC4AaaGaayjkaiaawMcaaaqaaiaadweadaWgaaWcbaGaaC4AaaqabaaaaaGccaGLBbGaayzxaaaaaa@5C49@ és v k 2 = 1 2 [ 1 + e k + n 0 v ( k ) E k ] MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWG2bWaa0baaSqaaiaadUgaaeaacaaIYaaaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaadaWadaqaaiabgkHiTiaaigdacqGHRaWkdaWcaaqaaiaadwgadaWgaaWcbaGaaC4AaaqabaGccqGHRaWkcaWGUbWaaSbaaSqaaiaaicdaaeqaaOGaamODamaabmaabaGaaC4AaaGaayjkaiaawMcaaaqaaiaadweadaWgaaWcbaGaaC4AaaqabaaaaaGccaGLBbGaayzxaaaaaa@5D37@ . Az anomális Green-függvény pedig: G 1,2 ( B ) ( k , i ω n ) = u k v k ( 1 i ω n 1 E k 1 i ω n + 1 E k ) MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGhbWaa0baaSqaaiaaigdacaGGSaGaaGOmaaqaamaabmaabaGaamOqaaGaayjkaiaawMcaaaaakmaabmaabaGaaC4AaiaacYcacaWGPbGaeqyYdC3aaSbaaSqaaiaad6gaaeqaaaGccaGLOaGaayzkaaGaeyypa0JaeyOeI0IaamyDamaaBaaaleaacaWGRbaabeaakiaadAhadaWgaaWcbaGaam4AaaqabaGccqGHflY1daqadaqaamaalaaabaGaaGymaaqaaiaadMgacqaHjpWDdaWgaaWcbaGaamOBaaqabaGccqGHsislcqWIpecAdaahaaWcbeqaaiabgkHiTiaaigdaaaGccaWGfbWaaSbaaSqaaiaahUgaaeqaaaaakiabgkHiTmaalaaabaGaaGymaaqaaiaadMgacqaHjpWDdaWgaaWcbaGaamOBaaqabaGccqGHRaWkcqWIpecAdaahaaWcbeqaaiabgkHiTiaaigdaaaGccaWGfbWaaSbaaSqaaiaahUgaaeqaaaaaaOGaayjkaiaawMcaaaaa@759F@

Bogoljubov-Hartree közelítés

A közelítés során csak a Hartree tagot vesszük figyelembe. Ez a legegyszerűbb közelítés a Bogoljubov közelítésen túl.

  1. kondenzátum részecskeszám (sűrűség) és kémiai potenciál kapcsolata
    = 1 N 0 [ μ+v( 0 ) n 0 +v( 0 ) 1 β m d 3 q ( 2π ) 3 ( G 0 ( q,i ω n ) ) ] G 0 ( 0,0 ) MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIjxAHbstHrhAaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gatuuDJXwAK1uy0HwmaeXbfv3ySLgzG0uy0Hgip5wzaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeu0xh8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaiaabiWacmaaeaqabeaafaGbaCaaaOqaaiabg2da9iabl+qiOnaaCaaaleqabaGaeyOeI0IaaGymaaaakmaakaaabaGaamOtamaaBaaaleaacaaIWaaabeaaaeqaaOWaamWaaeaacqGHsislcqaH8oqBcqGHRaWkcaWG2bWaaeWaaeaacaaIWaaacaGLOaGaayzkaaGaamOBamaaBaaaleaacaaIWaaabeaakiabgUcaRiaadAhadaqadaqaaiaaicdaaiaawIcacaGLPaaadaWcaaqaaiaaigdaaeaacqaHYoGycqWIpecAaaWaaabuaeaadaWdbaqaamaalaaabaGaamizamaaCaaaleqabaGaaG4maaaakiaadghaaeaadaqadaqaaiaaikdacqaHapaCaiaawIcacaGLPaaadaahaaWcbeqaaiaaiodaaaaaaOWaaeWaaeaacqGHsislcaWGhbWaaSbaaSqaaiaaicdaaeqaaOWaaeWaaeaacaWHXbGaaiilaiaadMgacqaHjpWDdaWgaaWcbaGaamOBaaqabaaakiaawIcacaGLPaaaaiaawIcacaGLPaaaaSqabeqaniabgUIiYdaaleaacaWGTbaabeqdcqGHris5aaGccaGLBbGaayzxaaGaeyyXICTaeyOeI0Iaam4ramaaBaaaleaacaaIWaaabeaakmaabmaabaGaaGimaiaacYcacaaIWaaacaGLOaGaayzkaaaaaa@887F@ Ekkor μ = v ( 0 ) ( n 0 + n ' ) = v ( 0 ) n MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqaH8oqBcqGH9aqpcaWG2bWaaeWaaeaacaaIWaaacaGLOaGaayzkaaGaeyyXIC9aaeWaaeaacaWGUbWaaSbaaSqaaiaaicdaaeqaaOGaey4kaSIaamOBaiaacEcaaiaawIcacaGLPaaacqGH9aqpcaWG2bWaaeWaaeaacaaIWaaacaGLOaGaayzkaaGaeyyXICTaamOBaaaa@5EAC@ . Fontos, hogy itt v ( 0 ) MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWG2bWaaeWaaeaacaaIWaaacaGLOaGaayzkaaaaaa@4C39@ -at már a teljes részecskeszám-sűrűséggel szorozzuk. A kondenzátumon kívüli részecskeszám sűrűsége: n ' = N ' / V = d 3 q ( 2 π ) 3 1 e β e q 1 = 1 ( 2 π ) 3 λ 3 Γ ( 3 2 ) F ( 3 2 ,0 ) MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGUbGaai4jaiabg2da9iaad6eacaGGNaGaai4laiaadAfacqGH9aqpdaWdbaqaamaalaaabaGaamizamaaCaaaleqabaGaaG4maaaakiaadghaaeaadaqadaqaaiaaikdacqaHapaCaiaawIcacaGLPaaadaahaaWcbeqaaiaaiodaaaaaaOWaaSaaaeaacaaIXaaabaGaamyzamaaCaaaleqabaGaeqOSdiMaamyzamaaBaaameaacaWHXbaabeaaaaGccqGHsislcaaIXaaaaiabg2da9maalaaabaGaaGymaaqaamaabmaabaGaaGOmaiabec8aWbGaayjkaiaawMcaamaaCaaaleqabaGaaG4maaaakiabeU7aSnaaCaaaleqabaGaaG4maaaaaaGccqqHtoWrdaqadaqaamaalaaabaGaaG4maaqaaiaaikdaaaaacaGLOaGaayzkaaGaamOramaabmaabaWaaSaaaeaacaaIZaaabaGaaGOmaaaacaGGSaGaaGimaaGaayjkaiaawMcaaaWcbeqab0Gaey4kIipaaaa@73FB@ ahol F ( s , γ ) = 1 Γ ( s ) 0 d t t s 1 e t + γ 1 = L i s ( e γ ) MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGgbWaaeWaaeaacaWGZbGaaiilaiabeo7aNbGaayjkaiaawMcaaiabg2da9maalaaabaGaaGymaaqaaiabfo5ahnaabmaabaGaam4CaaGaayjkaiaawMcaaaaacqGHflY1daWdXbqaaiaadsgacaWG0bWaaSaaaeaacaWG0bWaaWbaaSqabeaacaWGZbGaeyOeI0IaaGymaaaaaOqaaiaadwgadaahaaWcbeqaaiaadshacqGHRaWkcqaHZoWzaaGccqGHsislcaaIXaaaaiabg2da9iaadYeacaWGPbWaaSbaaSqaaiaadohaaeqaaaqaaiaaicdaaeaacqGHEisPa0Gaey4kIipakmaabmaabaGaamyzamaaCaaaleqabaGaeyOeI0Iaeq4SdCgaaaGccaGLOaGaayzkaaaaaa@7069@ , ahol L i s MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGmbGaamyAamaaBaaaleaacaWGZbaabeaaaaa@4BDE@ az ún. polilogaritmikus függvény, Γ ( s ) = 0 e t t s 1 d t MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqqHtoWrdaqadaqaaiaadohaaiaawIcacaGLPaaacqGH9aqpdaWdXbqaaiaadwgadaahaaWcbeqaaiabgkHiTiaadshaaaGccaWG0bWaaWbaaSqabeaacaWGZbGaeyOeI0IaaGymaaaaaeaacaaIWaaabaGaeyOhIukaniabgUIiYdGccaWGKbGaamiDaaaa@5B2C@ , és λ = 2 2 m k B T MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqaH7oaBcqGH9aqpdaWcaaqaaiabl+qiOnaaCaaaleqabaGaaGOmaaaaaOqaaiaaikdacaWGTbGaam4AamaaBaaaleaacaWGcbaabeaakiaadsfaaaaaaa@5255@ , valamint F ( s ,0 ) = ζ ( s ) MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGgbWaaeWaaeaacaWGZbGaaiilaiaaicdaaiaawIcacaGLPaaacqGH9aqpcqaH2oGEdaqadaqaaiaadohaaiaawIcacaGLPaaaaaa@52F5@ . n ' = n ( T / T c ) 3 / 2 MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGUbGaai4jaiabg2da9iaad6gacqGHflY1daqadaqaaiaadsfacaGGVaGaamivamaaBaaaleaacaWGJbaabeaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaG4maiaac+cacaaIYaaaaaaa@5641@ és n 0 = n n ' = n [ 1 ( T / T c ) 3 / 2 ] MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGUbWaaSbaaSqaaiaaicdaaeqaaOGaeyypa0JaamOBaiabgkHiTiaad6gacaGGNaGaeyypa0JaamOBamaadmaabaGaaGymaiabgkHiTmaabmaabaGaamivaiaac+cacaWGubWaaSbaaSqaaiaadogaaeqaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIZaGaai4laiaaikdaaaaakiaawUfacaGLDbaaaaa@5C64@ és n = n ' ( T c ) MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGUbGaeyypa0JaamOBaiaacEcadaqadaqaaiaadsfadaWgaaWcbaGaam4yaaqabaaakiaawIcacaGLPaaaaaa@5012@ , mint ahogy azt már megszokhattuk.
  2. sajátenergiák
    Σ 1,1 ( k , i ω n ) = ( μ ) + v ( 0 ) n 0 + v ( k ) n 0 + v ( 0 ) n ' MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqWIpecAcqqHJoWudaWgaaWcbaGaaGymaiaacYcacaaIXaaabeaakmaabmaabaGaaC4AaiaacYcacaWGPbGaeqyYdC3aaSbaaSqaaiaad6gaaeqaaaGccaGLOaGaayzkaaGaeyypa0ZaaeWaaeaacqGHsislcqaH8oqBaiaawIcacaGLPaaacqGHRaWkcaWG2bWaaeWaaeaacaaIWaaacaGLOaGaayzkaaGaamOBamaaBaaaleaacaaIWaaabeaakiabgUcaRiaadAhadaqadaqaaiaahUgaaiaawIcacaGLPaaacaWGUbWaaSbaaSqaaiaaicdaaeqaaOGaey4kaSIaamODamaabmaabaGaaGimaaGaayjkaiaawMcaaiaad6gacaGGNaaaaa@6C45@ az anomális sajátenergia pedig:
    Σ 1,2 = v ( k ) n 0 MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqWIpecAcqqHJoWudaWgaaWcbaGaaGymaiaacYcacaaIYaaabeaakiabg2da9iaadAhadaqadaqaaiaahUgaaiaawIcacaGLPaaacqGHflY1caWGUbWaaSbaaSqaaiaaicdaaeqaaaaa@56A6@ Vegyük észre, hogy Σ 1,1 ( k , i ω n ) MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqWIpecAcqqHJoWudaWgaaWcbaGaaGymaiaacYcacaaIXaaabeaakmaabmaabaGaaC4AaiaacYcacaWGPbGaeqyYdC3aaSbaaSqaaiaad6gaaeqaaaGccaGLOaGaayzkaaaaaa@5515@ 1, 2. és 4. tagjának összege 0, így Σ 1,1 ( k , i ω n ) = v ( k ) n 0 MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqWIpecAcqqHJoWudaWgaaWcbaGaaGymaiaacYcacaaIXaaabeaakmaabmaabaGaaC4AaiaacYcacaWGPbGaeqyYdC3aaSbaaSqaaiaad6gaaeqaaaGccaGLOaGaayzkaaGaeyypa0JaamODamaabmaabaGaaC4AaaGaayjkaiaawMcaaiabgwSixlaad6gadaWgaaWcbaGaaGimaaqabaaaaa@5DB6@
  3. Diszperziós reláció a
    Bogoljubov-Hartree közelítésben
  4. A Green-függvények
    G 1,1 ( B H ) ( k , i ω n ) = u k 2 i ω n 1 E k v k 2 i ω n + 1 E k MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGhbWaa0baaSqaaiaaigdacaGGSaGaaGymaaqaamaabmaabaGaamOqaiabgkHiTiaadIeaaiaawIcacaGLPaaaaaGcdaqadaqaaiaahUgacaGGSaGaamyAaiabeM8a3naaBaaaleaacaWGUbaabeaaaOGaayjkaiaawMcaaiabg2da9maalaaabaGaamyDamaaDaaaleaacaWGRbaabaGaaGOmaaaaaOqaaiaadMgacqaHjpWDdaWgaaWcbaGaamOBaaqabaGccqGHsislcqWIpecAdaahaaWcbeqaaiabgkHiTiaaigdaaaGccaWGfbWaaSbaaSqaaiaahUgaaeqaaaaakiabgkHiTmaalaaabaGaamODamaaDaaaleaacaWGRbaabaGaaGOmaaaaaOqaaiaadMgacqaHjpWDdaWgaaWcbaGaamOBaaqabaGccqGHRaWkcqWIpecAdaahaaWcbeqaaiabgkHiTiaaigdaaaGccaWGfbWaaSbaaSqaaiaahUgaaeqaaaaaaaa@7292@ és G 1,2 ( B H ) ( k , i ω n ) = u k v k ( 1 i ω n 1 E k 1 i ω n + 1 E k ) MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGhbWaa0baaSqaaiaaigdacaGGSaGaaGOmaaqaamaabmaabaGaamOqaiabgkHiTiaadIeaaiaawIcacaGLPaaaaaGcdaqadaqaaiaahUgacaGGSaGaamyAaiabeM8a3naaBaaaleaacaWGUbaabeaaaOGaayjkaiaawMcaaiabg2da9iabgkHiTiaadwhadaWgaaWcbaGaam4AaaqabaGccaWG2bWaaSbaaSqaaiaadUgaaeqaaOGaeyyXIC9aaeWaaeaadaWcaaqaaiaaigdaaeaacaWGPbGaeqyYdC3aaSbaaSqaaiaad6gaaeqaaOGaeyOeI0IaeS4dHG2aaWbaaSqabeaacqGHsislcaaIXaaaaOGaamyramaaBaaaleaacaWHRbaabeaaaaGccqGHsisldaWcaaqaaiaaigdaaeaacaWGPbGaeqyYdC3aaSbaaSqaaiaad6gaaeqaaOGaey4kaSIaeS4dHG2aaWbaaSqabeaacqGHsislcaaIXaaaaOGaamyramaaBaaaleaacaWHRbaabeaaaaaakiaawIcacaGLPaaaaaa@7759@ ahol E k = e k ( e k + 2 n 0 v ( k ) ) MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGfbWaaSbaaSqaaiaahUgaaeqaaOGaeyypa0ZaaOaaaeaacaWGLbWaaSbaaSqaaiaahUgaaeqaaOWaaeWaaeaacaWGLbWaaSbaaSqaaiaahUgaaeqaaOGaey4kaSIaaGOmaiaad6gadaWgaaWcbaGaaGimaaqabaGccaWG2bWaaeWaaeaacaWHRbaacaGLOaGaayzkaaaacaGLOaGaayzkaaaaleqaaaaa@58BA@ , valamint u k 2 = 1 2 [ 1 + e k + n 0 v ( k ) E k ] MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWG1bWaa0baaSqaaiaadUgaaeaacaaIYaaaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaadaWadaqaaiaaigdacqGHRaWkdaWcaaqaaiaadwgadaWgaaWcbaGaaC4AaaqabaGccqGHRaWkcaWGUbWaaSbaaSqaaiaaicdaaeqaaOGaamODamaabmaabaGaaC4AaaGaayjkaiaawMcaaaqaaiaadweadaWgaaWcbaGaaC4AaaqabaaaaaGccaGLBbGaayzxaaaaaa@5C49@ és v k 2 = 1 2 [ 1 + e k + n 0 v ( k ) E k ] MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWG2bWaa0baaSqaaiaadUgaaeaacaaIYaaaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaadaWadaqaaiabgkHiTiaaigdacqGHRaWkdaWcaaqaaiaadwgadaWgaaWcbaGaaC4AaaqabaGccqGHRaWkcaWGUbWaaSbaaSqaaiaaicdaaeqaaOGaamODamaabmaabaGaaC4AaaGaayjkaiaawMcaaaqaaiaadweadaWgaaWcbaGaaC4AaaqabaaaaaGccaGLBbGaayzxaaaaaa@5D37@ . Vagyis láthatjuk, hogy formálisan ugyanazt kapjuk, mint a Bogoljubov közelítésnél. A különbség az, hogy n 0 ( T ) = n ( 1 ( T / T c ) 3 / 2 ) MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGUbWaaSbaaSqaaiaaicdaaeqaaOWaaeWaaeaacaWGubaacaGLOaGaayzkaaGaeyypa0JaamOBamaabmaabaGaaGymaiabgkHiTmaabmaabaGaamivaiaac+cacaWGubWaaSbaaSqaaiaadogaaeqaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIZaGaai4laiaaikdaaaaakiaawIcacaGLPaaaaaa@59D9@ hőmérséklet-függő. Ez akkor a Bogoljubov közelítés, ha T = 0 MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGubGaeyypa0JaaGimaaaa@4B94@ . Ebben a közelítésben c 0 MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGJbGaeyOKH4QaaGimaaaa@4C8A@ ha T T c MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGubGaeyOKH4QaamivamaaBaaaleaacaWGJbaabeaaaaa@4DAE@ .

Kondenzátumon kívüli atomok száma

A teljes propagátorból számolva n ' = d 3 k ( 2 π ) 3 n ' ( k ) MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGUbGaai4jaiabg2da9maapeaabaWaaSaaaeaacaWGKbWaaWbaaSqabeaacaaIZaaaaOGaam4AaaqaamaabmaabaGaaGOmaiabec8aWbGaayjkaiaawMcaamaaCaaaleqabaGaaG4maaaaaaGccaWGUbGaai4jamaabmaabaGaam4AaaGaayjkaiaawMcaaaWcbeqab0Gaey4kIipaaaa@5984@ , melyben n ' ( k ) = 1 β m e i ν m η G 1,1 ( k , i ω n ) = 1 β m e i ν m η [ u k 2 i ω n 1 E k v k 2 i ω n + 1 E k ] MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGUbGaai4jamaabmaabaGaam4AaaGaayjkaiaawMcaaiabg2da9maalaaabaGaeyOeI0IaaGymaaqaaiabek7aIjabl+qiObaadaaeqbqaaiaadwgadaahaaWcbeqaaiaadMgacqaH9oGBdaWgaaadbaGaamyBaaqabaWccqaH3oaAaaGccqGHflY1caWGhbWaaSbaaSqaaiaaigdacaGGSaGaaGymaaqabaGcdaqadaqaaiaahUgacaGGSaGaamyAaiabeM8a3naaBaaaleaacaWGUbaabeaaaOGaayjkaiaawMcaaaWcbaGaamyBaaqab0GaeyyeIuoakiabg2da9maalaaabaGaeyOeI0IaaGymaaqaaiabek7aIjabl+qiObaadaaeqbqaaiaadwgadaahaaWcbeqaaiaadMgacqaH9oGBdaWgaaadbaGaamyBaaqabaWccqaH3oaAaaGccqGHflY1daWadaqaamaalaaabaGaamyDamaaDaaaleaacaWGRbaabaGaaGOmaaaaaOqaaiaadMgacqaHjpWDdaWgaaWcbaGaamOBaaqabaGccqGHsislcqWIpecAdaahaaWcbeqaaiabgkHiTiaaigdaaaGccaWGfbWaaSbaaSqaaiaahUgaaeqaaaaakiabgkHiTmaalaaabaGaamODamaaDaaaleaacaWGRbaabaGaaGOmaaaaaOqaaiaadMgacqaHjpWDdaWgaaWcbaGaamOBaaqabaGccqGHRaWkcqWIpecAdaahaaWcbeqaaiabgkHiTiaaigdaaaGccaWGfbWaaSbaaSqaaiaahUgaaeqaaaaaaOGaay5waiaaw2faaaWcbaGaamyBaaqab0GaeyyeIuoaaaa@96A6@ Végezzük el a frekvencia szerinti integrálást! n ' ( k ) = u k 2 e β E k 1 v k 2 e β E k 1 = u k 2 + e β E k v k 2 e β E k 1 = v k 2 + ( u k 2 + v k 2 ) 1 e β E k 1 MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGUbGaai4jamaabmaabaGaam4AaaGaayjkaiaawMcaaiabg2da9maalaaabaGaamyDamaaDaaaleaacaWGRbaabaGaaGOmaaaaaOqaaiaadwgadaahaaWcbeqaaiabek7aIjaadweadaWgaaadbaGaaC4AaaqabaaaaOGaeyOeI0IaaGymaaaacqGHsisldaWcaaqaaiaadAhadaqhaaWcbaGaam4AaaqaaiaaikdaaaaakeaacaWGLbWaaWbaaSqabeaacqGHsislcqaHYoGycaWGfbWaaSbaaWqaaiaahUgaaeqaaaaakiabgkHiTiaaigdaaaGaeyypa0ZaaSaaaeaacaWG1bWaa0baaSqaaiaadUgaaeaacaaIYaaaaOGaey4kaSIaamyzamaaCaaaleqabaGaeqOSdiMaamyramaaBaaameaacaWHRbaabeaaaaGccqGHflY1caWG2bWaa0baaSqaaiaadUgaaeaacaaIYaaaaaGcbaGaamyzamaaCaaaleqabaGaeqOSdiMaamyramaaBaaameaacaWHRbaabeaaaaGccqGHsislcaaIXaaaaiabg2da9iaadAhadaqhaaWcbaGaam4AaaqaaiaaikdaaaGccqGHRaWkdaqadaqaaiaadwhadaqhaaWcbaGaam4AaaqaaiaaikdaaaGccqGHRaWkcaWG2bWaa0baaSqaaiaadUgaaeaacaaIYaaaaaGccaGLOaGaayzkaaGaeyyXIC9aaSaaaeaacaaIXaaabaGaamyzamaaCaaaleqabaGaeqOSdiMaamyramaaBaaameaacaWGRbaabeaaaaGccqGHsislcaaIXaaaaaaa@8DC7@ Ezt visszaírva n ' MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGUbGaai4jaaaa@4A99@ -be, az már csak az integrálást kell elvégezni. Ez nem mindig tehető meg analitikusan, csak speciális esetekben. Pl

  1. T = 0 MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGubGaeyypa0JaaGimaaaa@4B94@ esetén (Bogo. közelítés): n ' ( k ) = v k 2 n ' | T = 0 = 8 3 n 0 ( n 0 a 3 π ) 1 / 2 MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGUbGaai4jamaabmaabaGaam4AaaGaayjkaiaawMcaaiabg2da9iaadAhadaqhaaWcbaGaam4AaaqaaiaaikdaaaGccqGHshI3daabcaqaaiaad6gacaGGNaaacaGLiWoadaWgaaWcbaGaamivaiabg2da9iaaicdaaeqaaOGaeyypa0ZaaSaaaeaacaaI4aaabaGaaG4maaaacaWGUbWaaSbaaSqaaiaaicdaaeqaaOWaaeWaaeaadaWcaaqaaiaad6gadaWgaaWcbaGaaGimaaqabaGccaWGHbWaaWbaaSqabeaacaaIZaaaaaGcbaGaeqiWdahaaaGaayjkaiaawMcaamaaCaaaleqabaGaaGymaiaac+cacaaIYaaaaaaa@6738@
  2. T = T c MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGubGaeyypa0JaamivamaaBaaaleaacaWGJbaabeaaaaa@4CC7@ esetén (szabad, nem kondenzált gáz): E k = e k v k 2 = 0 u k 2 = 1 } n ' ( k ) = n ( k ) MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaadaGacaqaauaabeqadeaaaeaacaWGfbWaaSbaaSqaaiaahUgaaeqaaOGaeyypa0JaamyzamaaBaaaleaacaWHRbaabeaaaOqaaiaadAhadaqhaaWcbaGaam4AaaqaaiaaikdaaaGccqGH9aqpcaaIWaaabaGaamyDamaaDaaaleaacaWGRbaabaGaaGOmaaaakiabg2da9iaaigdaaaaacaGL9baacqGHshI3caWGUbGaai4jamaabmaabaGaam4AaaGaayjkaiaawMcaaiabg2da9iaad6gadaqadaqaaiaadUgaaiaawIcacaGLPaaaaaa@6356@
  3. T 0 MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGubGaeyOKH4QaaGimaaaa@4C7B@ , de T 0 MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGubGaeyiyIKRaaGimaaaa@4C55@ esetén: n ' | T n ' | T = 0 = 1 12 m c 3 ( k B T ) 2 MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaadaabcaqaaiaad6gacaGGNaaacaGLiWoadaWgaaWcbaGaamivaaqabaGccqGHsisldaabcaqaaiaad6gacaGGNaaacaGLiWoadaWgaaWcbaGaamivaiabg2da9iaaicdaaeqaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGymaiaaikdaaaWaaSaaaeaacaWGTbaabaGaam4yaiabl+qiOnaaCaaaleqabaGaaG4maaaaaaGcdaqadaqaaiaadUgadaWgaaWcbaGaamOqaaqabaGccaWGubaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaaa@60B5@ , ahol c MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGJbaaaa@49E3@ a Bogoljubov hangsebesség, c 2 = n v ( 0 ) / m MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGJbWaaWbaaSqabeaacaaIYaaaaOGaeyypa0JaamOBaiaadAhadaqadaqaaiaaicdaaiaawIcacaGLPaaacaGGVaGaamyBaaaa@51B2@

Érdekesség

Bogoljubov közelítésben nézzük meg, hogy a G 1,1 ( B ) ( k , i ω n ) = i ω n + 1 ( e k + n 0 v ( k ) ) [ i ω n 1 ( e k + n 0 v ( k ) ) ] [ i ω n + 1 ( e k + n 0 v ( k ) ) ] + 2 n 0 2 v ( k ) 2 MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGhbWaa0baaSqaaiaaigdacaGGSaGaaGymaaqaamaabmaabaGaamOqaaGaayjkaiaawMcaaaaakmaabmaabaGaaC4AaiaacYcacaWGPbGaeqyYdC3aaSbaaSqaaiaad6gaaeqaaaGccaGLOaGaayzkaaGaeyypa0ZaaSaaaeaacaWGPbGaeqyYdC3aaSbaaSqaaiaad6gaaeqaaOGaey4kaSIaeS4dHG2aaWbaaSqabeaacqGHsislcaaIXaaaaOWaaeWaaeaacaWGLbWaaSbaaSqaaiaahUgaaeqaaOGaey4kaSIaamOBamaaBaaaleaacaaIWaaabeaakiabgwSixlaadAhadaqadaqaaiaahUgaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaeaadaWadaqaaiaadMgacqaHjpWDdaWgaaWcbaGaamOBaaqabaGccqGHsislcqWIpecAdaahaaWcbeqaaiabgkHiTiaaigdaaaGcdaqadaqaaiaadwgadaWgaaWcbaGaaC4AaaqabaGccqGHRaWkcaWGUbWaaSbaaSqaaiaaicdaaeqaaOGaamODamaabmaabaGaaC4AaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaGaay5waiaaw2faaiabgwSixpaadmaabaGaamyAaiabeM8a3naaBaaaleaacaWGUbaabeaakiabgUcaRiabl+qiOnaaCaaaleqabaGaeyOeI0IaaGymaaaakmaabmaabaGaamyzamaaBaaaleaacaWHRbaabeaakiabgUcaRiaad6gadaWgaaWcbaGaaGimaaqabaGccaWG2bWaaeWaaeaacaWHRbaacaGLOaGaayzkaaaacaGLOaGaayzkaaaacaGLBbGaayzxaaGaey4kaSIaeS4dHG2aaWbaaSqabeaacqGHsislcaaIYaaaaOGaamOBamaaDaaaleaacaaIWaaabaGaaGOmaaaakiaadAhadaqadaqaaiaahUgaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaaaaaa@9F02@ Green-függvény felírható-e G 1,1 B ( k , i ω n ) = 1 i ω n 1 e k Σ ( k , i ω n ) MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGhbWaa0baaSqaaiaaigdacaGGSaGaaGymaaqaaiaadkeaaaGcdaqadaqaaiaahUgacaGGSaGaamyAaiabeM8a3naaBaaaleaacaWGUbaabeaaaOGaayjkaiaawMcaaiabg2da9maalaaabaGaaGymaaqaaiaadMgacqaHjpWDdaWgaaWcbaGaamOBaaqabaGccqGHsislcqWIpecAdaahaaWcbeqaaiabgkHiTiaaigdaaaGccaWGLbWaaSbaaSqaaiaahUgaaeqaaOGaeyOeI0Iaeu4Odm1aaWbaaSqabeaacqGHxiIkaaGcdaqadaqaaiaahUgacaGGSaGaamyAaiabeM8a3naaBaaaleaacaWGUbaabeaaaOGaayjkaiaawMcaaaaaaaa@6A62@ alakban, azaz létezik-e ilyen Σ MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqqHJoWudaahaaWcbeqaaiabgEHiQaaaaaa@4B9B@ ? A válasz az, hogy igen, és mégpedig: Σ ( k , i ω n ) = 1 n 0 v ( k ) 1 1 n 0 v ( k ) i ω n 1 e k MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqqHJoWudaahaaWcbeqaaiabgEHiQaaakmaabmaabaGaaC4AaiaacYcacaWGPbGaeqyYdC3aaSbaaSqaaiaad6gaaeqaaaGccaGLOaGaayzkaaGaeyypa0ZaaSaaaeaacqWIpecAdaahaaWcbeqaaiabgkHiTiaaigdaaaGccaWGUbWaaSbaaSqaaiaaicdaaeqaaOGaamODamaabmaabaGaaC4AaaGaayjkaiaawMcaaaqaaiaaigdacqGHsisldaWcaaqaaiabl+qiOnaaCaaaleqabaGaeyOeI0IaaGymaaaakiaad6gadaWgaaWcbaGaaGimaaqabaGccqGHflY1caWG2bWaaeWaaeaacaWHRbaacaGLOaGaayzkaaaabaGaeyOeI0IaamyAaiabeM8a3naaBaaaleaacaWGUbaabeaakiabgkHiTiabl+qiOnaaCaaaleqabaGaeyOeI0IaaGymaaaakiaadwgadaWgaaWcbaGaaC4Aaaqabaaaaaaaaaa@7364@

Hugenholtz-Pines tétel

Σ 1,1 ( 0,0 ) Σ 1,2 ( 0,0 ) = 0 MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqqHJoWudaWgaaWcbaGaaGymaiaacYcacaaIXaaabeaakmaabmaabaGaaGimaiaacYcacaaIWaaacaGLOaGaayzkaaGaeyOeI0Iaeu4Odm1aaSbaaSqaaiaaigdacaGGSaGaaGOmaaqabaGcdaqadaqaaiaaicdacaGGSaGaaGimaaGaayjkaiaawMcaaiabg2da9iaaicdaaaa@5AC3@ igaz a perturbációszámítás minden rendjében. Láthatjuk néha Σ 1,1 ( 0,0 ) Σ 1,2 ( 0,0 ) = μ MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqqHJoWudaWgaaWcbaGaaGymaiaacYcacaaIXaaabeaakmaabmaabaGaaGimaiaacYcacaaIWaaacaGLOaGaayzkaaGaeyOeI0Iaeu4Odm1aaSbaaSqaaiaaigdacaGGSaGaaGOmaaqabaGcdaqadaqaaiaaicdacaGGSaGaaGimaaGaayjkaiaawMcaaiabg2da9iabeY7aTbaa@5BBF@ alakban is, de mi a kémiai potenciált a normális sajátenergia részeként kezeljük. A bizonyításhoz tekintsük az ábrákat! A normális sajátenergia diagramja 1 ki- és 1 bejövő, az anomális sajátenergia diagramja pedig 2 kimenő élt tartalmaz:

Most pedig tekintsünk egy r-ed rendű diagramot, mely nem csatlakozik külső pontohoz, mert az éleket karikákra cseréltük:

Σ 1,1 ( r ) ( 0,0 )= 1 N 0 i,j ij ϕ i,j ( r ) MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIjxAHbstHrhAaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gatuuDJXwAK1uy0HwmaeXbfv3ySLgzG0uy0Hgip5wzaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeu0xh8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaiaabiWacmaaeaqabeaafaGbaCaaaOqaaiabfo6atnaaDaaaleaacaaIXaGaaiilaiaaigdaaeaadaqadaqaaiaadkhaaiaawIcacaGLPaaaaaGcdaqadaqaaiaaicdacaGGSaGaaGimaaGaayjkaiaawMcaaiabg2da9maalaaabaGaaGymaaqaaiaad6eadaWgaaWcbaGaaGimaaqabaaaaOWaaabuaeaacaWGPbGaeyyXICTaamOAaaWcbaGaamyAaiaacYcacaWGQbaabeqdcqGHris5aOGaeyyXICTaeqy1dy2aa0baaSqaaiaadMgacaGGSaGaamOAaaqaamaabmaabaGaamOCaaGaayjkaiaawMcaaaaaaaa@6F45@

Mik lehetnek ezek a ϕ i , j ( r ) MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqqHMoGrdaqhaaWcbaGaamyAaiaacYcacaWGQbaabaWaaeWaaeaacaWGYbaacaGLOaGaayzkaaaaaaaa@4FAF@ diagramok? Nézzünk 2 példát!


Σ 1,1 ( r ) ( 0,0 ) Σ 1,2 ( r ) ( 0,0 ) = 1 N 0 i , j ( i j i ( i 1 ) ) ϕ i , j ( r ) = 1 N 0 i ( i 2 i 2 + i ) ϕ i , j ( r ) = 1 N 0 i i ϕ i , i ( r ) = = 1 N 0 1 N 0 i i ϕ 1,1 ( r ) = 1 N 0 Σ 1,0 ( r ) ( 0,0 ) = 0 MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakqaabeqaaiabfo6atnaaDaaaleaacaaIXaGaaiilaiaaigdaaeaadaqadaqaaiaadkhaaiaawIcacaGLPaaaaaGcdaqadaqaaiaaicdacaGGSaGaaGimaaGaayjkaiaawMcaaiabgkHiTiabfo6atnaaDaaaleaacaaIXaGaaiilaiaaikdaaeaadaqadaqaaiaadkhaaiaawIcacaGLPaaaaaGcdaqadaqaaiaaicdacaGGSaGaaGimaaGaayjkaiaawMcaaiabg2da9maalaaabaGaaGymaaqaaiaad6eadaWgaaWcbaGaaGimaaqabaaaaOWaaabuaeaadaqadaqaaiaadMgacqGHflY1caWGQbGaeyOeI0IaamyAamaabmaabaGaamyAaiabgkHiTiaaigdaaiaawIcacaGLPaaaaiaawIcacaGLPaaacqqHMoGrdaqhaaWcbaGaamyAaiaacYcacaWGQbaabaWaaeWaaeaacaWGYbaacaGLOaGaayzkaaaaaaqaaiaadMgacaGGSaGaamOAaaqab0GaeyyeIuoakiabg2da9maalaaabaGaaGymaaqaaiaad6eadaWgaaWcbaGaaGimaaqabaaaaOWaaabuaeaadaqadaqaaiaadMgadaahaaWcbeqaaiaaikdaaaGccqGHsislcaWGPbWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamyAaaGaayjkaiaawMcaaiabfA6agnaaDaaaleaacaWGPbGaaiilaiaadQgaaeaadaqadaqaaiaadkhaaiaawIcacaGLPaaaaaaabaGaamyAaaqab0GaeyyeIuoakiabg2da9maalaaabaGaaGymaaqaaiaad6eadaWgaaWcbaGaaGimaaqabaaaaOWaaabuaeaacaWGPbGaeuOPdy0aa0baaSqaaiaadMgacaGGSaGaamyAaaqaamaabmaabaGaamOCaaGaayjkaiaawMcaaaaaaeaacaWGPbaabeqdcqGHris5aOGaeyypa0dabaGaeyypa0ZaaSaaaeaacaaIXaaabaWaaOaaaeaacaWGobWaaSbaaSqaaiaaicdaaeqaaaqabaaaaOWaaSaaaeaacaaIXaaabaWaaOaaaeaacaWGobWaaSbaaSqaaiaaicdaaeqaaaqabaaaaOWaaabuaeaacaWGPbGaeuOPdy0aa0baaSqaaiaaigdacaGGSaGaaGymaaqaamaabmaabaGaamOCaaGaayjkaiaawMcaaaaaaeaacaWGPbaabeqdcqGHris5aOGaeyypa0ZaaSaaaeaacaaIXaaabaWaaOaaaeaacaWGobWaaSbaaSqaaiaaicdaaeqaaaqabaaaaOGaeu4Odm1aa0baaSqaaiaaigdacaGGSaGaaGimaaqaamaabmaabaGaamOCaaGaayjkaiaawMcaaaaakmaabmaabaGaaGimaiaacYcacaaIWaaacaGLOaGaayzkaaGaeyypa0JaaGimaaaaaa@BD56@ Az egyenlőség második sorában a bal oldalt az alábbi diagram ábrázolja:

Gap néküli gerjesztés: E k 0 0 MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGfbWaaSbaaSqaaiaahUgacqGHsgIRcaaIWaaabeaakiabgkziUkaaicdaaaa@503D@ , azaz E k MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGfbWaaSbaaSqaaiaahUgaaeqaaaaa@4AE5@ a 0-ból indul D ( 0,0 ) = 0 MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqGHshI3caWGebWaaeWaaeaacaaIWaGaaiilaiaaicdaaiaawIcacaGLPaaacqGH9aqpcaaIWaaaaa@518E@ . Behelyettesítve D ( k , i ω n ) = [ i ω n 1 ( e k + n 0 v ( k ) ) ] [ i ω n + 1 ( e k + n 0 v ( k ) ) ] + ( 1 n 0 v ( k ) ) 2 MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGebWaaeWaaeaacaWHRbGaaiilaiaadMgacqaHjpWDdaWgaaWcbaGaamOBaaqabaaakiaawIcacaGLPaaacqGH9aqpdaWadaqaaiaadMgacqaHjpWDdaWgaaWcbaGaamOBaaqabaGccqGHsislqaaaaaaaaaWdbiabl+qiOnaaCaaaleqabaGaeyOeI0IaaGymaaaakmaabmaabaGaamyzamaaBaaaleaacaWHRbaabeaakiabgUcaRiaad6gadaWgaaWcbaGaaGimaaqabaGccaWG2bWaaeWaaeaacaWHRbaacaGLOaGaayzkaaaacaGLOaGaayzkaaaapaGaay5waiaaw2faamaadmaabaGaamyAaiabeM8a3naaBaaaleaacaWGUbaabeaakiabgUcaR8qacqWIpecAdaahaaWcbeqaaiabgkHiTiaaigdaaaGcdaqadaqaaiaadwgadaWgaaWcbaGaaC4AaaqabaGccqGHRaWkcaWGUbWaaSbaaSqaaiaaicdaaeqaaOGaamODamaabmaabaGaaC4AaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaWdaiaawUfacaGLDbaacqGHRaWkpeWaaeWaaeaacqWIpecAdaahaaWcbeqaaiabgkHiTiaaigdaaaGccaWGUbWaaSbaaSqaaiaaicdaaeqaaOGaamODamaabmaabaGaaC4AaaGaayjkaiaawMcaaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaaa@852F@ egyenletbe, D ( 0,0 ) = Σ 1,1 ( 0,0 ) Σ 2,2 ( 0,0 ) + Σ 1,2 ( 0,0 ) Σ 2,2 ( 0,0 ) = Σ 1,1 2 ( 0,0 ) + Σ 1,2 2 ( 0,0 ) = = [ Σ 1,1 ( 0,0 ) Σ 1,2 ( 0,0 ) ] [ Σ 1,1 ( 0,0 ) + Σ 1,2 ( 0,0 ) ] MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakqaabeqaaiaadseadaqadaqaaiaaicdacaGGSaGaaGimaaGaayjkaiaawMcaaiabg2da9iabgkHiTiabfo6atnaaBaaaleaacaaIXaGaaiilaiaaigdaaeqaaOWaaeWaaeaacaaIWaGaaiilaiaaicdaaiaawIcacaGLPaaacqqHJoWudaWgaaWcbaGaaGOmaiaacYcacaaIYaaabeaakmaabmaabaGaaGimaiaacYcacaaIWaaacaGLOaGaayzkaaGaey4kaSIaeu4Odm1aaSbaaSqaaiaaigdacaGGSaGaaGOmaaqabaGcdaqadaqaaiaaicdacaGGSaGaaGimaaGaayjkaiaawMcaaiabfo6atnaaBaaaleaacaaIYaGaaiilaiaaikdaaeqaaOWaaeWaaeaacaaIWaGaaiilaiaaicdaaiaawIcacaGLPaaacqGH9aqpcqGHsislcqqHJoWudaqhaaWcbaGaaGymaiaacYcacaaIXaaabaGaaGOmaaaakmaabmaabaGaaGimaiaacYcacaaIWaaacaGLOaGaayzkaaGaey4kaSIaeu4Odm1aa0baaSqaaiaaigdacaGGSaGaaGOmaaqaaiaaikdaaaGcdaqadaqaaiaaicdacaGGSaGaaGimaaGaayjkaiaawMcaaiabg2da9aqaaiabg2da9iabgkHiTmaadmaabaGaeu4Odm1aaSbaaSqaaiaaigdacaGGSaGaaGymaaqabaGcdaqadaqaaiaaicdacaGGSaGaaGimaaGaayjkaiaawMcaaiabgkHiTiabfo6atnaaBaaaleaacaaIXaGaaiilaiaaikdaaeqaaOWaaeWaaeaacaaIWaGaaiilaiaaicdaaiaawIcacaGLPaaaaiaawUfacaGLDbaacqGHflY1daWadaqaaiabfo6atnaaBaaaleaacaaIXaGaaiilaiaaigdaaeqaaOWaaeWaaeaacaaIWaGaaiilaiaaicdaaiaawIcacaGLPaaacqGHRaWkcqqHJoWudaWgaaWcbaGaaGymaiaacYcacaaIYaaabeaakmaabmaabaGaaGimaiaacYcacaaIWaaacaGLOaGaayzkaaaacaGLBbGaayzxaaaaaaa@AB1C@ ahol felhasználtuk, hogy Σ 1,1 ( k , i ω n ) = Σ 2,2 ( k , i ω n ) MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqqHJoWudaWgaaWcbaGaaGymaiaacYcacaaIXaaabeaakmaabmaabaGaaC4AaiaacYcacaWGPbGaeqyYdC3aaSbaaSqaaiaad6gaaeqaaaGccaGLOaGaayzkaaGaeyypa0Jaeu4Odm1aaSbaaSqaaiaaikdacaGGSaGaaGOmaaqabaGcdaqadaqaaiabgkHiTiaahUgacaGGSaGaeyOeI0IaamyAaiabeM8a3naaBaaaleaacaWGUbaabeaaaOGaayjkaiaawMcaaaaa@61BF@ , illetve Σ 1,2 ( k , i ω n ) = Σ 2,1 ( k , i ω n ) MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqqHJoWudaWgaaWcbaGaaGymaiaacYcacaaIYaaabeaakmaabmaabaGaaC4AaiaacYcacaWGPbGaeqyYdC3aaSbaaSqaaiaad6gaaeqaaaGccaGLOaGaayzkaaGaeyypa0Jaeu4Odm1aaSbaaSqaaiaaikdacaGGSaGaaGymaaqabaGcdaqadaqaaiabgkHiTiaahUgacaGGSaGaamyAaiabeM8a3naaBaaaleaacaWGUbaabeaaaOGaayjkaiaawMcaaaaa@60D2@ .