Terjesszük ki a Green-függvényt a komplex félsíkon, hogy megkapjuk a gerjesztéseket!
i
ω
n
→
ω
+
i
ε
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGPbGaeqyYdC3aaSbaaSqaaiaad6gaaeqaaOGaeyOKH4QaeqyYdCNaey4kaSIaamyAaiabew7aLbaa@5410@
Hol divergál
G
1,1
(
B
)
(
k
,
i
ω
n
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGhbWaa0baaSqaaiaaigdacaGGSaGaaGymaaqaamaabmaabaGaamOqaaGaayjkaiaawMcaaaaakmaabmaabaGaaC4AaiaacYcacaWGPbGaeqyYdC3aaSbaaSqaaiaad6gaaeqaaaGccaGLOaGaayzkaaaaaa@5585@
függvény? Ahol a nevezője 0. Ezek adják meg az elemi gerjesztéseket. Ezeknek a frekvenciái, vagyis ahol
D
(
B
)
(
k
,
i
ω
n
)
|
ω
=
ℏ
E
k
=
0
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaadaabcaqaaiaadseadaahaaWcbeqaamaabmaabaGaamOqaaGaayjkaiaawMcaaaaakmaabmaabaGaaC4AaiaacYcacaWGPbGaeqyYdC3aaSbaaSqaaiaad6gaaeqaaaGccaGLOaGaayzkaaaacaGLiWoadaWgaaWcbaGaeqyYdCNaeyypa0JaeS4dHGMaamyramaaBaaameaacaWHRbaabeaaaSqabaGccqGH9aqpcaaIWaaaaa@5CDA@
:
0
=
E
k
2
−
ℏ
−
2
(
e
k
+
n
0
v
(
k
)
)
2
+
ℏ
−
2
n
0
2
v
2
(
k
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaaIWaGaeyypa0JaamyramaaDaaaleaacaWHRbaabaGaaGOmaaaakiabgkHiTiabl+qiOnaaCaaaleqabaGaeyOeI0IaaGOmaaaakmaabmaabaGaamyzamaaBaaaleaacaWHRbaabeaakiabgUcaRiaad6gadaWgaaWcbaGaaGimaaqabaGccaWG2bWaaeWaaeaacaWHRbaacaGLOaGaayzkaaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaeS4dHG2aaWbaaSqabeaacqGHsislcaaIYaaaaOGaamOBamaaDaaaleaacaaIWaaabaGaaGOmaaaakiaadAhadaahaaWcbeqaaiaaikdaaaGcdaqadaqaaiaahUgaaiaawIcacaGLPaaaaaa@6725@
ebből kifejezhető:
ℏ
E
k
=
e
k
(
e
k
+ 2
n
0
v (
k
)
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIjxAHbstHrhAaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gatuuDJXwAK1uy0HwmaeXbfv3ySLgzG0uy0Hgip5wzaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeu0xh8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaiaabiWacmaaeaqabeaafaGbaCaaaOqaaiabl+qiOjaadweadaWgaaWcbaGaaC4AaaqabaGccqGH9aqpdaGcaaqaaiaadwgadaWgaaWcbaGaaC4AaaqabaGcdaqadaqaaiaadwgadaWgaaWcbaGaaC4AaaqabaGccqGHRaWkcaaIYaGaamOBamaaBaaaleaacaaIWaaabeaakiaadAhadaqadaqaaiaahUgaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaSqabaaaaa@605D@
mely kicsi
k
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWHRbaaaa@49EF@
értékekre:
E
k
≈
ℏ
c
⋅
k
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGfbWaaSbaaSqaaiaahUgaaeqaaOGaeyisISRaeS4dHGMaam4yaiabgwSixlaadUgaaaa@51EB@
, ahol
e
k
=
ℏ
2
k
2
2
m
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGLbWaaSbaaSqaaiaahUgaaeqaaOGaeyypa0ZaaSaaaeaacqWIpecAdaahaaWcbeqaaiaaikdaaaGccaWGRbWaaWbaaSqabeaacaaIYaaaaaGcbaGaaGOmaiaad2gaaaaaaa@51D2@
összefüggést helyettesítettünk be és
c
=
n
0
v
(
0
)
m
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGJbGaeyypa0ZaaOaaaeaadaWcaaqaaiaad6gadaWgaaWcbaGaaGimaaqabaGccaWG2bWaaeWaaeaacaaIWaaacaGLOaGaayzkaaaabaGaamyBaaaaaSqabaaaaa@5127@
a Bogoljubov hangsebesség.
D
(
k
,
i
ω
n
)
=
(
i
ω
n
−
ℏ
−
1
E
k
)
(
i
ω
n
+
ℏ
−
1
E
k
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGebWaaeWaaeaacaWHRbGaaiilaiaadMgacqaHjpWDdaWgaaWcbaGaamOBaaqabaaakiaawIcacaGLPaaacqGH9aqpdaqadaqaaiaadMgacqaHjpWDdaWgaaWcbaGaamOBaaqabaGccqGHsislcqWIpecAdaahaaWcbeqaaiabgkHiTiaaigdaaaGccaWGfbWaaSbaaSqaaiaadUgaaeqaaaGccaGLOaGaayzkaaWaaeWaaeaacaWGPbGaeqyYdC3aaSbaaSqaaiaad6gaaeqaaOGaey4kaSIaeS4dHG2aaWbaaSqabeaacqGHsislcaaIXaaaaOGaamyramaaBaaaleaacaWGRbaabeaaaOGaayjkaiaawMcaaaaa@6874@
, így
G
1,1
(
B
)
(
k
,
i
ω
n
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGhbWaa0baaSqaaiaaigdacaGGSaGaaGymaaqaamaabmaabaGaamOqaaGaayjkaiaawMcaaaaakmaabmaabaGaaC4AaiaacYcacaWGPbGaeqyYdC3aaSbaaSqaaiaad6gaaeqaaaGccaGLOaGaayzkaaaaaa@5585@
parciális törtek alakjában felírva:
G
1,1
(
B
)
(
k
,
i
ω
n
)
=
u
k
2
i
ω
n
−
ℏ
−
1
E
k
−
v
k
2
i
ω
n
+
ℏ
−
1
E
k
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGhbWaa0baaSqaaiaaigdacaGGSaGaaGymaaqaamaabmaabaGaamOqaaGaayjkaiaawMcaaaaakmaabmaabaGaaC4AaiaacYcacaWGPbGaeqyYdC3aaSbaaSqaaiaad6gaaeqaaaGccaGLOaGaayzkaaGaeyypa0ZaaSaaaeaacaWG1bWaa0baaSqaaiaadUgaaeaacaaIYaaaaaGcbaGaamyAaiabeM8a3naaBaaaleaacaWGUbaabeaakiabgkHiTiabl+qiOnaaCaaaleqabaGaeyOeI0IaaGymaaaakiaadweadaWgaaWcbaGaaC4AaaqabaaaaOGaeyOeI0YaaSaaaeaacaWG2bWaa0baaSqaaiaadUgaaeaacaaIYaaaaaGcbaGaamyAaiabeM8a3naaBaaaleaacaWGUbaabeaakiabgUcaRiabl+qiOnaaCaaaleqabaGaeyOeI0IaaGymaaaakiaadweadaWgaaWcbaGaaC4Aaaqabaaaaaaa@70D8@
ahol
u
k
2
=
1
2
[
1
+
e
k
+
n
0
v
(
k
)
E
k
]
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWG1bWaa0baaSqaaiaadUgaaeaacaaIYaaaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaadaWadaqaaiaaigdacqGHRaWkdaWcaaqaaiaadwgadaWgaaWcbaGaaC4AaaqabaGccqGHRaWkcaWGUbWaaSbaaSqaaiaaicdaaeqaaOGaamODamaabmaabaGaaC4AaaGaayjkaiaawMcaaaqaaiaadweadaWgaaWcbaGaaC4AaaqabaaaaaGccaGLBbGaayzxaaaaaa@5C49@
és
v
k
2
=
1
2
[
−
1
+
e
k
+
n
0
v
(
k
)
E
k
]
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWG2bWaa0baaSqaaiaadUgaaeaacaaIYaaaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaadaWadaqaaiabgkHiTiaaigdacqGHRaWkdaWcaaqaaiaadwgadaWgaaWcbaGaaC4AaaqabaGccqGHRaWkcaWGUbWaaSbaaSqaaiaaicdaaeqaaOGaamODamaabmaabaGaaC4AaaGaayjkaiaawMcaaaqaaiaadweadaWgaaWcbaGaaC4AaaqabaaaaaGccaGLBbGaayzxaaaaaa@5D37@
. Az anomális Green-függvény pedig:
G
1,2
(
B
)
(
k
,
i
ω
n
)
=
−
u
k
v
k
⋅
(
1
i
ω
n
−
ℏ
−
1
E
k
−
1
i
ω
n
+
ℏ
−
1
E
k
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGhbWaa0baaSqaaiaaigdacaGGSaGaaGOmaaqaamaabmaabaGaamOqaaGaayjkaiaawMcaaaaakmaabmaabaGaaC4AaiaacYcacaWGPbGaeqyYdC3aaSbaaSqaaiaad6gaaeqaaaGccaGLOaGaayzkaaGaeyypa0JaeyOeI0IaamyDamaaBaaaleaacaWGRbaabeaakiaadAhadaWgaaWcbaGaam4AaaqabaGccqGHflY1daqadaqaamaalaaabaGaaGymaaqaaiaadMgacqaHjpWDdaWgaaWcbaGaamOBaaqabaGccqGHsislcqWIpecAdaahaaWcbeqaaiabgkHiTiaaigdaaaGccaWGfbWaaSbaaSqaaiaahUgaaeqaaaaakiabgkHiTmaalaaabaGaaGymaaqaaiaadMgacqaHjpWDdaWgaaWcbaGaamOBaaqabaGccqGHRaWkcqWIpecAdaahaaWcbeqaaiabgkHiTiaaigdaaaGccaWGfbWaaSbaaSqaaiaahUgaaeqaaaaaaOGaayjkaiaawMcaaaaa@759F@
Bogoljubov-Hartree közelítés
A közelítés során csak a Hartree tagot vesszük figyelembe. Ez a legegyszerűbb közelítés a Bogoljubov közelítésen túl.
kondenzátum részecskeszám (sűrűség) és kémiai potenciál kapcsolata
=
ℏ
− 1
N
0
[
− μ + v (
0
)
n
0
+ v (
0
)
1
β ℏ
∑
m
∫
d
3
q
(
2 π
)
3
(
−
G
0
(
q , i
ω
n
)
)
] ⋅ −
G
0
(
0,0
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIjxAHbstHrhAaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gatuuDJXwAK1uy0HwmaeXbfv3ySLgzG0uy0Hgip5wzaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeu0xh8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaiaabiWacmaaeaqabeaafaGbaCaaaOqaaiabg2da9iabl+qiOnaaCaaaleqabaGaeyOeI0IaaGymaaaakmaakaaabaGaamOtamaaBaaaleaacaaIWaaabeaaaeqaaOWaamWaaeaacqGHsislcqaH8oqBcqGHRaWkcaWG2bWaaeWaaeaacaaIWaaacaGLOaGaayzkaaGaamOBamaaBaaaleaacaaIWaaabeaakiabgUcaRiaadAhadaqadaqaaiaaicdaaiaawIcacaGLPaaadaWcaaqaaiaaigdaaeaacqaHYoGycqWIpecAaaWaaabuaeaadaWdbaqaamaalaaabaGaamizamaaCaaaleqabaGaaG4maaaakiaadghaaeaadaqadaqaaiaaikdacqaHapaCaiaawIcacaGLPaaadaahaaWcbeqaaiaaiodaaaaaaOWaaeWaaeaacqGHsislcaWGhbWaaSbaaSqaaiaaicdaaeqaaOWaaeWaaeaacaWHXbGaaiilaiaadMgacqaHjpWDdaWgaaWcbaGaamOBaaqabaaakiaawIcacaGLPaaaaiaawIcacaGLPaaaaSqabeqaniabgUIiYdaaleaacaWGTbaabeqdcqGHris5aaGccaGLBbGaayzxaaGaeyyXICTaeyOeI0Iaam4ramaaBaaaleaacaaIWaaabeaakmaabmaabaGaaGimaiaacYcacaaIWaaacaGLOaGaayzkaaaaaa@887F@
Ekkor
μ
=
v
(
0
)
⋅
(
n
0
+
n
'
)
=
v
(
0
)
⋅
n
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqaH8oqBcqGH9aqpcaWG2bWaaeWaaeaacaaIWaaacaGLOaGaayzkaaGaeyyXIC9aaeWaaeaacaWGUbWaaSbaaSqaaiaaicdaaeqaaOGaey4kaSIaamOBaiaacEcaaiaawIcacaGLPaaacqGH9aqpcaWG2bWaaeWaaeaacaaIWaaacaGLOaGaayzkaaGaeyyXICTaamOBaaaa@5EAC@
. Fontos, hogy itt
v
(
0
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWG2bWaaeWaaeaacaaIWaaacaGLOaGaayzkaaaaaa@4C39@
-at már a teljes részecskeszám-sűrűséggel szorozzuk. A kondenzátumon kívüli részecskeszám sűrűsége:
n
'
=
N
'
/
V
=
∫
d
3
q
(
2
π
)
3
1
e
β
e
q
−
1
=
1
(
2
π
)
3
λ
3
Γ
(
3
2
)
F
(
3
2
,0
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGUbGaai4jaiabg2da9iaad6eacaGGNaGaai4laiaadAfacqGH9aqpdaWdbaqaamaalaaabaGaamizamaaCaaaleqabaGaaG4maaaakiaadghaaeaadaqadaqaaiaaikdacqaHapaCaiaawIcacaGLPaaadaahaaWcbeqaaiaaiodaaaaaaOWaaSaaaeaacaaIXaaabaGaamyzamaaCaaaleqabaGaeqOSdiMaamyzamaaBaaameaacaWHXbaabeaaaaGccqGHsislcaaIXaaaaiabg2da9maalaaabaGaaGymaaqaamaabmaabaGaaGOmaiabec8aWbGaayjkaiaawMcaamaaCaaaleqabaGaaG4maaaakiabeU7aSnaaCaaaleqabaGaaG4maaaaaaGccqqHtoWrdaqadaqaamaalaaabaGaaG4maaqaaiaaikdaaaaacaGLOaGaayzkaaGaamOramaabmaabaWaaSaaaeaacaaIZaaabaGaaGOmaaaacaGGSaGaaGimaaGaayjkaiaawMcaaaWcbeqab0Gaey4kIipaaaa@73FB@
ahol
F
(
s
,
γ
)
=
1
Γ
(
s
)
⋅
∫
0
∞
d
t
t
s
−
1
e
t
+
γ
−
1
=
L
i
s
(
e
−
γ
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGgbWaaeWaaeaacaWGZbGaaiilaiabeo7aNbGaayjkaiaawMcaaiabg2da9maalaaabaGaaGymaaqaaiabfo5ahnaabmaabaGaam4CaaGaayjkaiaawMcaaaaacqGHflY1daWdXbqaaiaadsgacaWG0bWaaSaaaeaacaWG0bWaaWbaaSqabeaacaWGZbGaeyOeI0IaaGymaaaaaOqaaiaadwgadaahaaWcbeqaaiaadshacqGHRaWkcqaHZoWzaaGccqGHsislcaaIXaaaaiabg2da9iaadYeacaWGPbWaaSbaaSqaaiaadohaaeqaaaqaaiaaicdaaeaacqGHEisPa0Gaey4kIipakmaabmaabaGaamyzamaaCaaaleqabaGaeyOeI0Iaeq4SdCgaaaGccaGLOaGaayzkaaaaaa@7069@
, ahol
L
i
s
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGmbGaamyAamaaBaaaleaacaWGZbaabeaaaaa@4BDE@
az ún. polilogaritmikus függvény,
Γ
(
s
)
=
∫
0
∞
e
−
t
t
s
−
1
d
t
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqqHtoWrdaqadaqaaiaadohaaiaawIcacaGLPaaacqGH9aqpdaWdXbqaaiaadwgadaahaaWcbeqaaiabgkHiTiaadshaaaGccaWG0bWaaWbaaSqabeaacaWGZbGaeyOeI0IaaGymaaaaaeaacaaIWaaabaGaeyOhIukaniabgUIiYdGccaWGKbGaamiDaaaa@5B2C@
, és
λ
=
ℏ
2
2
m
k
B
T
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqaH7oaBcqGH9aqpdaWcaaqaaiabl+qiOnaaCaaaleqabaGaaGOmaaaaaOqaaiaaikdacaWGTbGaam4AamaaBaaaleaacaWGcbaabeaakiaadsfaaaaaaa@5255@
, valamint
F
(
s
,0
)
=
ζ
(
s
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGgbWaaeWaaeaacaWGZbGaaiilaiaaicdaaiaawIcacaGLPaaacqGH9aqpcqaH2oGEdaqadaqaaiaadohaaiaawIcacaGLPaaaaaa@52F5@
.
n
'
=
n
⋅
(
T
/
T
c
)
3
/
2
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGUbGaai4jaiabg2da9iaad6gacqGHflY1daqadaqaaiaadsfacaGGVaGaamivamaaBaaaleaacaWGJbaabeaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaG4maiaac+cacaaIYaaaaaaa@5641@
és
n
0
=
n
−
n
'
=
n
[
1
−
(
T
/
T
c
)
3
/
2
]
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGUbWaaSbaaSqaaiaaicdaaeqaaOGaeyypa0JaamOBaiabgkHiTiaad6gacaGGNaGaeyypa0JaamOBamaadmaabaGaaGymaiabgkHiTmaabmaabaGaamivaiaac+cacaWGubWaaSbaaSqaaiaadogaaeqaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIZaGaai4laiaaikdaaaaakiaawUfacaGLDbaaaaa@5C64@
és
n
=
n
'
(
T
c
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGUbGaeyypa0JaamOBaiaacEcadaqadaqaaiaadsfadaWgaaWcbaGaam4yaaqabaaakiaawIcacaGLPaaaaaa@5012@
, mint ahogy azt már megszokhattuk.
sajátenergiák
ℏ
Σ
1,1
(
k
,
i
ω
n
)
=
(
−
μ
)
+
v
(
0
)
n
0
+
v
(
k
)
n
0
+
v
(
0
)
n
'
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqWIpecAcqqHJoWudaWgaaWcbaGaaGymaiaacYcacaaIXaaabeaakmaabmaabaGaaC4AaiaacYcacaWGPbGaeqyYdC3aaSbaaSqaaiaad6gaaeqaaaGccaGLOaGaayzkaaGaeyypa0ZaaeWaaeaacqGHsislcqaH8oqBaiaawIcacaGLPaaacqGHRaWkcaWG2bWaaeWaaeaacaaIWaaacaGLOaGaayzkaaGaamOBamaaBaaaleaacaaIWaaabeaakiabgUcaRiaadAhadaqadaqaaiaahUgaaiaawIcacaGLPaaacaWGUbWaaSbaaSqaaiaaicdaaeqaaOGaey4kaSIaamODamaabmaabaGaaGimaaGaayjkaiaawMcaaiaad6gacaGGNaaaaa@6C45@
az anomális sajátenergia pedig:
ℏ
Σ
1,2
=
v
(
k
)
⋅
n
0
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqWIpecAcqqHJoWudaWgaaWcbaGaaGymaiaacYcacaaIYaaabeaakiabg2da9iaadAhadaqadaqaaiaahUgaaiaawIcacaGLPaaacqGHflY1caWGUbWaaSbaaSqaaiaaicdaaeqaaaaa@56A6@
Vegyük észre, hogy
ℏ
Σ
1,1
(
k
,
i
ω
n
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqWIpecAcqqHJoWudaWgaaWcbaGaaGymaiaacYcacaaIXaaabeaakmaabmaabaGaaC4AaiaacYcacaWGPbGaeqyYdC3aaSbaaSqaaiaad6gaaeqaaaGccaGLOaGaayzkaaaaaa@5515@
1, 2. és 4. tagjának összege 0, így
ℏ
Σ
1,1
(
k
,
i
ω
n
)
=
v
(
k
)
⋅
n
0
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqWIpecAcqqHJoWudaWgaaWcbaGaaGymaiaacYcacaaIXaaabeaakmaabmaabaGaaC4AaiaacYcacaWGPbGaeqyYdC3aaSbaaSqaaiaad6gaaeqaaaGccaGLOaGaayzkaaGaeyypa0JaamODamaabmaabaGaaC4AaaGaayjkaiaawMcaaiabgwSixlaad6gadaWgaaWcbaGaaGimaaqabaaaaa@5DB6@
Diszperziós reláció a
Bogoljubov-Hartree közelítésben
A Green-függvények
G
1,1
(
B
−
H
)
(
k
,
i
ω
n
)
=
u
k
2
i
ω
n
−
ℏ
−
1
E
k
−
v
k
2
i
ω
n
+
ℏ
−
1
E
k
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGhbWaa0baaSqaaiaaigdacaGGSaGaaGymaaqaamaabmaabaGaamOqaiabgkHiTiaadIeaaiaawIcacaGLPaaaaaGcdaqadaqaaiaahUgacaGGSaGaamyAaiabeM8a3naaBaaaleaacaWGUbaabeaaaOGaayjkaiaawMcaaiabg2da9maalaaabaGaamyDamaaDaaaleaacaWGRbaabaGaaGOmaaaaaOqaaiaadMgacqaHjpWDdaWgaaWcbaGaamOBaaqabaGccqGHsislcqWIpecAdaahaaWcbeqaaiabgkHiTiaaigdaaaGccaWGfbWaaSbaaSqaaiaahUgaaeqaaaaakiabgkHiTmaalaaabaGaamODamaaDaaaleaacaWGRbaabaGaaGOmaaaaaOqaaiaadMgacqaHjpWDdaWgaaWcbaGaamOBaaqabaGccqGHRaWkcqWIpecAdaahaaWcbeqaaiabgkHiTiaaigdaaaGccaWGfbWaaSbaaSqaaiaahUgaaeqaaaaaaaa@7292@
és
G
1,2
(
B
−
H
)
(
k
,
i
ω
n
)
=
−
u
k
v
k
⋅
(
1
i
ω
n
−
ℏ
−
1
E
k
−
1
i
ω
n
+
ℏ
−
1
E
k
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGhbWaa0baaSqaaiaaigdacaGGSaGaaGOmaaqaamaabmaabaGaamOqaiabgkHiTiaadIeaaiaawIcacaGLPaaaaaGcdaqadaqaaiaahUgacaGGSaGaamyAaiabeM8a3naaBaaaleaacaWGUbaabeaaaOGaayjkaiaawMcaaiabg2da9iabgkHiTiaadwhadaWgaaWcbaGaam4AaaqabaGccaWG2bWaaSbaaSqaaiaadUgaaeqaaOGaeyyXIC9aaeWaaeaadaWcaaqaaiaaigdaaeaacaWGPbGaeqyYdC3aaSbaaSqaaiaad6gaaeqaaOGaeyOeI0IaeS4dHG2aaWbaaSqabeaacqGHsislcaaIXaaaaOGaamyramaaBaaaleaacaWHRbaabeaaaaGccqGHsisldaWcaaqaaiaaigdaaeaacaWGPbGaeqyYdC3aaSbaaSqaaiaad6gaaeqaaOGaey4kaSIaeS4dHG2aaWbaaSqabeaacqGHsislcaaIXaaaaOGaamyramaaBaaaleaacaWHRbaabeaaaaaakiaawIcacaGLPaaaaaa@7759@
ahol
E
k
=
e
k
(
e
k
+
2
n
0
v
(
k
)
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGfbWaaSbaaSqaaiaahUgaaeqaaOGaeyypa0ZaaOaaaeaacaWGLbWaaSbaaSqaaiaahUgaaeqaaOWaaeWaaeaacaWGLbWaaSbaaSqaaiaahUgaaeqaaOGaey4kaSIaaGOmaiaad6gadaWgaaWcbaGaaGimaaqabaGccaWG2bWaaeWaaeaacaWHRbaacaGLOaGaayzkaaaacaGLOaGaayzkaaaaleqaaaaa@58BA@
, valamint
u
k
2
=
1
2
[
1
+
e
k
+
n
0
v
(
k
)
E
k
]
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWG1bWaa0baaSqaaiaadUgaaeaacaaIYaaaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaadaWadaqaaiaaigdacqGHRaWkdaWcaaqaaiaadwgadaWgaaWcbaGaaC4AaaqabaGccqGHRaWkcaWGUbWaaSbaaSqaaiaaicdaaeqaaOGaamODamaabmaabaGaaC4AaaGaayjkaiaawMcaaaqaaiaadweadaWgaaWcbaGaaC4AaaqabaaaaaGccaGLBbGaayzxaaaaaa@5C49@
és
v
k
2
=
1
2
[
−
1
+
e
k
+
n
0
v
(
k
)
E
k
]
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWG2bWaa0baaSqaaiaadUgaaeaacaaIYaaaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaadaWadaqaaiabgkHiTiaaigdacqGHRaWkdaWcaaqaaiaadwgadaWgaaWcbaGaaC4AaaqabaGccqGHRaWkcaWGUbWaaSbaaSqaaiaaicdaaeqaaOGaamODamaabmaabaGaaC4AaaGaayjkaiaawMcaaaqaaiaadweadaWgaaWcbaGaaC4AaaqabaaaaaGccaGLBbGaayzxaaaaaa@5D37@
. Vagyis láthatjuk, hogy formálisan ugyanazt kapjuk, mint a Bogoljubov közelítésnél. A különbség az, hogy
n
0
(
T
)
=
n
(
1
−
(
T
/
T
c
)
3
/
2
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGUbWaaSbaaSqaaiaaicdaaeqaaOWaaeWaaeaacaWGubaacaGLOaGaayzkaaGaeyypa0JaamOBamaabmaabaGaaGymaiabgkHiTmaabmaabaGaamivaiaac+cacaWGubWaaSbaaSqaaiaadogaaeqaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIZaGaai4laiaaikdaaaaakiaawIcacaGLPaaaaaa@59D9@
hőmérséklet-függő. Ez akkor a Bogoljubov közelítés, ha
T
=
0
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGubGaeyypa0JaaGimaaaa@4B94@
. Ebben a közelítésben
c
→
0
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGJbGaeyOKH4QaaGimaaaa@4C8A@
ha
T
→
T
c
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGubGaeyOKH4QaamivamaaBaaaleaacaWGJbaabeaaaaa@4DAE@
.
Kondenzátumon kívüli atomok száma
A teljes propagátorból számolva
n
'
=
∫
d
3
k
(
2
π
)
3
n
'
(
k
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGUbGaai4jaiabg2da9maapeaabaWaaSaaaeaacaWGKbWaaWbaaSqabeaacaaIZaaaaOGaam4AaaqaamaabmaabaGaaGOmaiabec8aWbGaayjkaiaawMcaamaaCaaaleqabaGaaG4maaaaaaGccaWGUbGaai4jamaabmaabaGaam4AaaGaayjkaiaawMcaaaWcbeqab0Gaey4kIipaaaa@5984@
, melyben
n
'
(
k
)
=
−
1
β
ℏ
∑
m
e
i
ν
m
η
⋅
G
1,1
(
k
,
i
ω
n
)
=
−
1
β
ℏ
∑
m
e
i
ν
m
η
⋅
[
u
k
2
i
ω
n
−
ℏ
−
1
E
k
−
v
k
2
i
ω
n
+
ℏ
−
1
E
k
]
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGUbGaai4jamaabmaabaGaam4AaaGaayjkaiaawMcaaiabg2da9maalaaabaGaeyOeI0IaaGymaaqaaiabek7aIjabl+qiObaadaaeqbqaaiaadwgadaahaaWcbeqaaiaadMgacqaH9oGBdaWgaaadbaGaamyBaaqabaWccqaH3oaAaaGccqGHflY1caWGhbWaaSbaaSqaaiaaigdacaGGSaGaaGymaaqabaGcdaqadaqaaiaahUgacaGGSaGaamyAaiabeM8a3naaBaaaleaacaWGUbaabeaaaOGaayjkaiaawMcaaaWcbaGaamyBaaqab0GaeyyeIuoakiabg2da9maalaaabaGaeyOeI0IaaGymaaqaaiabek7aIjabl+qiObaadaaeqbqaaiaadwgadaahaaWcbeqaaiaadMgacqaH9oGBdaWgaaadbaGaamyBaaqabaWccqaH3oaAaaGccqGHflY1daWadaqaamaalaaabaGaamyDamaaDaaaleaacaWGRbaabaGaaGOmaaaaaOqaaiaadMgacqaHjpWDdaWgaaWcbaGaamOBaaqabaGccqGHsislcqWIpecAdaahaaWcbeqaaiabgkHiTiaaigdaaaGccaWGfbWaaSbaaSqaaiaahUgaaeqaaaaakiabgkHiTmaalaaabaGaamODamaaDaaaleaacaWGRbaabaGaaGOmaaaaaOqaaiaadMgacqaHjpWDdaWgaaWcbaGaamOBaaqabaGccqGHRaWkcqWIpecAdaahaaWcbeqaaiabgkHiTiaaigdaaaGccaWGfbWaaSbaaSqaaiaahUgaaeqaaaaaaOGaay5waiaaw2faaaWcbaGaamyBaaqab0GaeyyeIuoaaaa@96A6@
Végezzük el a frekvencia szerinti integrálást!
n
'
(
k
)
=
u
k
2
e
β
E
k
−
1
−
v
k
2
e
−
β
E
k
−
1
=
u
k
2
+
e
β
E
k
⋅
v
k
2
e
β
E
k
−
1
=
v
k
2
+
(
u
k
2
+
v
k
2
)
⋅
1
e
β
E
k
−
1
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGUbGaai4jamaabmaabaGaam4AaaGaayjkaiaawMcaaiabg2da9maalaaabaGaamyDamaaDaaaleaacaWGRbaabaGaaGOmaaaaaOqaaiaadwgadaahaaWcbeqaaiabek7aIjaadweadaWgaaadbaGaaC4AaaqabaaaaOGaeyOeI0IaaGymaaaacqGHsisldaWcaaqaaiaadAhadaqhaaWcbaGaam4AaaqaaiaaikdaaaaakeaacaWGLbWaaWbaaSqabeaacqGHsislcqaHYoGycaWGfbWaaSbaaWqaaiaahUgaaeqaaaaakiabgkHiTiaaigdaaaGaeyypa0ZaaSaaaeaacaWG1bWaa0baaSqaaiaadUgaaeaacaaIYaaaaOGaey4kaSIaamyzamaaCaaaleqabaGaeqOSdiMaamyramaaBaaameaacaWHRbaabeaaaaGccqGHflY1caWG2bWaa0baaSqaaiaadUgaaeaacaaIYaaaaaGcbaGaamyzamaaCaaaleqabaGaeqOSdiMaamyramaaBaaameaacaWHRbaabeaaaaGccqGHsislcaaIXaaaaiabg2da9iaadAhadaqhaaWcbaGaam4AaaqaaiaaikdaaaGccqGHRaWkdaqadaqaaiaadwhadaqhaaWcbaGaam4AaaqaaiaaikdaaaGccqGHRaWkcaWG2bWaa0baaSqaaiaadUgaaeaacaaIYaaaaaGccaGLOaGaayzkaaGaeyyXIC9aaSaaaeaacaaIXaaabaGaamyzamaaCaaaleqabaGaeqOSdiMaamyramaaBaaameaacaWGRbaabeaaaaGccqGHsislcaaIXaaaaaaa@8DC7@
Ezt visszaírva
n
'
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGUbGaai4jaaaa@4A99@
-be, az már csak az integrálást kell elvégezni. Ez nem mindig tehető meg analitikusan, csak speciális esetekben. Pl
T
=
0
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGubGaeyypa0JaaGimaaaa@4B94@
esetén (Bogo. közelítés):
n
'
(
k
)
=
v
k
2
⇒
n
'
|
T
=
0
=
8
3
n
0
(
n
0
a
3
π
)
1
/
2
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGUbGaai4jamaabmaabaGaam4AaaGaayjkaiaawMcaaiabg2da9iaadAhadaqhaaWcbaGaam4AaaqaaiaaikdaaaGccqGHshI3daabcaqaaiaad6gacaGGNaaacaGLiWoadaWgaaWcbaGaamivaiabg2da9iaaicdaaeqaaOGaeyypa0ZaaSaaaeaacaaI4aaabaGaaG4maaaacaWGUbWaaSbaaSqaaiaaicdaaeqaaOWaaeWaaeaadaWcaaqaaiaad6gadaWgaaWcbaGaaGimaaqabaGccaWGHbWaaWbaaSqabeaacaaIZaaaaaGcbaGaeqiWdahaaaGaayjkaiaawMcaamaaCaaaleqabaGaaGymaiaac+cacaaIYaaaaaaa@6738@
T
=
T
c
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGubGaeyypa0JaamivamaaBaaaleaacaWGJbaabeaaaaa@4CC7@
esetén (szabad, nem kondenzált gáz):
E
k
=
e
k
v
k
2
=
0
u
k
2
=
1
}
⇒
n
'
(
k
)
=
n
(
k
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaadaGacaqaauaabeqadeaaaeaacaWGfbWaaSbaaSqaaiaahUgaaeqaaOGaeyypa0JaamyzamaaBaaaleaacaWHRbaabeaaaOqaaiaadAhadaqhaaWcbaGaam4AaaqaaiaaikdaaaGccqGH9aqpcaaIWaaabaGaamyDamaaDaaaleaacaWGRbaabaGaaGOmaaaakiabg2da9iaaigdaaaaacaGL9baacqGHshI3caWGUbGaai4jamaabmaabaGaam4AaaGaayjkaiaawMcaaiabg2da9iaad6gadaqadaqaaiaadUgaaiaawIcacaGLPaaaaaa@6356@
T
→
0
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGubGaeyOKH4QaaGimaaaa@4C7B@
, de
T
≠
0
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGubGaeyiyIKRaaGimaaaa@4C55@
esetén:
n
'
|
T
−
n
'
|
T
=
0
=
1
12
m
c
ℏ
3
(
k
B
T
)
2
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaadaabcaqaaiaad6gacaGGNaaacaGLiWoadaWgaaWcbaGaamivaaqabaGccqGHsisldaabcaqaaiaad6gacaGGNaaacaGLiWoadaWgaaWcbaGaamivaiabg2da9iaaicdaaeqaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGymaiaaikdaaaWaaSaaaeaacaWGTbaabaGaam4yaiabl+qiOnaaCaaaleqabaGaaG4maaaaaaGcdaqadaqaaiaadUgadaWgaaWcbaGaamOqaaqabaGccaWGubaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaaa@60B5@
, ahol
c
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGJbaaaa@49E3@
a Bogoljubov hangsebesség,
c
2
=
n
v
(
0
)
/
m
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGJbWaaWbaaSqabeaacaaIYaaaaOGaeyypa0JaamOBaiaadAhadaqadaqaaiaaicdaaiaawIcacaGLPaaacaGGVaGaamyBaaaa@51B2@
Érdekesség
Bogoljubov közelítésben nézzük meg, hogy a
G
1,1
(
B
)
(
k
,
i
ω
n
)
=
i
ω
n
+
ℏ
−
1
(
e
k
+
n
0
⋅
v
(
k
)
)
[
i
ω
n
−
ℏ
−
1
(
e
k
+
n
0
v
(
k
)
)
]
⋅
[
i
ω
n
+
ℏ
−
1
(
e
k
+
n
0
v
(
k
)
)
]
+
ℏ
−
2
n
0
2
v
(
k
)
2
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGhbWaa0baaSqaaiaaigdacaGGSaGaaGymaaqaamaabmaabaGaamOqaaGaayjkaiaawMcaaaaakmaabmaabaGaaC4AaiaacYcacaWGPbGaeqyYdC3aaSbaaSqaaiaad6gaaeqaaaGccaGLOaGaayzkaaGaeyypa0ZaaSaaaeaacaWGPbGaeqyYdC3aaSbaaSqaaiaad6gaaeqaaOGaey4kaSIaeS4dHG2aaWbaaSqabeaacqGHsislcaaIXaaaaOWaaeWaaeaacaWGLbWaaSbaaSqaaiaahUgaaeqaaOGaey4kaSIaamOBamaaBaaaleaacaaIWaaabeaakiabgwSixlaadAhadaqadaqaaiaahUgaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaeaadaWadaqaaiaadMgacqaHjpWDdaWgaaWcbaGaamOBaaqabaGccqGHsislcqWIpecAdaahaaWcbeqaaiabgkHiTiaaigdaaaGcdaqadaqaaiaadwgadaWgaaWcbaGaaC4AaaqabaGccqGHRaWkcaWGUbWaaSbaaSqaaiaaicdaaeqaaOGaamODamaabmaabaGaaC4AaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaGaay5waiaaw2faaiabgwSixpaadmaabaGaamyAaiabeM8a3naaBaaaleaacaWGUbaabeaakiabgUcaRiabl+qiOnaaCaaaleqabaGaeyOeI0IaaGymaaaakmaabmaabaGaamyzamaaBaaaleaacaWHRbaabeaakiabgUcaRiaad6gadaWgaaWcbaGaaGimaaqabaGccaWG2bWaaeWaaeaacaWHRbaacaGLOaGaayzkaaaacaGLOaGaayzkaaaacaGLBbGaayzxaaGaey4kaSIaeS4dHG2aaWbaaSqabeaacqGHsislcaaIYaaaaOGaamOBamaaDaaaleaacaaIWaaabaGaaGOmaaaakiaadAhadaqadaqaaiaahUgaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaaaaaa@9F02@
Green-függvény felírható-e
G
1,1
B
(
k
,
i
ω
n
)
=
1
i
ω
n
−
ℏ
−
1
e
k
−
Σ
∗
(
k
,
i
ω
n
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGhbWaa0baaSqaaiaaigdacaGGSaGaaGymaaqaaiaadkeaaaGcdaqadaqaaiaahUgacaGGSaGaamyAaiabeM8a3naaBaaaleaacaWGUbaabeaaaOGaayjkaiaawMcaaiabg2da9maalaaabaGaaGymaaqaaiaadMgacqaHjpWDdaWgaaWcbaGaamOBaaqabaGccqGHsislcqWIpecAdaahaaWcbeqaaiabgkHiTiaaigdaaaGccaWGLbWaaSbaaSqaaiaahUgaaeqaaOGaeyOeI0Iaeu4Odm1aaWbaaSqabeaacqGHxiIkaaGcdaqadaqaaiaahUgacaGGSaGaamyAaiabeM8a3naaBaaaleaacaWGUbaabeaaaOGaayjkaiaawMcaaaaaaaa@6A62@
alakban, azaz létezik-e ilyen
Σ
∗
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqqHJoWudaahaaWcbeqaaiabgEHiQaaaaaa@4B9B@
? A válasz az, hogy igen, és mégpedig:
Σ
∗
(
k
,
i
ω
n
)
=
ℏ
−
1
n
0
v
(
k
)
1
−
ℏ
−
1
n
0
⋅
v
(
k
)
−
i
ω
n
−
ℏ
−
1
e
k
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqqHJoWudaahaaWcbeqaaiabgEHiQaaakmaabmaabaGaaC4AaiaacYcacaWGPbGaeqyYdC3aaSbaaSqaaiaad6gaaeqaaaGccaGLOaGaayzkaaGaeyypa0ZaaSaaaeaacqWIpecAdaahaaWcbeqaaiabgkHiTiaaigdaaaGccaWGUbWaaSbaaSqaaiaaicdaaeqaaOGaamODamaabmaabaGaaC4AaaGaayjkaiaawMcaaaqaaiaaigdacqGHsisldaWcaaqaaiabl+qiOnaaCaaaleqabaGaeyOeI0IaaGymaaaakiaad6gadaWgaaWcbaGaaGimaaqabaGccqGHflY1caWG2bWaaeWaaeaacaWHRbaacaGLOaGaayzkaaaabaGaeyOeI0IaamyAaiabeM8a3naaBaaaleaacaWGUbaabeaakiabgkHiTiabl+qiOnaaCaaaleqabaGaeyOeI0IaaGymaaaakiaadwgadaWgaaWcbaGaaC4Aaaqabaaaaaaaaaa@7364@
Hugenholtz-Pines tétel
Σ
1,1
(
0,0
)
−
Σ
1,2
(
0,0
)
=
0
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqqHJoWudaWgaaWcbaGaaGymaiaacYcacaaIXaaabeaakmaabmaabaGaaGimaiaacYcacaaIWaaacaGLOaGaayzkaaGaeyOeI0Iaeu4Odm1aaSbaaSqaaiaaigdacaGGSaGaaGOmaaqabaGcdaqadaqaaiaaicdacaGGSaGaaGimaaGaayjkaiaawMcaaiabg2da9iaaicdaaaa@5AC3@
igaz a perturbációszámítás minden rendjében. Láthatjuk néha
Σ
1,1
(
0,0
)
−
Σ
1,2
(
0,0
)
=
μ
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqqHJoWudaWgaaWcbaGaaGymaiaacYcacaaIXaaabeaakmaabmaabaGaaGimaiaacYcacaaIWaaacaGLOaGaayzkaaGaeyOeI0Iaeu4Odm1aaSbaaSqaaiaaigdacaGGSaGaaGOmaaqabaGcdaqadaqaaiaaicdacaGGSaGaaGimaaGaayjkaiaawMcaaiabg2da9iabeY7aTbaa@5BBF@
alakban is, de mi a kémiai potenciált a normális sajátenergia részeként kezeljük.
A bizonyításhoz tekintsük az ábrákat! A normális sajátenergia diagramja 1 ki- és 1 bejövő, az anomális sajátenergia diagramja pedig 2 kimenő élt tartalmaz:
Most pedig tekintsünk egy r-ed rendű diagramot, mely nem csatlakozik külső pontohoz, mert az éleket karikákra cseréltük:
Σ
1,1
(
r
)
(
0,0
) =
1
N
0
∑
i , j
i ⋅ j
⋅
ϕ
i , j
(
r
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIjxAHbstHrhAaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gatuuDJXwAK1uy0HwmaeXbfv3ySLgzG0uy0Hgip5wzaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeu0xh8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaiaabiWacmaaeaqabeaafaGbaCaaaOqaaiabfo6atnaaDaaaleaacaaIXaGaaiilaiaaigdaaeaadaqadaqaaiaadkhaaiaawIcacaGLPaaaaaGcdaqadaqaaiaaicdacaGGSaGaaGimaaGaayjkaiaawMcaaiabg2da9maalaaabaGaaGymaaqaaiaad6eadaWgaaWcbaGaaGimaaqabaaaaOWaaabuaeaacaWGPbGaeyyXICTaamOAaaWcbaGaamyAaiaacYcacaWGQbaabeqdcqGHris5aOGaeyyXICTaeqy1dy2aa0baaSqaaiaadMgacaGGSaGaamOAaaqaamaabmaabaGaamOCaaGaayjkaiaawMcaaaaaaaa@6F45@
Mik lehetnek ezek a
ϕ
i
,
j
(
r
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqqHMoGrdaqhaaWcbaGaamyAaiaacYcacaWGQbaabaWaaeWaaeaacaWGYbaacaGLOaGaayzkaaaaaaaa@4FAF@
diagramok? Nézzünk 2 példát!
Σ
1,1
(
r
)
(
0,0
)
−
Σ
1,2
(
r
)
(
0,0
)
=
1
N
0
∑
i
,
j
(
i
⋅
j
−
i
(
i
−
1
)
)
ϕ
i
,
j
(
r
)
=
1
N
0
∑
i
(
i
2
−
i
2
+
i
)
ϕ
i
,
j
(
r
)
=
1
N
0
∑
i
i
ϕ
i
,
i
(
r
)
=
=
1
N
0
1
N
0
∑
i
i
ϕ
1,1
(
r
)
=
1
N
0
Σ
1,0
(
r
)
(
0,0
)
=
0
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakqaabeqaaiabfo6atnaaDaaaleaacaaIXaGaaiilaiaaigdaaeaadaqadaqaaiaadkhaaiaawIcacaGLPaaaaaGcdaqadaqaaiaaicdacaGGSaGaaGimaaGaayjkaiaawMcaaiabgkHiTiabfo6atnaaDaaaleaacaaIXaGaaiilaiaaikdaaeaadaqadaqaaiaadkhaaiaawIcacaGLPaaaaaGcdaqadaqaaiaaicdacaGGSaGaaGimaaGaayjkaiaawMcaaiabg2da9maalaaabaGaaGymaaqaaiaad6eadaWgaaWcbaGaaGimaaqabaaaaOWaaabuaeaadaqadaqaaiaadMgacqGHflY1caWGQbGaeyOeI0IaamyAamaabmaabaGaamyAaiabgkHiTiaaigdaaiaawIcacaGLPaaaaiaawIcacaGLPaaacqqHMoGrdaqhaaWcbaGaamyAaiaacYcacaWGQbaabaWaaeWaaeaacaWGYbaacaGLOaGaayzkaaaaaaqaaiaadMgacaGGSaGaamOAaaqab0GaeyyeIuoakiabg2da9maalaaabaGaaGymaaqaaiaad6eadaWgaaWcbaGaaGimaaqabaaaaOWaaabuaeaadaqadaqaaiaadMgadaahaaWcbeqaaiaaikdaaaGccqGHsislcaWGPbWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamyAaaGaayjkaiaawMcaaiabfA6agnaaDaaaleaacaWGPbGaaiilaiaadQgaaeaadaqadaqaaiaadkhaaiaawIcacaGLPaaaaaaabaGaamyAaaqab0GaeyyeIuoakiabg2da9maalaaabaGaaGymaaqaaiaad6eadaWgaaWcbaGaaGimaaqabaaaaOWaaabuaeaacaWGPbGaeuOPdy0aa0baaSqaaiaadMgacaGGSaGaamyAaaqaamaabmaabaGaamOCaaGaayjkaiaawMcaaaaaaeaacaWGPbaabeqdcqGHris5aOGaeyypa0dabaGaeyypa0ZaaSaaaeaacaaIXaaabaWaaOaaaeaacaWGobWaaSbaaSqaaiaaicdaaeqaaaqabaaaaOWaaSaaaeaacaaIXaaabaWaaOaaaeaacaWGobWaaSbaaSqaaiaaicdaaeqaaaqabaaaaOWaaabuaeaacaWGPbGaeuOPdy0aa0baaSqaaiaaigdacaGGSaGaaGymaaqaamaabmaabaGaamOCaaGaayjkaiaawMcaaaaaaeaacaWGPbaabeqdcqGHris5aOGaeyypa0ZaaSaaaeaacaaIXaaabaWaaOaaaeaacaWGobWaaSbaaSqaaiaaicdaaeqaaaqabaaaaOGaeu4Odm1aa0baaSqaaiaaigdacaGGSaGaaGimaaqaamaabmaabaGaamOCaaGaayjkaiaawMcaaaaakmaabmaabaGaaGimaiaacYcacaaIWaaacaGLOaGaayzkaaGaeyypa0JaaGimaaaaaa@BD56@
Az egyenlőség második sorában a bal oldalt az alábbi diagram ábrázolja:
Gap néküli gerjesztés:
E
k
→
0
→
0
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGfbWaaSbaaSqaaiaahUgacqGHsgIRcaaIWaaabeaakiabgkziUkaaicdaaaa@503D@
, azaz
E
k
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGfbWaaSbaaSqaaiaahUgaaeqaaaaa@4AE5@
a 0-ból indul
⇒
D
(
0,0
)
=
0
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqGHshI3caWGebWaaeWaaeaacaaIWaGaaiilaiaaicdaaiaawIcacaGLPaaacqGH9aqpcaaIWaaaaa@518E@
. Behelyettesítve
D
(
k
,
i
ω
n
)
=
[
i
ω
n
−
ℏ
−
1
(
e
k
+
n
0
v
(
k
)
)
]
[
i
ω
n
+
ℏ
−
1
(
e
k
+
n
0
v
(
k
)
)
]
+
(
ℏ
−
1
n
0
v
(
k
)
)
2
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGebWaaeWaaeaacaWHRbGaaiilaiaadMgacqaHjpWDdaWgaaWcbaGaamOBaaqabaaakiaawIcacaGLPaaacqGH9aqpdaWadaqaaiaadMgacqaHjpWDdaWgaaWcbaGaamOBaaqabaGccqGHsislqaaaaaaaaaWdbiabl+qiOnaaCaaaleqabaGaeyOeI0IaaGymaaaakmaabmaabaGaamyzamaaBaaaleaacaWHRbaabeaakiabgUcaRiaad6gadaWgaaWcbaGaaGimaaqabaGccaWG2bWaaeWaaeaacaWHRbaacaGLOaGaayzkaaaacaGLOaGaayzkaaaapaGaay5waiaaw2faamaadmaabaGaamyAaiabeM8a3naaBaaaleaacaWGUbaabeaakiabgUcaR8qacqWIpecAdaahaaWcbeqaaiabgkHiTiaaigdaaaGcdaqadaqaaiaadwgadaWgaaWcbaGaaC4AaaqabaGccqGHRaWkcaWGUbWaaSbaaSqaaiaaicdaaeqaaOGaamODamaabmaabaGaaC4AaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaWdaiaawUfacaGLDbaacqGHRaWkpeWaaeWaaeaacqWIpecAdaahaaWcbeqaaiabgkHiTiaaigdaaaGccaWGUbWaaSbaaSqaaiaaicdaaeqaaOGaamODamaabmaabaGaaC4AaaGaayjkaiaawMcaaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaaa@852F@
egyenletbe,
D
(
0,0
)
=
−
Σ
1,1
(
0,0
)
Σ
2,2
(
0,0
)
+
Σ
1,2
(
0,0
)
Σ
2,2
(
0,0
)
=
−
Σ
1,1
2
(
0,0
)
+
Σ
1,2
2
(
0,0
)
=
=
−
[
Σ
1,1
(
0,0
)
−
Σ
1,2
(
0,0
)
]
⋅
[
Σ
1,1
(
0,0
)
+
Σ
1,2
(
0,0
)
]
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakqaabeqaaiaadseadaqadaqaaiaaicdacaGGSaGaaGimaaGaayjkaiaawMcaaiabg2da9iabgkHiTiabfo6atnaaBaaaleaacaaIXaGaaiilaiaaigdaaeqaaOWaaeWaaeaacaaIWaGaaiilaiaaicdaaiaawIcacaGLPaaacqqHJoWudaWgaaWcbaGaaGOmaiaacYcacaaIYaaabeaakmaabmaabaGaaGimaiaacYcacaaIWaaacaGLOaGaayzkaaGaey4kaSIaeu4Odm1aaSbaaSqaaiaaigdacaGGSaGaaGOmaaqabaGcdaqadaqaaiaaicdacaGGSaGaaGimaaGaayjkaiaawMcaaiabfo6atnaaBaaaleaacaaIYaGaaiilaiaaikdaaeqaaOWaaeWaaeaacaaIWaGaaiilaiaaicdaaiaawIcacaGLPaaacqGH9aqpcqGHsislcqqHJoWudaqhaaWcbaGaaGymaiaacYcacaaIXaaabaGaaGOmaaaakmaabmaabaGaaGimaiaacYcacaaIWaaacaGLOaGaayzkaaGaey4kaSIaeu4Odm1aa0baaSqaaiaaigdacaGGSaGaaGOmaaqaaiaaikdaaaGcdaqadaqaaiaaicdacaGGSaGaaGimaaGaayjkaiaawMcaaiabg2da9aqaaiabg2da9iabgkHiTmaadmaabaGaeu4Odm1aaSbaaSqaaiaaigdacaGGSaGaaGymaaqabaGcdaqadaqaaiaaicdacaGGSaGaaGimaaGaayjkaiaawMcaaiabgkHiTiabfo6atnaaBaaaleaacaaIXaGaaiilaiaaikdaaeqaaOWaaeWaaeaacaaIWaGaaiilaiaaicdaaiaawIcacaGLPaaaaiaawUfacaGLDbaacqGHflY1daWadaqaaiabfo6atnaaBaaaleaacaaIXaGaaiilaiaaigdaaeqaaOWaaeWaaeaacaaIWaGaaiilaiaaicdaaiaawIcacaGLPaaacqGHRaWkcqqHJoWudaWgaaWcbaGaaGymaiaacYcacaaIYaaabeaakmaabmaabaGaaGimaiaacYcacaaIWaaacaGLOaGaayzkaaaacaGLBbGaayzxaaaaaaa@AB1C@
ahol felhasználtuk, hogy
Σ
1,1
(
k
,
i
ω
n
)
=
Σ
2,2
(
−
k
,
−
i
ω
n
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqqHJoWudaWgaaWcbaGaaGymaiaacYcacaaIXaaabeaakmaabmaabaGaaC4AaiaacYcacaWGPbGaeqyYdC3aaSbaaSqaaiaad6gaaeqaaaGccaGLOaGaayzkaaGaeyypa0Jaeu4Odm1aaSbaaSqaaiaaikdacaGGSaGaaGOmaaqabaGcdaqadaqaaiabgkHiTiaahUgacaGGSaGaeyOeI0IaamyAaiabeM8a3naaBaaaleaacaWGUbaabeaaaOGaayjkaiaawMcaaaaa@61BF@
, illetve
Σ
1,2
(
k
,
i
ω
n
)
=
Σ
2,1
(
−
k
,
i
ω
n
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqqHJoWudaWgaaWcbaGaaGymaiaacYcacaaIYaaabeaakmaabmaabaGaaC4AaiaacYcacaWGPbGaeqyYdC3aaSbaaSqaaiaad6gaaeqaaaGccaGLOaGaayzkaaGaeyypa0Jaeu4Odm1aaSbaaSqaaiaaikdacaGGSaGaaGymaaqabaGcdaqadaqaaiabgkHiTiaahUgacaGGSaGaamyAaiabeM8a3naaBaaaleaacaWGUbaabeaaaOGaayjkaiaawMcaaaaa@60D2@
.