Kétrészecske kölcsönhatás vákuumban
Kétrészecske potenciál általános alakja
Lennard-Jones-potenciál közelítésben
r
0
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGYbWaaSbaaSqaaiaaicdaaeqaaaaa@4AD7@
hatótávval
Két részecskénk van csak egyelőre, 2 bozon vagy fermion. A Hamilton-operátor:
H
=
p
1
2
2
m
+
p
2
2
2
m
+
v
(
r
1
−
r
2
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGibGaeyypa0ZaaSaaaeaacaWGWbWaa0baaSqaaiaaigdaaeaacaaIYaaaaaGcbaGaaGOmaiaad2gaaaGaey4kaSYaaSaaaeaacaWGWbWaa0baaSqaaiaaikdaaeaacaaIYaaaaaGcbaGaaGOmaiaad2gaaaGaey4kaSIaamODamaabmaabaGaaCOCamaaBaaaleaacaaIXaaabeaakiabgkHiTiaahkhadaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaaaaa@5C9F@
Ekkor a Schrödinger egyenlet
H
ψ
(
r
1
,
r
2
)
=
E
ψ
(
r
1
,
r
2
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGibGaeqiYdK3aaeWaaeaacaWHYbWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaahkhadaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaacqGH9aqpcaWGfbGaeqiYdK3aaeWaaeaacaWHYbWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaahkhadaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaaaaa@5B58@
Bevezethetünk új térkoordinátákat, a tömegközéppontit és a relítvat:
R
=
r
1
+
r
2
2
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWHsbGaeyypa0ZaaSaaaeaacaWHYbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaaCOCamaaBaaaleaacaaIYaaabeaaaOqaaiaaikdaaaaaaa@5063@
r
=
r
1
−
r
2
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWHYbGaeyypa0JaaCOCamaaBaaaleaacaaIXaaabeaakiabgkHiTiaahkhadaWgaaWcbaGaaGOmaaqabaaaaa@4FB8@
És új impulzusokat:
P
=
p
1
+
p
2
2
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWHqbGaeyypa0ZaaSaaaeaacaWHWbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaaCiCamaaBaaaleaacaaIYaaabeaaaOqaaiaaikdaaaaaaa@505D@
p
=
p
1
−
p
2
2
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWHWbGaeyypa0ZaaSaaaeaacaWHWbWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaaCiCamaaBaaaleaacaaIYaaabeaaaOqaaiaaikdaaaaaaa@5088@
Ekkor
ψ
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqaHipqEaaa@4AC9@
térfüggése felírható szorzatalakban:
ψ
(
R
,
r
)
=
ψ
(
r
)
⋅
e
i
k
R
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqaHipqEdaqadaqaaiaahkfacaGGSaGaaCOCaaGaayjkaiaawMcaaiabg2da9iabeI8a5naabmaabaGaaCOCaaGaayjkaiaawMcaaiabgwSixlaadwgadaahaaWcbeqaaiaadMgacaWHRbGaaCOuaaaaaaa@5A4E@
A Hamilton operátor az új koordinátákkal, bevezetve az össztömeg
M = m + m
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGnbGaeyypa0JaamyBaiabgUcaRiaad2gaaaa@4D99@
és redukált tömeg
μ =
m + m
m ⋅ m
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqaH8oqBcqGH9aqpdaWcaaqaaiaad2gacqGHRaWkcaWGTbaabaGaamyBaiabgwSixlaad2gaaaaaaa@52BB@
kifejezéseit (különböző tömegű részecskék esetén
m
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGTbaaaa@49ED@
-ek értelemszerű indexelésével):
H =
P
2
2 M
+
p
2
2 μ
+ v (
r
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGibGaeyypa0ZaaSaaaeaacaWGqbWaaWbaaSqabeaacaaIYaaaaaGcbaGaaGOmaiaad2eaaaGaey4kaSYaaSaaaeaacaWGWbWaaWbaaSqabeaacaaIYaaaaaGcbaGaaGOmaiabeY7aTbaacqGHRaWkcaWG2bWaaeWaaeaacaWHYbaacaGLOaGaayzkaaaaaa@57E1@
Így a Schrödinger-egyenlet:
[
−
ℏ
2
Δ
r
2
M
+
ℏ
2
K
2
2
M
+
v
(
r
)
]
ψ
(
r
)
=
E
ψ
(
r
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaadaWadaqaaabaaaaaaaaapeWaaSaaaeaapaGaeyOeI0Ydbiabl+qiOnaaCaaaleqabaGaaGOmaaaakiabfs5aenaaBaaaleaacaWHYbaabeaaaOqaaiaaikdacaWGnbaaaiabgUcaRmaalaaabaGaeS4dHG2aaWbaaSqabeaacaaIYaaaaOGaam4samaaCaaaleqabaGaaGOmaaaaaOqaaiaaikdacaWGnbaaaiabgUcaRiaadAhadaqadaqaaiaahkhaaiaawIcacaGLPaaaa8aacaGLBbGaayzxaaGaeqiYdK3aaeWaaeaacaWHYbaacaGLOaGaayzkaaGaeyypa0JaamyraiabeI8a5naabmaabaGaaCOCaaGaayjkaiaawMcaaaaa@67AD@
Ekkor bevezetve a
k
2
=
m
ℏ
2
E
−
K
2
4
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGRbWaaWbaaSqabeaacaaIYaaaaOGaeyypa0ZaaSaaaeaacaWGTbaabaaeaaaaaaaaa8qacqWIpecAdaahaaWcbeqaaiaaikdaaaaaaOWdaiaadweacqGHsisldaWcaaqaaiaadUeadaahaaWcbeqaaiaaikdaaaaakeaacaaI0aaaaaaa@5379@
és
V
(
r
)
=
m
ℏ
2
v
(
r
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGwbWaaeWaaeaacaWHYbaacaGLOaGaayzkaaGaeyypa0ZaaSaaaeaacaWGTbaabaGaeS4dHG2aaWbaaSqabeaacaaIYaaaaaaakiaadAhadaqadaqaaiaahkhaaiaawIcacaGLPaaaaaa@53FD@
mennyiségeket, a Schrödinger egyenlet a következő alakban írható:
(
Δ
r
+
k
2
)
ψ
(
r
)
=
V
(
r
)
ψ
(
r
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaadaqadaqaaiabfs5aenaaBaaaleaacaWHYbaabeaakiabgUcaRiaadUgadaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaacqaHipqEdaqadaqaaiaahkhaaiaawIcacaGLPaaacqGH9aqpcaWGwbWaaeWaaeaacaWHYbaacaGLOaGaayzkaaGaeqiYdK3aaeWaaeaacaWHYbaacaGLOaGaayzkaaaaaa@5CE9@
Definiáljuk a Schrödinger egyenlet Green-függvényét:
(
Δ
r
+
k
2
)
G
k
(
+
)
(
r
−
r
'
)
=
−
δ
(
r
−
r
'
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaadaqadaqaaiabfs5aenaaBaaaleaacaWHYbaabeaakiabgUcaRiaadUgadaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaacaWGhbWaa0baaSqaaiaahUgaaeaadaqadaqaaiabgUcaRaGaayjkaiaawMcaaaaakmaabmaabaGaaCOCaiabgkHiTiaahkhacaGGNaaacaGLOaGaayzkaaGaeyypa0JaeyOeI0IaeqiTdq2aaeWaaeaacaWHYbGaeyOeI0IaaCOCaiaacEcaaiaawIcacaGLPaaaaaa@6207@
A Schrödinger egyenlet megoldásai:
Kölcsönhatás-mentes esetben, azaz ha
V
=
0
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGwbGaeyypa0JaaGimaaaa@4B96@
, az egyik megoldás:
ψ
k
(
+
)
(
r
)
=
e
i
k
r
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqaHipqEdaqhaaWcbaGaaC4AaaqaamaabmaabaGaey4kaScacaGLOaGaayzkaaaaaOWaaeWaaeaacaWHYbaacaGLOaGaayzkaaGaeyypa0JaamyzamaaCaaaleqabaGaamyAaiaahUgacaWHYbaaaaaa@55DD@
kölcsönható (általános) esetben az egyik megoldás:
ψ
k
(
+
)
(
r
) = λ ⋅
e
i k r
−
∫
G
k
(
+
)
(
r − r '
) V (
r '
)
ψ
k
(
+
)
(
r '
)
d
3
r '
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqaHipqEdaqhaaWcbaGaaC4AaaqaamaabmaabaGaey4kaScacaGLOaGaayzkaaaaaOWaaeWaaeaacaWHYbaacaGLOaGaayzkaaGaeyypa0Jaeq4UdWMaeyyXICTaamyzamaaCaaaleqabaGaamyAaiaahUgacaWHYbaaaOGaeyOeI0Yaa8qaaeaacaWGhbWaa0baaSqaaiaahUgaaeaadaqadaqaaiabgUcaRaGaayjkaiaawMcaaaaakmaabmaabaGaaCOCaiabgkHiTiaahkhacaGGNaaacaGLOaGaayzkaaGaamOvamaabmaabaGaaCOCaiaacEcaaiaawIcacaGLPaaacqaHipqEdaqhaaWcbaGaaC4AaaqaamaabmaabaGaey4kaScacaGLOaGaayzkaaaaaOWaaeWaaeaacaWHYbGaai4jaaGaayjkaiaawMcaaaWcbeqab0Gaey4kIipakiaadsgadaahaaWcbeqaaiaaiodaaaGccaWGYbGaai4jaaaa@766B@
Ennek megoldását már más tárgyakból is tanultuk:
G
k
(
+
)
(
r
−
r
'
)
=
∫
d
3
q
(
2
π
)
3
e
i
q
(
r
−
r
'
)
q
2
−
k
2
−
i
η
=
1
4
π
e
i
k
|
r
−
r
'
|
|
r
−
r
'
|
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGhbWaa0baaSqaaiaahUgaaeaadaqadaqaaiabgUcaRaGaayjkaiaawMcaaaaakmaabmaabaGaaCOCaiabgkHiTiaahkhacaGGNaaacaGLOaGaayzkaaGaeyypa0Zaa8qaaeaadaWcaaqaaiaadsgadaahaaWcbeqaaiaaiodaaaGccaWGXbaabaWaaeWaaeaacaaIYaGaeqiWdahacaGLOaGaayzkaaWaaWbaaSqabeaacaaIZaaaaaaakmaalaaabaGaamyzamaaCaaaleqabaGaamyAaiaahghadaqadaqaaiaahkhacqGHsislcaWHYbGaai4jaaGaayjkaiaawMcaaaaaaOqaaiaadghadaahaaWcbeqaaiaaikdaaaGccqGHsislcaWGRbWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaamyAaiabeE7aObaaaSqabeqaniabgUIiYdGccqGH9aqpdaWcaaqaaiaaigdaaeaacaaI0aGaeqiWdahaamaalaaabaGaamyzamaaCaaaleqabaGaamyAaiaadUgadaabdaqaaiaahkhacqGHsislcaWHYbGaai4jaaGaay5bSlaawIa7aaaaaOqaamaaemaabaGaaCOCaiabgkHiTiaahkhacaGGNaaacaGLhWUaayjcSdaaaaaa@8282@
A hullámszámvektor
és helykoordináta
Ha
r
≫
r
0
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGYbGaeS4AI8JaamOCamaaBaaaleaacaaIWaaabeaaaaa@4D2C@
,
G
k
(
+
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGhbWaa0baaSqaaiaahUgaaeaadaqadaqaaiabgUcaRaGaayjkaiaawMcaaaaaaaa@4D53@
sorbafejthető, mert
|
r − r '
| = r |
e
r
− r ' / r
| ≈ r − r r ' / r + O (
r
0
/ r
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaadaabdaqaaiaahkhacqGHsislcaWHYbGaai4jaaGaay5bSlaawIa7aiabg2da9iaadkhadaabdaqaaiaahwgadaWgaaWcbaGaaCOCaaqabaGccqGHsislcaWHYbGaai4jaiaac+cacaWGYbaacaGLhWUaayjcSdGaeyisISRaamOCaiabgkHiTiaahkhacaWHYbGaai4jaiaac+cacaWGYbGaey4kaSIaam4tamaabmaabaGaamOCamaaBaaaleaacaaIWaaabeaakiaac+cacaWGYbaacaGLOaGaayzkaaaaaa@69D6@
, így :
G
k
(
+
)
(
r
−
r
'
)
=
1
4
π
e
i
k
r
r
e
−
i
k
r
r
'
r
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGhbWaa0baaSqaaiaahUgaaeaadaqadaqaaiabgUcaRaGaayjkaiaawMcaaaaakmaabmaabaGaaCOCaiabgkHiTiaahkhacaGGNaaacaGLOaGaayzkaaGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGinaiabec8aWbaadaWcaaqaaiaadwgadaahaaWcbeqaaiaadMgacaWGRbGaamOCaaaaaOqaaiaadkhaaaGaamyzamaaCaaaleqabaGaeyOeI0YaaSaaaeaacaWGPbGaam4AaiaahkhacaWHYbGaai4jaaqaaiaadkhaaaaaaaaa@6347@
.
Ekkor a megoldás:
ψ
k
(
+
)
(
r
)
∼
e
i
k
r
−
1
4
π
e
i
k
r
r
∫
e
−
i
k
'
r
'
⋅
V
(
r
'
)
ψ
k
(
+
)
(
r
'
)
d
3
r
'
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqaHipqEdaqhaaWcbaGaaC4AaaqaamaabmaabaGaey4kaScacaGLOaGaayzkaaaaaOWaaeWaaeaacaWHYbaacaGLOaGaayzkaaGaeSipIOJaamyzamaaCaaaleqabaGaamyAaiaahUgacaWHYbaaaOGaeyOeI0YaaSaaaeaacaaIXaaabaGaaGinaiabec8aWbaadaWcaaqaaiaadwgadaahaaWcbeqaaiaadMgacaWGRbGaamOCaaaaaOqaaiaadkhaaaWaa8qaaeaacaWGLbWaaWbaaSqabeaacqGHsislcaWGPbGaaC4AaiaacEcacaWHYbGaai4jaaaakiabgwSixlaadAfadaqadaqaaiaahkhacaGGNaaacaGLOaGaayzkaaGaeqiYdK3aa0baaSqaaiaahUgaaeaadaqadaqaaiabgUcaRaGaayjkaiaawMcaaaaakmaabmaabaGaaCOCaiaacEcaaiaawIcacaGLPaaaaSqabeqaniabgUIiYdGccaWGKbWaaWbaaSqabeaacaaIZaaaaOGaamOCaiaacEcaaaa@79E6@
Definiálhatjuk a szórási amplitúdót:
f
(
+
)
(
k
,
k
'
)
:
=
−
1
4
π
∫
e
−
i
k
'
r
'
V
(
r
'
)
ψ
k
(
+
)
(
r
'
)
d
3
r
'
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGMbWaaWbaaSqabeaadaqadaqaaiabgUcaRaGaayjkaiaawMcaaaaakmaabmaabaGaaC4AaiaacYcacaWHRbGaai4jaaGaayjkaiaawMcaaiaacQdacqGH9aqpcqGHsisldaWcaaqaaiaaigdaaeaacaaI0aGaeqiWdahaamaapeaabaGaamyzamaaCaaaleqabaGaeyOeI0IaamyAaiaahUgacaGGNaGaaCOCaiaacEcaaaGccaWGwbWaaeWaaeaacaWHYbGaai4jaaGaayjkaiaawMcaaiabeI8a5naaDaaaleaacaWHRbaabaWaaeWaaeaacqGHRaWkaiaawIcacaGLPaaaaaGcdaqadaqaaiaahkhacaGGNaaacaGLOaGaayzkaaaaleqabeqdcqGHRiI8aOGaamizamaaCaaaleqabaGaaG4maaaakiaadkhacaGGNaaaaa@6FAD@
Megjegyzés:
ott, ahol
V
(
r
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGwbWaaeWaaeaacaWHYbaacaGLOaGaayzkaaaaaa@4C5A@
divergál, ott
ψ
k
(
+
)
(
r
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqaHipqEdaqhaaWcbaGaaC4AaaqaamaabmaabaGaey4kaScacaGLOaGaayzkaaaaaOWaaeWaaeaacaWHYbaacaGLOaGaayzkaaaaaa@50E3@
eltűnik, viszont
f
(
+
)
(
k
,
k
'
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGMbWaaWbaaSqabeaadaqadaqaaiabgUcaRaGaayjkaiaawMcaaaaakmaabmaabaGaaC4AaiaacYcacaWHRbGaai4jaaGaayjkaiaawMcaaaaa@5154@
véges marad. Perturbatív kezelés nem lehetséges, mert véges rendben nem lehet levinni
ψ
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqaHipqEaaa@4AC9@
-t 0-ba.
Fourier-transzformáljuk a potenciált és a hulláfüggvényt:
V
(
q
)
=
∫
e
−
i
q
r
⋅
V
(
r
)
d
3
r
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGwbWaaeWaaeaacaWHXbaacaGLOaGaayzkaaGaeyypa0Zaa8qaaeaacaWGLbWaaWbaaSqabeaacqGHsislcaWGPbGaaCyCaiaahkhaaaaabeqab0Gaey4kIipakiabgwSixlaadAfadaqadaqaaiaahkhaaiaawIcacaGLPaaacaWGKbWaaWbaaSqabeaacaaIZaaaaOGaamOCaaaa@5CBD@
ψ
k
(
q
)
=
∫
e
−
i
q
r
ψ
k
(
+
)
(
r
)
=
(
2
π
)
3
δ
(
q
−
k
)
−
1
q
2
−
k
2
−
i
η
∫
V
(
p
)
ψ
k
(
q
−
p
)
d
3
p
(
2
π
)
3
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqaHipqEdaWgaaWcbaGaaC4AaaqabaGcdaqadaqaaiaahghaaiaawIcacaGLPaaacqGH9aqpdaWdbaqaaiaadwgadaahaaWcbeqaaiabgkHiTiaadMgacaWHXbGaaCOCaaaakiabeI8a5naaDaaaleaacaWHRbaabaWaaeWaaeaacqGHRaWkaiaawIcacaGLPaaaaaGcdaqadaqaaiaahkhaaiaawIcacaGLPaaaaSqabeqaniabgUIiYdGccqGH9aqpdaqadaqaaiaaikdacqaHapaCaiaawIcacaGLPaaadaahaaWcbeqaaiaaiodaaaGccqaH0oazdaqadaqaaiaahghacqGHsislcaWHRbaacaGLOaGaayzkaaGaeyOeI0YaaSaaaeaacaaIXaaabaGaamyCamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaadUgadaahaaWcbeqaaiaaikdaaaGccqGHsislcaWGPbGaeq4TdGgaamaapeaabaGaamOvamaabmaabaGaaCiCaaGaayjkaiaawMcaaiabeI8a5naaBaaaleaacaWHRbaabeaakmaabmaabaGaaCyCaiabgkHiTiaahchaaiaawIcacaGLPaaaaSqabeqaniabgUIiYdGcdaWcaaqaaiaadsgadaahaaWcbeqaaiaaiodaaaGccaWGWbaabaWaaeWaaeaacaaIYaGaeqiWdahacaGLOaGaayzkaaWaaWbaaSqabeaacaaIZaaaaaaaaaa@88E8@
Ekkor a szórási amplitúdók kifejezhetőek ezekkel a mennyiségekkel:
f
(
+
)
˜
(
k
,
k
'
)
:
=
−
4
π
f
(
+
)
(
k
,
k
'
)
=
∫
V
(
p
)
ψ
k
(
k
'
−
p
)
d
3
p
(
2
π
)
3
=
∫
V
(
k
'
−
p
)
ψ
k
(
p
)
d
3
P
(
2
π
)
3
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaadaaiaaqaaiaadAgadaahaaWcbeqaamaabmaabaGaey4kaScacaGLOaGaayzkaaaaaaGccaGLdmaadaqadaqaaiaahUgacaGGSaGaaC4AaiaacEcaaiaawIcacaGLPaaacaGG6aGaeyypa0JaeyOeI0IaaGinaiabec8aWjaadAgadaahaaWcbeqaamaabmaabaGaey4kaScacaGLOaGaayzkaaaaaOWaaeWaaeaacaWHRbGaaiilaiaahUgacaGGNaaacaGLOaGaayzkaaGaeyypa0Zaa8qaaeaacaWGwbWaaeWaaeaacaWHWbaacaGLOaGaayzkaaGaeqiYdK3aaSbaaSqaaiaahUgaaeqaaOWaaeWaaeaacaWHRbGaai4jaiabgkHiTiaahchaaiaawIcacaGLPaaaaSqabeqaniabgUIiYdGcdaWcaaqaaiaadsgadaahaaWcbeqaaiaaiodaaaGccaWGWbaabaWaaeWaaeaacaaIYaGaeqiWdahacaGLOaGaayzkaaWaaWbaaSqabeaacaaIZaaaaaaakiabg2da9maapeaabaGaamOvamaabmaabaGaaC4AaiaacEcacqGHsislcaWHWbaacaGLOaGaayzkaaGaeqiYdK3aaSbaaSqaaiaahUgaaeqaaOWaaeWaaeaacaWHWbaacaGLOaGaayzkaaaaleqabeqdcqGHRiI8aOWaaSaaaeaacaWGKbWaaWbaaSqabeaacaaIZaaaaOGaamiuaaqaamaabmaabaGaaGOmaiabec8aWbGaayjkaiaawMcaamaaCaaaleqabaGaaG4maaaaaaaaaa@8BFD@
f
(
+
)
˜
(
k
,
k
'
)
=
V
(
k
−
k
'
)
∫
V
(
k
'
−
p
)
f
(
+
)
˜
(
k
,
p
)
k
2
−
p
2
+
i
η
d
3
p
(
2
π
)
3
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaadaaiaaqaaiaadAgadaahaaWcbeqaamaabmaabaGaey4kaScacaGLOaGaayzkaaaaaaGccaGLdmaadaqadaqaaiaahUgacaGGSaGaaC4AaiaacEcaaiaawIcacaGLPaaacqGH9aqpcaWGwbWaaeWaaeaacaWHRbGaeyOeI0IaaC4AaiaacEcaaiaawIcacaGLPaaadaWdbaqaamaalaaabaGaamOvamaabmaabaGaaC4AaiaacEcacqGHsislcaWHWbaacaGLOaGaayzkaaWaaacaaeaacaWGMbWaaWbaaSqabeaadaqadaqaaiabgUcaRaGaayjkaiaawMcaaaaaaOGaay5adaWaaeWaaeaacaWHRbGaaiilaiaahchaaiaawIcacaGLPaaaaeaacaWGRbWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaamiCamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadMgacqaH3oaAaaaaleqabeqdcqGHRiI8aOWaaSaaaeaacaWGKbWaaWbaaSqabeaacaaIZaaaaOGaamiCaaqaamaabmaabaGaaGOmaiabec8aWbGaayjkaiaawMcaamaaCaaaleqabaGaaG4maaaaaaaaaa@7975@
(2)
Megjegyzés:
f
(
k
,
k
'
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGMbWaaeWaaeaacaWHRbGaaiilaiaahUgacaGGNaaacaGLOaGaayzkaaaaaa@4EB2@
-t megkapjuk nem csak a tömeghéjon
erős taszító potenciálban megoldva minden rend divergens
Born-közelítés:
f
(
+
)
˜
(
k
,
k
'
)
=
V
(
k
−
k
'
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaadaaiaaqaaiaadAgadaahaaWcbeqaamaabmaabaGaey4kaScacaGLOaGaayzkaaaaaaGccaGLdmaadaqadaqaaiaahUgacaGGSaGaaC4AaiaacEcaaiaawIcacaGLPaaacqGH9aqpcaWGwbWaaeWaaeaacaWHRbGaeyOeI0IaaC4AaiaacEcaaiaawIcacaGLPaaaaaa@5900@
Parciális hullámok módszere:
f
(
k
,
k
'
)
=
−
1
4
π
f
˜
(
k
,
k
'
)
=
∑
l
=
0
∞
2
l
+
1
k
sin
(
δ
l
)
P
l
(
cos
ϑ
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGMbWaaeWaaeaacaWHRbGaaiilaiaahUgacaGGNaaacaGLOaGaayzkaaGaeyypa0JaeyOeI0YaaSaaaeaacaaIXaaabaGaaGinaiabec8aWbaadaaiaaqaaiaadAgaaiaawoWaamaabmaabaGaaC4AaiaacYcacaWHRbGaai4jaaGaayjkaiaawMcaaiabg2da9maaqahabaWaaSaaaeaacaaIYaGaamiBaiabgUcaRiaaigdaaeaacaWGRbaaaiGacohacaGGPbGaaiOBamaabmaabaGaeqiTdq2aaSbaaSqaaiaadYgaaeqaaaGccaGLOaGaayzkaaGaamiuamaaBaaaleaacaWGSbaabeaakmaabmaabaGaci4yaiaac+gacaGGZbGaeqy0dOeacaGLOaGaayzkaaaaleaacaWGSbGaeyypa0JaaGimaaqaaiabg6HiLcqdcqGHris5aaaa@7545@
δ
0
=
−
k
a
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqaH0oazdaWgaaWcbaGaaGimaaqabaGccqGH9aqpcqGHsislcaWGRbGaamyyaaaa@4F59@
(s-hullámú szórási hossz),
δ
l
=
|
k
a
|
2
l
+
1
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqaH0oazdaWgaaWcbaGaamiBaaqabaGccqGH9aqpdaabdaqaaiaadUgacaWGHbaacaGLhWUaayjcSdWaaWbaaSqabeaacaaIYaGaamiBaiabgUcaRiaaigdaaaaaaa@553C@
Ga
|
k
⋅
a
|
≪
1
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaadaabdaqaaiaadUgacqGHflY1caWGHbaacaGLhWUaayjcSdGaeSOAI0JaaGymaaaa@5252@
, akkor elég csak az s-hullámot figyelembe venni:
⇒
f
(
k
,
k
'
)
=
−
a
(
1
+
O
(
k
⋅
a
)
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqGHshI3caWGMbWaaeWaaeaacaWHRbGaaiilaiaahUgacaGGNaaacaGLOaGaayzkaaGaeyypa0JaeyOeI0IaamyyamaabmaabaGaaGymaiabgUcaRiaad+eadaqadaqaaiaadUgacqGHflY1caWGHbaacaGLOaGaayzkaaaacaGLOaGaayzkaaaaaa@5D8B@
, így
f
˜
=
4
π
a
⇒
V
(
k
)
=
4
π
a
⇒
v
(
k
)
=
4
π
ℏ
2
a
m
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaadaaiaaqaaiaadAgaaiaawoWaaiabg2da9iaaisdacqaHapaCcaWGHbGaeyO0H4TaamOvamaabmaabaGaam4AaaGaayjkaiaawMcaaiabg2da9iaaisdacqaHapaCcaWGHbGaeyO0H4TaamODamaabmaabaGaam4AaaGaayjkaiaawMcaaiabg2da9maalaaabaGaaGinaiabec8aWjabl+qiOnaaCaaaleqabaGaaGOmaaaakiaadggaaeaacaWGTbaaaaaa@667C@
Merev gömbű,
r
0
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGYbWaaSbaaSqaaiaaicdaaeqaaaaa@4AD8@
sugarú potenciálra a szórási hossz, ha csak az s hullámú szórási hossz vesszük figyelembe, épp
2
⋅
r
0
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaaIYaGaeyyXICTaamOCamaaBaaaleaacaaIWaaabeaaaaa@4DDE@
Kétrészecske szórás közegben
Definiáljuk a négypontfüggvényt, vagy más néven T-mátrixot:
Γ
(
k
1
,
k
2
,
k
3
,
k
4
)
=
v
(
k
1
−
k
3
)
−
∫
1
β
ℏ
2
∑
m
v
(
q
)
G
(
0
)
(
k
1
−
q
)
G
(
0
)
(
k
2
+
q
)
Γ
(
k
1
−
q
,
k
2
+
q
,
k
3
,
k
4
)
d
3
q
(
2
π
)
3
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqqHtoWrdaqadaqaaiaahUgadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaC4AamaaBaaaleaacaaIYaaabeaakiaacYcacaWHRbWaaSbaaSqaaiaaiodaaeqaaOGaaiilaiaahUgadaWgaaWcbaGaaGinaaqabaaakiaawIcacaGLPaaacqGH9aqpcaWG2bWaaeWaaeaacaWHRbWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaaC4AamaaBaaaleaacaaIZaaabeaaaOGaayjkaiaawMcaaiabgkHiTmaapeaabaWaaSaaaeaacaaIXaaabaGaeqOSdiMaeS4dHG2aaWbaaSqabeaacaaIYaaaaaaakmaaqafabaGaamODamaabmaabaGaaCyCaaGaayjkaiaawMcaaiaadEeadaWgaaWcbaWaaeWaaeaacaaIWaaacaGLOaGaayzkaaaabeaakmaabmaabaGaaC4AamaaBaaaleaacaaIXaaabeaakiabgkHiTiaahghaaiaawIcacaGLPaaacaWGhbWaaSbaaSqaamaabmaabaGaaGimaaGaayjkaiaawMcaaaqabaGcdaqadaqaaiaahUgadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaWHXbaacaGLOaGaayzkaaGaeu4KdC0aaeWaaeaacaWHRbWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaaCyCaiaacYcacaWHRbWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaaCyCaiaacYcacaWHRbWaaSbaaSqaaiaaiodaaeqaaOGaaiilaiaahUgadaWgaaWcbaGaaGinaaqabaaakiaawIcacaGLPaaaaSqaaiaad2gaaeqaniabggHiLdaaleqabeqdcqGHRiI8aOWaaSaaaeaacaWGKbWaaWbaaSqabeaacaaIZaaaaOGaamyCaaqaamaabmaabaGaaGOmaiabec8aWbGaayjkaiaawMcaamaaCaaaleqabaGaaG4maaaaaaaaaa@953D@
A T-mátrix diagramja:
Állítás:
Γ
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqqHtoWraaa@4A63@
nem függ az átadott frekvenciától. Ezért a Matsubara-frekvenciákra való összegzés elvégezhető.
1
β
ℏ
2
∑
m
G
(
0
)
(
k
1
−
q
)
G
(
0
)
(
k
2
+
q
)
=
1
β
ℏ
2
∑
m
1
i
ω
1
−
i
ν
m
−
ℏ
−
1
(
e
k
1
−
q
−
μ
)
⋅
1
i
ω
2
+
i
ω
m
−
ℏ
−
1
(
e
k
+
q
−
μ
)
=
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaadaWcaaqaaiaaigdaaeaacqaHYoGycqWIpecAdaahaaWcbeqaaiaaikdaaaaaaOWaaabuaeaacaWGhbWaaSbaaSqaamaabmaabaGaaGimaaGaayjkaiaawMcaaaqabaGcdaqadaqaaiaahUgadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWHXbaacaGLOaGaayzkaaGaam4ramaaBaaaleaadaqadaqaaiaaicdaaiaawIcacaGLPaaaaeqaaOWaaeWaaeaacaWHRbWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaaCyCaaGaayjkaiaawMcaaaWcbaGaamyBaaqab0GaeyyeIuoakiabg2da9maalaaabaGaaGymaaqaaiabek7aIjabl+qiOnaaCaaaleqabaGaaGOmaaaaaaGcdaaeqbqaamaalaaabaGaaGymaaqaaiaadMgacqaHjpWDdaWgaaWcbaGaaGymaaqabaGccqGHsislcaWGPbGaeqyVd42aaSbaaSqaaiaad2gaaeqaaOGaeyOeI0IaeS4dHG2aaWbaaSqabeaacqGHsislcaaIXaaaaOWaaeWaaeaacaWGLbWaaSbaaSqaaiaahUgadaWgaaadbaGaaGymaaqabaWccqGHsislcaWHXbaabeaakiabgkHiTiabeY7aTbGaayjkaiaawMcaaaaacqGHflY1daWcaaqaaiaaigdaaeaacaWGPbGaeqyYdC3aaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaamyAaiabeM8a3naaBaaaleaacaWGTbaabeaakiabgkHiTiabl+qiOnaaCaaaleqabaGaeyOeI0IaaGymaaaakmaabmaabaGaamyzamaaBaaaleaacaWHRbGaey4kaSIaaCyCaaqabaGccqGHsislcqaH8oqBaiaawIcacaGLPaaaaaaaleaacaWGTbaabeqdcqGHris5aOGaeyypa0daaa@9958@
=
1
β
ℏ
2
∑
m
1
i
ω
1
+
i
ω
2
−
ℏ
−
1
(
e
k
1
−
q
+
e
k
2
+
q
−
2
μ
)
[
1
i
ω
1
−
i
ν
m
−
ℏ
−
1
(
e
k
1
−
q
−
μ
)
+
1
i
ω
2
+
i
ν
m
−
ℏ
−
1
(
e
k
2
+
q
−
μ
)
]
=
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqGH9aqpdaWcaaqaaiaaigdaaeaacqaHYoGycqWIpecAdaahaaWcbeqaaiaaikdaaaaaaOWaaabuaeaadaWcaaqaaiaaigdaaeaacaWGPbGaeqyYdC3aaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaamyAaiabeM8a3naaBaaaleaacaaIYaaabeaakiabgkHiTiabl+qiOnaaCaaaleqabaGaeyOeI0IaaGymaaaakmaabmaabaGaamyzamaaBaaaleaacaWHRbWaaSbaaWqaaiaaigdaaeqaaSGaeyOeI0IaaCyCaaqabaGccqGHRaWkcaWGLbWaaSbaaSqaaiaahUgadaWgaaadbaGaaGOmaaqabaWccqGHRaWkcaWHXbaabeaakiabgkHiTiaaikdacqaH8oqBaiaawIcacaGLPaaaaaWaamWaaeaadaWcaaqaaiaaigdaaeaacaWGPbGaeqyYdC3aaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaamyAaiabe27aUnaaBaaaleaacaWGTbaabeaakiabgkHiTiabl+qiOnaaCaaaleqabaGaeyOeI0IaaGymaaaakmaabmaabaGaamyzamaaBaaaleaacaWHRbWaaSbaaWqaaiaaigdaaeqaaSGaeyOeI0IaaCyCaaqabaGccqGHsislcqaH8oqBaiaawIcacaGLPaaaaaGaey4kaSYaaSaaaeaacaaIXaaabaGaamyAaiabeM8a3naaBaaaleaacaaIYaaabeaakiabgUcaRiaadMgacqaH9oGBdaWgaaWcbaGaamyBaaqabaGccqGHsislcqWIpecAdaahaaWcbeqaaiabgkHiTiaaigdaaaGcdaqadaqaaiaadwgadaWgaaWcbaGaaC4AamaaBaaameaacaaIYaaabeaaliabgUcaRiaahghaaeqaaOGaeyOeI0IaeqiVd0gacaGLOaGaayzkaaaaaaGaay5waiaaw2faaaWcbaGaamyBaaqab0GaeyyeIuoakiabg2da9aaa@9E87@
=
−
1
ℏ
1
+
n
(
0
)
(
k
1
−
q
)
+
n
(
0
)
(
k
2
+
q
)
i
ω
n
1
+
i
ω
n
2
−
ℏ
−
1
(
e
k
1
−
q
+
e
k
2
+
q
−
2
μ
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqGH9aqpcqGHsisldaWcaaqaaiaaigdaaeaacqWIpecAaaWaaSaaaeaacaaIXaGaey4kaSIaamOBamaaCaaaleqabaWaaeWaaeaacaaIWaaacaGLOaGaayzkaaaaaOWaaeWaaeaacaWHRbWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaaCyCaaGaayjkaiaawMcaaiabgUcaRiaad6gadaahaaWcbeqaamaabmaabaGaaGimaaGaayjkaiaawMcaaaaakmaabmaabaGaaC4AamaaBaaaleaacaaIYaaabeaakiabgUcaRiaahghaaiaawIcacaGLPaaaaeaacaWGPbGaeqyYdC3aaSbaaSqaaiaad6gadaWgaaadbaGaaGymaaqabaaaleqaaOGaey4kaSIaamyAaiabeM8a3naaBaaaleaacaWGUbWaaSbaaWqaaiaaikdaaeqaaaWcbeaakiabgkHiTiabl+qiOnaaCaaaleqabaGaeyOeI0IaaGymaaaakmaabmaabaGaamyzamaaBaaaleaacaWHRbWaaSbaaWqaaiaaigdaaeqaaSGaeyOeI0IaaCyCaaqabaGccqGHRaWkcaWGLbWaaSbaaSqaaiaahUgadaWgaaadbaGaaGOmaaqabaWccqGHRaWkcaWHXbaabeaakiabgkHiTiaaikdacqaH8oqBaiaawIcacaGLPaaaaaaaaa@7F0D@
ahol
n
(
0
)
(
k
)
=
1
e
β
(
e
k
−
μ
)
−
1
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGUbWaaWbaaSqabeaadaqadaqaaiaaicdaaiaawIcacaGLPaaaaaGcdaqadaqaaiaahUgaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiaaigdaaeaacaWGLbWaaWbaaSqabeaacqaHYoGydaqadaqaaiaadwgadaWgaaadbaGaaC4AaaqabaWccqGHsislcqaH8oqBaiaawIcacaGLPaaaaaGccqGHsislcaaIXaaaaaaa@5B62@
.
Tömegközépponti és relatív koordinátákkal:
K
=
k
1
+
k
2
=
k
3
+
k
4
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWHlbGaeyypa0JaaC4AamaaBaaaleaacaaIXaaabeaakiabgUcaRiaahUgadaWgaaWcbaGaaGOmaaqabaGccqGH9aqpcaWHRbWaaSbaaSqaaiaaiodaaeqaaOGaey4kaSIaaC4AamaaBaaaleaacaaI0aaabeaaaaa@552F@
k
=
k
1
−
k
2
2
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWHRbGaeyypa0ZaaSaaaeaacaWHRbWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaaC4AamaaBaaaleaacaaIYaaabeaaaOqaaiaaikdaaaaaaa@5079@
k
'
=
k
3
−
k
4
2
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWHRbGaai4jaiabg2da9maalaaabaGaaC4AamaaBaaaleaacaaIZaaabeaakiabgkHiTiaahUgadaWgaaWcbaGaaGinaaqabaaakeaacaaIYaaaaaaa@5128@
Ekkor
i
ω
N
=
i
ω
n
1
+
i
ω
n
2
=
i
ω
n
3
+
i
ω
n
4
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGPbGaeqyYdC3aaSbaaSqaaiaad6eaaeqaaOGaeyypa0JaamyAaiabeM8a3naaBaaaleaacaWGUbWaaSbaaWqaaiaaigdaaeqaaaWcbeaakiabgUcaRiaadMgacqaHjpWDdaWgaaWcbaGaamOBamaaBaaameaacaaIYaaabeaaaSqabaGccqGH9aqpcaWGPbGaeqyYdC3aaSbaaSqaaiaad6gadaWgaaadbaGaaG4maaqabaaaleqaaOGaey4kaSIaamyAaiabeM8a3naaBaaaleaacaWGUbWaaSbaaWqaaiaaisdaaeqaaaWcbeaaaaa@63E7@
z
−
2
(
e
k
+
q
−
μ
)
:
=
ℏ
(
i
ω
n
1
+
i
ω
n
2
−
ℏ
−
1
(
e
k
1
−
q
+
e
k
2
+
q
−
2
μ
)
)
=
i
ℏ
ω
N
−
ℏ
2
K
2
4
m
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWG6bGaeyOeI0IaaGOmamaabmaabaGaamyzamaaBaaaleaacaWHRbGaey4kaSIaaCyCaaqabaGccqGHsislcqaH8oqBaiaawIcacaGLPaaacaGG6aGaeyypa0JaeS4dHG2aaeWaaeaacaWGPbGaeqyYdC3aaSbaaSqaaiaad6gadaWgaaadbaGaaGymaaqabaaaleqaaOGaey4kaSIaamyAaiabeM8a3naaBaaaleaacaWGUbWaaSbaaWqaaiaaikdaaeqaaaWcbeaakiabgkHiTiabl+qiOnaaCaaaleqabaGaeyOeI0IaaGymaaaakmaabmaabaGaamyzamaaBaaaleaacaWHRbWaaSbaaWqaaiaaigdaaeqaaSGaeyOeI0IaaCyCaaqabaGccqGHRaWkcaWGLbWaaSbaaSqaaiaahUgadaWgaaadbaGaaGOmaaqabaWccqGHRaWkcaWHXbaabeaakiabgkHiTiaaikdacqaH8oqBaiaawIcacaGLPaaaaiaawIcacaGLPaaacqGH9aqpcaWGPbGaeS4dHGMaeqyYdC3aaSbaaSqaaiaad6eaaeqaaOGaeyOeI0YaaSaaaeaacqWIpecAdaahaaWcbeqaaiaaikdaaaGccaWGlbWaaWbaaSqabeaacaaIYaaaaaGcbaGaaGinaiaad2gaaaaaaa@82D6@
illetve
Γ
(
k
1
,
k
2
,
k
3
,
k
4
)
→
Γ
(
k
,
k
'
,
K
,
z
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqqHtoWrdaqadaqaaiaahUgadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaC4AamaaBaaaleaacaaIYaaabeaakiaacYcacaWHRbWaaSbaaSqaaiaaiodaaeqaaOGaaiilaiaahUgadaWgaaWcbaGaaGinaaqabaaakiaawIcacaGLPaaacqGHsgIRcqqHtoWrdaqadaqaaiaahUgacaGGSaGaaC4AaiaacEcacaGGSaGaaC4saiaacYcacaWG6baacaGLOaGaayzkaaaaaa@60EA@
Ekkor az jön ki, hogy
Γ
(
k
,
k
'
,
K
,
z
)
=
v
(
k
−
k
'
)
+
∫
v
(
q
)
F
(
+
)
(
K
,
k
−
q
)
z
−
2
(
e
k
+
q
−
μ
)
Γ
(
k
−
q
,
k
'
,
K
,
z
)
d
3
q
(
2
π
)
3
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqqHtoWrdaqadaqaaiaahUgacaGGSaGaaC4AaiaacEcacaGGSaGaaC4saiaacYcacaWG6baacaGLOaGaayzkaaGaeyypa0JaamODamaabmaabaGaaC4AaiabgkHiTiaahUgacaGGNaaacaGLOaGaayzkaaGaey4kaSYaa8qaaeaacaWG2bWaaeWaaeaacaWHXbaacaGLOaGaayzkaaWaaSaaaeaacaWGgbWaaSbaaSqaamaabmaabaGaey4kaScacaGLOaGaayzkaaaabeaakmaabmaabaGaaC4saiaacYcacaWHRbGaeyOeI0IaaCyCaaGaayjkaiaawMcaaaqaaiaadQhacqGHsislcaaIYaWaaeWaaeaacaWGLbWaaSbaaSqaaiaahUgacqGHRaWkcaWHXbaabeaakiabgkHiTiabeY7aTbGaayjkaiaawMcaaaaacqqHtoWrdaqadaqaaiaahUgacqGHsislcaWHXbGaaiilaiaahUgacaGGNaGaaiilaiaahUeacaGGSaGaamOEaaGaayjkaiaawMcaaaWcbeqab0Gaey4kIipakmaalaaabaGaamizamaaCaaaleqabaGaaG4maaaakiaadghaaeaadaqadaqaaiaaikdacqaHapaCaiaawIcacaGLPaaadaahaaWcbeqaaiaaiodaaaaaaaaa@8716@
(3)
melyben
F
(
+
)
(
K , k − q
) = 1 +
n
(
0
)
(
k
1
− q
) +
n
(
0
)
(
k
2
+ q
) = 1 +
n
(
0
)
(
K / 2 + k − q
) +
n
(
0
)
(
K / 2 − k + q
)
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGgbWaaSbaaSqaamaabmaabaGaey4kaScacaGLOaGaayzkaaaabeaakmaabmaabaGaaC4saiaacYcacaWHRbGaeyOeI0IaaCyCaaGaayjkaiaawMcaaiabg2da9iaaigdacqGHRaWkcaWGUbWaaWbaaSqabeaadaqadaqaaiaaicdaaiaawIcacaGLPaaaaaGcdaqadaqaaiaahUgadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWHXbaacaGLOaGaayzkaaGaey4kaSIaamOBamaaCaaaleqabaWaaeWaaeaacaaIWaaacaGLOaGaayzkaaaaaOWaaeWaaeaacaWHRbWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaaCyCaaGaayjkaiaawMcaaiabg2da9iaaigdacqGHRaWkcaWGUbWaaWbaaSqabeaadaqadaqaaiaaicdaaiaawIcacaGLPaaaaaGcdaqadaqaaiaahUeacaGGVaGaaGOmaiabgUcaRiaahUgacqGHsislcaWHXbaacaGLOaGaayzkaaGaey4kaSIaamOBamaaCaaaleqabaWaaeWaaeaacaaIWaaacaGLOaGaayzkaaaaaOWaaeWaaeaacaWHlbGaai4laiaaikdacqGHsislcaWHRbGaey4kaSIaaCyCaaGaayjkaiaawMcaaaaa@80BF@