Kétrészecske kölcsönhatás vákuumban

Kétrészecske potenciál általános alakja
Lennard-Jones-potenciál közelítésben r 0 MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGYbWaaSbaaSqaaiaaicdaaeqaaaaa@4AD7@ hatótávval

Két részecskénk van csak egyelőre, 2 bozon vagy fermion. A Hamilton-operátor: H = p 1 2 2 m + p 2 2 2 m + v ( r 1 r 2 ) MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGibGaeyypa0ZaaSaaaeaacaWGWbWaa0baaSqaaiaaigdaaeaacaaIYaaaaaGcbaGaaGOmaiaad2gaaaGaey4kaSYaaSaaaeaacaWGWbWaa0baaSqaaiaaikdaaeaacaaIYaaaaaGcbaGaaGOmaiaad2gaaaGaey4kaSIaamODamaabmaabaGaaCOCamaaBaaaleaacaaIXaaabeaakiabgkHiTiaahkhadaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaaaaa@5C9F@ Ekkor a Schrödinger egyenlet H ψ ( r 1 , r 2 ) = E ψ ( r 1 , r 2 ) MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGibGaeqiYdK3aaeWaaeaacaWHYbWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaahkhadaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaacqGH9aqpcaWGfbGaeqiYdK3aaeWaaeaacaWHYbWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaahkhadaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaaaaa@5B58@ Bevezethetünk új térkoordinátákat, a tömegközéppontit és a relítvat: R = r 1 + r 2 2 MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWHsbGaeyypa0ZaaSaaaeaacaWHYbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaaCOCamaaBaaaleaacaaIYaaabeaaaOqaaiaaikdaaaaaaa@5063@ r = r 1 r 2 MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWHYbGaeyypa0JaaCOCamaaBaaaleaacaaIXaaabeaakiabgkHiTiaahkhadaWgaaWcbaGaaGOmaaqabaaaaa@4FB8@ És új impulzusokat: P = p 1 + p 2 2 MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWHqbGaeyypa0ZaaSaaaeaacaWHWbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaaCiCamaaBaaaleaacaaIYaaabeaaaOqaaiaaikdaaaaaaa@505D@ p = p 1 p 2 2 MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWHWbGaeyypa0ZaaSaaaeaacaWHWbWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaaCiCamaaBaaaleaacaaIYaaabeaaaOqaaiaaikdaaaaaaa@5088@ Ekkor ψ MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqaHipqEaaa@4AC9@ térfüggése felírható szorzatalakban: ψ ( R , r ) = ψ ( r ) e i k R MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqaHipqEdaqadaqaaiaahkfacaGGSaGaaCOCaaGaayjkaiaawMcaaiabg2da9iabeI8a5naabmaabaGaaCOCaaGaayjkaiaawMcaaiabgwSixlaadwgadaahaaWcbeqaaiaadMgacaWHRbGaaCOuaaaaaaa@5A4E@ A Hamilton operátor az új koordinátákkal, bevezetve az össztömeg M=m+m MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGnbGaeyypa0JaamyBaiabgUcaRiaad2gaaaa@4D99@ és redukált tömeg μ= m+m mm MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqaH8oqBcqGH9aqpdaWcaaqaaiaad2gacqGHRaWkcaWGTbaabaGaamyBaiabgwSixlaad2gaaaaaaa@52BB@ kifejezéseit (különböző tömegű részecskék esetén m MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGTbaaaa@49ED@ -ek értelemszerű indexelésével): H= P 2 2M + p 2 2μ +v( r ) MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGibGaeyypa0ZaaSaaaeaacaWGqbWaaWbaaSqabeaacaaIYaaaaaGcbaGaaGOmaiaad2eaaaGaey4kaSYaaSaaaeaacaWGWbWaaWbaaSqabeaacaaIYaaaaaGcbaGaaGOmaiabeY7aTbaacqGHRaWkcaWG2bWaaeWaaeaacaWHYbaacaGLOaGaayzkaaaaaa@57E1@ Így a Schrödinger-egyenlet: [ 2 Δ r 2 M + 2 K 2 2 M + v ( r ) ] ψ ( r ) = E ψ ( r ) MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaadaWadaqaaabaaaaaaaaapeWaaSaaaeaapaGaeyOeI0Ydbiabl+qiOnaaCaaaleqabaGaaGOmaaaakiabfs5aenaaBaaaleaacaWHYbaabeaaaOqaaiaaikdacaWGnbaaaiabgUcaRmaalaaabaGaeS4dHG2aaWbaaSqabeaacaaIYaaaaOGaam4samaaCaaaleqabaGaaGOmaaaaaOqaaiaaikdacaWGnbaaaiabgUcaRiaadAhadaqadaqaaiaahkhaaiaawIcacaGLPaaaa8aacaGLBbGaayzxaaGaeqiYdK3aaeWaaeaacaWHYbaacaGLOaGaayzkaaGaeyypa0JaamyraiabeI8a5naabmaabaGaaCOCaaGaayjkaiaawMcaaaaa@67AD@ Ekkor bevezetve a k 2 = m 2 E K 2 4 MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGRbWaaWbaaSqabeaacaaIYaaaaOGaeyypa0ZaaSaaaeaacaWGTbaabaaeaaaaaaaaa8qacqWIpecAdaahaaWcbeqaaiaaikdaaaaaaOWdaiaadweacqGHsisldaWcaaqaaiaadUeadaahaaWcbeqaaiaaikdaaaaakeaacaaI0aaaaaaa@5379@ és V ( r ) = m 2 v ( r ) MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGwbWaaeWaaeaacaWHYbaacaGLOaGaayzkaaGaeyypa0ZaaSaaaeaacaWGTbaabaGaeS4dHG2aaWbaaSqabeaacaaIYaaaaaaakiaadAhadaqadaqaaiaahkhaaiaawIcacaGLPaaaaaa@53FD@ mennyiségeket, a Schrödinger egyenlet a következő alakban írható: ( Δ r + k 2 ) ψ ( r ) = V ( r ) ψ ( r ) MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaadaqadaqaaiabfs5aenaaBaaaleaacaWHYbaabeaakiabgUcaRiaadUgadaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaacqaHipqEdaqadaqaaiaahkhaaiaawIcacaGLPaaacqGH9aqpcaWGwbWaaeWaaeaacaWHYbaacaGLOaGaayzkaaGaeqiYdK3aaeWaaeaacaWHYbaacaGLOaGaayzkaaaaaa@5CE9@ Definiáljuk a Schrödinger egyenlet Green-függvényét: ( Δ r + k 2 ) G k ( + ) ( r r ' ) = δ ( r r ' ) MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaadaqadaqaaiabfs5aenaaBaaaleaacaWHYbaabeaakiabgUcaRiaadUgadaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaacaWGhbWaa0baaSqaaiaahUgaaeaadaqadaqaaiabgUcaRaGaayjkaiaawMcaaaaakmaabmaabaGaaCOCaiabgkHiTiaahkhacaGGNaaacaGLOaGaayzkaaGaeyypa0JaeyOeI0IaeqiTdq2aaeWaaeaacaWHYbGaeyOeI0IaaCOCaiaacEcaaiaawIcacaGLPaaaaaa@6207@ A Schrödinger egyenlet megoldásai:

A hullámszámvektor
és helykoordináta

Ha r r 0 MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGYbGaeS4AI8JaamOCamaaBaaaleaacaaIWaaabeaaaaa@4D2C@ , G k ( + ) MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGhbWaa0baaSqaaiaahUgaaeaadaqadaqaaiabgUcaRaGaayjkaiaawMcaaaaaaaa@4D53@ sorbafejthető, mert | rr' |=r| e r r'/r |rrr'/r+O( r 0 /r ) MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaadaabdaqaaiaahkhacqGHsislcaWHYbGaai4jaaGaay5bSlaawIa7aiabg2da9iaadkhadaabdaqaaiaahwgadaWgaaWcbaGaaCOCaaqabaGccqGHsislcaWHYbGaai4jaiaac+cacaWGYbaacaGLhWUaayjcSdGaeyisISRaamOCaiabgkHiTiaahkhacaWHYbGaai4jaiaac+cacaWGYbGaey4kaSIaam4tamaabmaabaGaamOCamaaBaaaleaacaaIWaaabeaakiaac+cacaWGYbaacaGLOaGaayzkaaaaaa@69D6@ , így : G k ( + ) ( r r ' ) = 1 4 π e i k r r e i k r r ' r MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGhbWaa0baaSqaaiaahUgaaeaadaqadaqaaiabgUcaRaGaayjkaiaawMcaaaaakmaabmaabaGaaCOCaiabgkHiTiaahkhacaGGNaaacaGLOaGaayzkaaGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGinaiabec8aWbaadaWcaaqaaiaadwgadaahaaWcbeqaaiaadMgacaWGRbGaamOCaaaaaOqaaiaadkhaaaGaamyzamaaCaaaleqabaGaeyOeI0YaaSaaaeaacaWGPbGaam4AaiaahkhacaWHYbGaai4jaaqaaiaadkhaaaaaaaaa@6347@ .

Ekkor a megoldás: ψ k ( + ) ( r ) e i k r 1 4 π e i k r r e i k ' r ' V ( r ' ) ψ k ( + ) ( r ' ) d 3 r ' MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqaHipqEdaqhaaWcbaGaaC4AaaqaamaabmaabaGaey4kaScacaGLOaGaayzkaaaaaOWaaeWaaeaacaWHYbaacaGLOaGaayzkaaGaeSipIOJaamyzamaaCaaaleqabaGaamyAaiaahUgacaWHYbaaaOGaeyOeI0YaaSaaaeaacaaIXaaabaGaaGinaiabec8aWbaadaWcaaqaaiaadwgadaahaaWcbeqaaiaadMgacaWGRbGaamOCaaaaaOqaaiaadkhaaaWaa8qaaeaacaWGLbWaaWbaaSqabeaacqGHsislcaWGPbGaaC4AaiaacEcacaWHYbGaai4jaaaakiabgwSixlaadAfadaqadaqaaiaahkhacaGGNaaacaGLOaGaayzkaaGaeqiYdK3aa0baaSqaaiaahUgaaeaadaqadaqaaiabgUcaRaGaayjkaiaawMcaaaaakmaabmaabaGaaCOCaiaacEcaaiaawIcacaGLPaaaaSqabeqaniabgUIiYdGccaWGKbWaaWbaaSqabeaacaaIZaaaaOGaamOCaiaacEcaaaa@79E6@ Definiálhatjuk a szórási amplitúdót: f ( + ) ( k , k ' ) : = 1 4 π e i k ' r ' V ( r ' ) ψ k ( + ) ( r ' ) d 3 r ' MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGMbWaaWbaaSqabeaadaqadaqaaiabgUcaRaGaayjkaiaawMcaaaaakmaabmaabaGaaC4AaiaacYcacaWHRbGaai4jaaGaayjkaiaawMcaaiaacQdacqGH9aqpcqGHsisldaWcaaqaaiaaigdaaeaacaaI0aGaeqiWdahaamaapeaabaGaamyzamaaCaaaleqabaGaeyOeI0IaamyAaiaahUgacaGGNaGaaCOCaiaacEcaaaGccaWGwbWaaeWaaeaacaWHYbGaai4jaaGaayjkaiaawMcaaiabeI8a5naaDaaaleaacaWHRbaabaWaaeWaaeaacqGHRaWkaiaawIcacaGLPaaaaaGcdaqadaqaaiaahkhacaGGNaaacaGLOaGaayzkaaaaleqabeqdcqGHRiI8aOGaamizamaaCaaaleqabaGaaG4maaaakiaadkhacaGGNaaaaa@6FAD@

Megjegyzés: ott, ahol V ( r ) MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGwbWaaeWaaeaacaWHYbaacaGLOaGaayzkaaaaaa@4C5A@ divergál, ott ψ k ( + ) ( r ) MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqaHipqEdaqhaaWcbaGaaC4AaaqaamaabmaabaGaey4kaScacaGLOaGaayzkaaaaaOWaaeWaaeaacaWHYbaacaGLOaGaayzkaaaaaa@50E3@ eltűnik, viszont f ( + ) ( k , k ' ) MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGMbWaaWbaaSqabeaadaqadaqaaiabgUcaRaGaayjkaiaawMcaaaaakmaabmaabaGaaC4AaiaacYcacaWHRbGaai4jaaGaayjkaiaawMcaaaaa@5154@ véges marad. Perturbatív kezelés nem lehetséges, mert véges rendben nem lehet levinni ψ MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqaHipqEaaa@4AC9@ -t 0-ba.

Fourier-transzformáljuk a potenciált és a hulláfüggvényt: V ( q ) = e i q r V ( r ) d 3 r MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGwbWaaeWaaeaacaWHXbaacaGLOaGaayzkaaGaeyypa0Zaa8qaaeaacaWGLbWaaWbaaSqabeaacqGHsislcaWGPbGaaCyCaiaahkhaaaaabeqab0Gaey4kIipakiabgwSixlaadAfadaqadaqaaiaahkhaaiaawIcacaGLPaaacaWGKbWaaWbaaSqabeaacaaIZaaaaOGaamOCaaaa@5CBD@ ψ k ( q ) = e i q r ψ k ( + ) ( r ) = ( 2 π ) 3 δ ( q k ) 1 q 2 k 2 i η V ( p ) ψ k ( q p ) d 3 p ( 2 π ) 3 MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqaHipqEdaWgaaWcbaGaaC4AaaqabaGcdaqadaqaaiaahghaaiaawIcacaGLPaaacqGH9aqpdaWdbaqaaiaadwgadaahaaWcbeqaaiabgkHiTiaadMgacaWHXbGaaCOCaaaakiabeI8a5naaDaaaleaacaWHRbaabaWaaeWaaeaacqGHRaWkaiaawIcacaGLPaaaaaGcdaqadaqaaiaahkhaaiaawIcacaGLPaaaaSqabeqaniabgUIiYdGccqGH9aqpdaqadaqaaiaaikdacqaHapaCaiaawIcacaGLPaaadaahaaWcbeqaaiaaiodaaaGccqaH0oazdaqadaqaaiaahghacqGHsislcaWHRbaacaGLOaGaayzkaaGaeyOeI0YaaSaaaeaacaaIXaaabaGaamyCamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaadUgadaahaaWcbeqaaiaaikdaaaGccqGHsislcaWGPbGaeq4TdGgaamaapeaabaGaamOvamaabmaabaGaaCiCaaGaayjkaiaawMcaaiabeI8a5naaBaaaleaacaWHRbaabeaakmaabmaabaGaaCyCaiabgkHiTiaahchaaiaawIcacaGLPaaaaSqabeqaniabgUIiYdGcdaWcaaqaaiaadsgadaahaaWcbeqaaiaaiodaaaGccaWGWbaabaWaaeWaaeaacaaIYaGaeqiWdahacaGLOaGaayzkaaWaaWbaaSqabeaacaaIZaaaaaaaaaa@88E8@ Ekkor a szórási amplitúdók kifejezhetőek ezekkel a mennyiségekkel: f ( + ) ˜ ( k , k ' ) : = 4 π f ( + ) ( k , k ' ) = V ( p ) ψ k ( k ' p ) d 3 p ( 2 π ) 3 = V ( k ' p ) ψ k ( p ) d 3 P ( 2 π ) 3 MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaadaaiaaqaaiaadAgadaahaaWcbeqaamaabmaabaGaey4kaScacaGLOaGaayzkaaaaaaGccaGLdmaadaqadaqaaiaahUgacaGGSaGaaC4AaiaacEcaaiaawIcacaGLPaaacaGG6aGaeyypa0JaeyOeI0IaaGinaiabec8aWjaadAgadaahaaWcbeqaamaabmaabaGaey4kaScacaGLOaGaayzkaaaaaOWaaeWaaeaacaWHRbGaaiilaiaahUgacaGGNaaacaGLOaGaayzkaaGaeyypa0Zaa8qaaeaacaWGwbWaaeWaaeaacaWHWbaacaGLOaGaayzkaaGaeqiYdK3aaSbaaSqaaiaahUgaaeqaaOWaaeWaaeaacaWHRbGaai4jaiabgkHiTiaahchaaiaawIcacaGLPaaaaSqabeqaniabgUIiYdGcdaWcaaqaaiaadsgadaahaaWcbeqaaiaaiodaaaGccaWGWbaabaWaaeWaaeaacaaIYaGaeqiWdahacaGLOaGaayzkaaWaaWbaaSqabeaacaaIZaaaaaaakiabg2da9maapeaabaGaamOvamaabmaabaGaaC4AaiaacEcacqGHsislcaWHWbaacaGLOaGaayzkaaGaeqiYdK3aaSbaaSqaaiaahUgaaeqaaOWaaeWaaeaacaWHWbaacaGLOaGaayzkaaaaleqabeqdcqGHRiI8aOWaaSaaaeaacaWGKbWaaWbaaSqabeaacaaIZaaaaOGaamiuaaqaamaabmaabaGaaGOmaiabec8aWbGaayjkaiaawMcaamaaCaaaleqabaGaaG4maaaaaaaaaa@8BFD@ f ( + ) ˜ ( k , k ' ) = V ( k k ' ) V ( k ' p ) f ( + ) ˜ ( k , p ) k 2 p 2 + i η d 3 p ( 2 π ) 3 MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaadaaiaaqaaiaadAgadaahaaWcbeqaamaabmaabaGaey4kaScacaGLOaGaayzkaaaaaaGccaGLdmaadaqadaqaaiaahUgacaGGSaGaaC4AaiaacEcaaiaawIcacaGLPaaacqGH9aqpcaWGwbWaaeWaaeaacaWHRbGaeyOeI0IaaC4AaiaacEcaaiaawIcacaGLPaaadaWdbaqaamaalaaabaGaamOvamaabmaabaGaaC4AaiaacEcacqGHsislcaWHWbaacaGLOaGaayzkaaWaaacaaeaacaWGMbWaaWbaaSqabeaadaqadaqaaiabgUcaRaGaayjkaiaawMcaaaaaaOGaay5adaWaaeWaaeaacaWHRbGaaiilaiaahchaaiaawIcacaGLPaaaaeaacaWGRbWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaamiCamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadMgacqaH3oaAaaaaleqabeqdcqGHRiI8aOWaaSaaaeaacaWGKbWaaWbaaSqabeaacaaIZaaaaOGaamiCaaqaamaabmaabaGaaGOmaiabec8aWbGaayjkaiaawMcaamaaCaaaleqabaGaaG4maaaaaaaaaa@7975@ (2)

Megjegyzés:

Kétrészecske szórás közegben

Definiáljuk a négypontfüggvényt, vagy más néven T-mátrixot: Γ ( k 1 , k 2 , k 3 , k 4 ) = v ( k 1 k 3 ) 1 β 2 m v ( q ) G ( 0 ) ( k 1 q ) G ( 0 ) ( k 2 + q ) Γ ( k 1 q , k 2 + q , k 3 , k 4 ) d 3 q ( 2 π ) 3 MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqqHtoWrdaqadaqaaiaahUgadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaC4AamaaBaaaleaacaaIYaaabeaakiaacYcacaWHRbWaaSbaaSqaaiaaiodaaeqaaOGaaiilaiaahUgadaWgaaWcbaGaaGinaaqabaaakiaawIcacaGLPaaacqGH9aqpcaWG2bWaaeWaaeaacaWHRbWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaaC4AamaaBaaaleaacaaIZaaabeaaaOGaayjkaiaawMcaaiabgkHiTmaapeaabaWaaSaaaeaacaaIXaaabaGaeqOSdiMaeS4dHG2aaWbaaSqabeaacaaIYaaaaaaakmaaqafabaGaamODamaabmaabaGaaCyCaaGaayjkaiaawMcaaiaadEeadaWgaaWcbaWaaeWaaeaacaaIWaaacaGLOaGaayzkaaaabeaakmaabmaabaGaaC4AamaaBaaaleaacaaIXaaabeaakiabgkHiTiaahghaaiaawIcacaGLPaaacaWGhbWaaSbaaSqaamaabmaabaGaaGimaaGaayjkaiaawMcaaaqabaGcdaqadaqaaiaahUgadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaWHXbaacaGLOaGaayzkaaGaeu4KdC0aaeWaaeaacaWHRbWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaaCyCaiaacYcacaWHRbWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaaCyCaiaacYcacaWHRbWaaSbaaSqaaiaaiodaaeqaaOGaaiilaiaahUgadaWgaaWcbaGaaGinaaqabaaakiaawIcacaGLPaaaaSqaaiaad2gaaeqaniabggHiLdaaleqabeqdcqGHRiI8aOWaaSaaaeaacaWGKbWaaWbaaSqabeaacaaIZaaaaOGaamyCaaqaamaabmaabaGaaGOmaiabec8aWbGaayjkaiaawMcaamaaCaaaleqabaGaaG4maaaaaaaaaa@953D@ A T-mátrix diagramja:

Állítás: Γ MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqqHtoWraaa@4A63@ nem függ az átadott frekvenciától. Ezért a Matsubara-frekvenciákra való összegzés elvégezhető. 1 β 2 m G ( 0 ) ( k 1 q ) G ( 0 ) ( k 2 + q ) = 1 β 2 m 1 i ω 1 i ν m 1 ( e k 1 q μ ) 1 i ω 2 + i ω m 1 ( e k + q μ ) = MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaadaWcaaqaaiaaigdaaeaacqaHYoGycqWIpecAdaahaaWcbeqaaiaaikdaaaaaaOWaaabuaeaacaWGhbWaaSbaaSqaamaabmaabaGaaGimaaGaayjkaiaawMcaaaqabaGcdaqadaqaaiaahUgadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWHXbaacaGLOaGaayzkaaGaam4ramaaBaaaleaadaqadaqaaiaaicdaaiaawIcacaGLPaaaaeqaaOWaaeWaaeaacaWHRbWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaaCyCaaGaayjkaiaawMcaaaWcbaGaamyBaaqab0GaeyyeIuoakiabg2da9maalaaabaGaaGymaaqaaiabek7aIjabl+qiOnaaCaaaleqabaGaaGOmaaaaaaGcdaaeqbqaamaalaaabaGaaGymaaqaaiaadMgacqaHjpWDdaWgaaWcbaGaaGymaaqabaGccqGHsislcaWGPbGaeqyVd42aaSbaaSqaaiaad2gaaeqaaOGaeyOeI0IaeS4dHG2aaWbaaSqabeaacqGHsislcaaIXaaaaOWaaeWaaeaacaWGLbWaaSbaaSqaaiaahUgadaWgaaadbaGaaGymaaqabaWccqGHsislcaWHXbaabeaakiabgkHiTiabeY7aTbGaayjkaiaawMcaaaaacqGHflY1daWcaaqaaiaaigdaaeaacaWGPbGaeqyYdC3aaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaamyAaiabeM8a3naaBaaaleaacaWGTbaabeaakiabgkHiTiabl+qiOnaaCaaaleqabaGaeyOeI0IaaGymaaaakmaabmaabaGaamyzamaaBaaaleaacaWHRbGaey4kaSIaaCyCaaqabaGccqGHsislcqaH8oqBaiaawIcacaGLPaaaaaaaleaacaWGTbaabeqdcqGHris5aOGaeyypa0daaa@9958@ = 1 β 2 m 1 i ω 1 + i ω 2 1 ( e k 1 q + e k 2 + q 2 μ ) [ 1 i ω 1 i ν m 1 ( e k 1 q μ ) + 1 i ω 2 + i ν m 1 ( e k 2 + q μ ) ] = MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqGH9aqpdaWcaaqaaiaaigdaaeaacqaHYoGycqWIpecAdaahaaWcbeqaaiaaikdaaaaaaOWaaabuaeaadaWcaaqaaiaaigdaaeaacaWGPbGaeqyYdC3aaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaamyAaiabeM8a3naaBaaaleaacaaIYaaabeaakiabgkHiTiabl+qiOnaaCaaaleqabaGaeyOeI0IaaGymaaaakmaabmaabaGaamyzamaaBaaaleaacaWHRbWaaSbaaWqaaiaaigdaaeqaaSGaeyOeI0IaaCyCaaqabaGccqGHRaWkcaWGLbWaaSbaaSqaaiaahUgadaWgaaadbaGaaGOmaaqabaWccqGHRaWkcaWHXbaabeaakiabgkHiTiaaikdacqaH8oqBaiaawIcacaGLPaaaaaWaamWaaeaadaWcaaqaaiaaigdaaeaacaWGPbGaeqyYdC3aaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaamyAaiabe27aUnaaBaaaleaacaWGTbaabeaakiabgkHiTiabl+qiOnaaCaaaleqabaGaeyOeI0IaaGymaaaakmaabmaabaGaamyzamaaBaaaleaacaWHRbWaaSbaaWqaaiaaigdaaeqaaSGaeyOeI0IaaCyCaaqabaGccqGHsislcqaH8oqBaiaawIcacaGLPaaaaaGaey4kaSYaaSaaaeaacaaIXaaabaGaamyAaiabeM8a3naaBaaaleaacaaIYaaabeaakiabgUcaRiaadMgacqaH9oGBdaWgaaWcbaGaamyBaaqabaGccqGHsislcqWIpecAdaahaaWcbeqaaiabgkHiTiaaigdaaaGcdaqadaqaaiaadwgadaWgaaWcbaGaaC4AamaaBaaameaacaaIYaaabeaaliabgUcaRiaahghaaeqaaOGaeyOeI0IaeqiVd0gacaGLOaGaayzkaaaaaaGaay5waiaaw2faaaWcbaGaamyBaaqab0GaeyyeIuoakiabg2da9aaa@9E87@ = 1 1 + n ( 0 ) ( k 1 q ) + n ( 0 ) ( k 2 + q ) i ω n 1 + i ω n 2 1 ( e k 1 q + e k 2 + q 2 μ ) MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqGH9aqpcqGHsisldaWcaaqaaiaaigdaaeaacqWIpecAaaWaaSaaaeaacaaIXaGaey4kaSIaamOBamaaCaaaleqabaWaaeWaaeaacaaIWaaacaGLOaGaayzkaaaaaOWaaeWaaeaacaWHRbWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaaCyCaaGaayjkaiaawMcaaiabgUcaRiaad6gadaahaaWcbeqaamaabmaabaGaaGimaaGaayjkaiaawMcaaaaakmaabmaabaGaaC4AamaaBaaaleaacaaIYaaabeaakiabgUcaRiaahghaaiaawIcacaGLPaaaaeaacaWGPbGaeqyYdC3aaSbaaSqaaiaad6gadaWgaaadbaGaaGymaaqabaaaleqaaOGaey4kaSIaamyAaiabeM8a3naaBaaaleaacaWGUbWaaSbaaWqaaiaaikdaaeqaaaWcbeaakiabgkHiTiabl+qiOnaaCaaaleqabaGaeyOeI0IaaGymaaaakmaabmaabaGaamyzamaaBaaaleaacaWHRbWaaSbaaWqaaiaaigdaaeqaaSGaeyOeI0IaaCyCaaqabaGccqGHRaWkcaWGLbWaaSbaaSqaaiaahUgadaWgaaadbaGaaGOmaaqabaWccqGHRaWkcaWHXbaabeaakiabgkHiTiaaikdacqaH8oqBaiaawIcacaGLPaaaaaaaaa@7F0D@ ahol n ( 0 ) ( k ) = 1 e β ( e k μ ) 1 MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGUbWaaWbaaSqabeaadaqadaqaaiaaicdaaiaawIcacaGLPaaaaaGcdaqadaqaaiaahUgaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiaaigdaaeaacaWGLbWaaWbaaSqabeaacqaHYoGydaqadaqaaiaadwgadaWgaaadbaGaaC4AaaqabaWccqGHsislcqaH8oqBaiaawIcacaGLPaaaaaGccqGHsislcaaIXaaaaaaa@5B62@ .

Tömegközépponti és relatív koordinátákkal: K = k 1 + k 2 = k 3 + k 4 MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWHlbGaeyypa0JaaC4AamaaBaaaleaacaaIXaaabeaakiabgUcaRiaahUgadaWgaaWcbaGaaGOmaaqabaGccqGH9aqpcaWHRbWaaSbaaSqaaiaaiodaaeqaaOGaey4kaSIaaC4AamaaBaaaleaacaaI0aaabeaaaaa@552F@ k = k 1 k 2 2 MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWHRbGaeyypa0ZaaSaaaeaacaWHRbWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaaC4AamaaBaaaleaacaaIYaaabeaaaOqaaiaaikdaaaaaaa@5079@ k ' = k 3 k 4 2 MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWHRbGaai4jaiabg2da9maalaaabaGaaC4AamaaBaaaleaacaaIZaaabeaakiabgkHiTiaahUgadaWgaaWcbaGaaGinaaqabaaakeaacaaIYaaaaaaa@5128@ Ekkor i ω N = i ω n 1 + i ω n 2 = i ω n 3 + i ω n 4 MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGPbGaeqyYdC3aaSbaaSqaaiaad6eaaeqaaOGaeyypa0JaamyAaiabeM8a3naaBaaaleaacaWGUbWaaSbaaWqaaiaaigdaaeqaaaWcbeaakiabgUcaRiaadMgacqaHjpWDdaWgaaWcbaGaamOBamaaBaaameaacaaIYaaabeaaaSqabaGccqGH9aqpcaWGPbGaeqyYdC3aaSbaaSqaaiaad6gadaWgaaadbaGaaG4maaqabaaaleqaaOGaey4kaSIaamyAaiabeM8a3naaBaaaleaacaWGUbWaaSbaaWqaaiaaisdaaeqaaaWcbeaaaaa@63E7@ z 2 ( e k + q μ ) : = ( i ω n 1 + i ω n 2 1 ( e k 1 q + e k 2 + q 2 μ ) ) = i ω N 2 K 2 4 m MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWG6bGaeyOeI0IaaGOmamaabmaabaGaamyzamaaBaaaleaacaWHRbGaey4kaSIaaCyCaaqabaGccqGHsislcqaH8oqBaiaawIcacaGLPaaacaGG6aGaeyypa0JaeS4dHG2aaeWaaeaacaWGPbGaeqyYdC3aaSbaaSqaaiaad6gadaWgaaadbaGaaGymaaqabaaaleqaaOGaey4kaSIaamyAaiabeM8a3naaBaaaleaacaWGUbWaaSbaaWqaaiaaikdaaeqaaaWcbeaakiabgkHiTiabl+qiOnaaCaaaleqabaGaeyOeI0IaaGymaaaakmaabmaabaGaamyzamaaBaaaleaacaWHRbWaaSbaaWqaaiaaigdaaeqaaSGaeyOeI0IaaCyCaaqabaGccqGHRaWkcaWGLbWaaSbaaSqaaiaahUgadaWgaaadbaGaaGOmaaqabaWccqGHRaWkcaWHXbaabeaakiabgkHiTiaaikdacqaH8oqBaiaawIcacaGLPaaaaiaawIcacaGLPaaacqGH9aqpcaWGPbGaeS4dHGMaeqyYdC3aaSbaaSqaaiaad6eaaeqaaOGaeyOeI0YaaSaaaeaacqWIpecAdaahaaWcbeqaaiaaikdaaaGccaWGlbWaaWbaaSqabeaacaaIYaaaaaGcbaGaaGinaiaad2gaaaaaaa@82D6@ illetve Γ ( k 1 , k 2 , k 3 , k 4 ) Γ ( k , k ' , K , z ) MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqqHtoWrdaqadaqaaiaahUgadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaC4AamaaBaaaleaacaaIYaaabeaakiaacYcacaWHRbWaaSbaaSqaaiaaiodaaeqaaOGaaiilaiaahUgadaWgaaWcbaGaaGinaaqabaaakiaawIcacaGLPaaacqGHsgIRcqqHtoWrdaqadaqaaiaahUgacaGGSaGaaC4AaiaacEcacaGGSaGaaC4saiaacYcacaWG6baacaGLOaGaayzkaaaaaa@60EA@

Ekkor az jön ki, hogy Γ ( k , k ' , K , z ) = v ( k k ' ) + v ( q ) F ( + ) ( K , k q ) z 2 ( e k + q μ ) Γ ( k q , k ' , K , z ) d 3 q ( 2 π ) 3 MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacqqHtoWrdaqadaqaaiaahUgacaGGSaGaaC4AaiaacEcacaGGSaGaaC4saiaacYcacaWG6baacaGLOaGaayzkaaGaeyypa0JaamODamaabmaabaGaaC4AaiabgkHiTiaahUgacaGGNaaacaGLOaGaayzkaaGaey4kaSYaa8qaaeaacaWG2bWaaeWaaeaacaWHXbaacaGLOaGaayzkaaWaaSaaaeaacaWGgbWaaSbaaSqaamaabmaabaGaey4kaScacaGLOaGaayzkaaaabeaakmaabmaabaGaaC4saiaacYcacaWHRbGaeyOeI0IaaCyCaaGaayjkaiaawMcaaaqaaiaadQhacqGHsislcaaIYaWaaeWaaeaacaWGLbWaaSbaaSqaaiaahUgacqGHRaWkcaWHXbaabeaakiabgkHiTiabeY7aTbGaayjkaiaawMcaaaaacqqHtoWrdaqadaqaaiaahUgacqGHsislcaWHXbGaaiilaiaahUgacaGGNaGaaiilaiaahUeacaGGSaGaamOEaaGaayjkaiaawMcaaaWcbeqab0Gaey4kIipakmaalaaabaGaamizamaaCaaaleqabaGaaG4maaaakiaadghaaeaadaqadaqaaiaaikdacqaHapaCaiaawIcacaGLPaaadaahaaWcbeqaaiaaiodaaaaaaaaa@8716@ (3) melyben

F ( + ) ( K,kq )=1+ n ( 0 ) ( k 1 q )+ n ( 0 ) ( k 2 +q )=1+ n ( 0 ) ( K/2+kq )+ n ( 0 ) ( K/2k+q ) MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPjMCPbqefmuyTjMCPfgarmqr1ngBPrgitLxBI9gBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgarqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabauaagaaakeaacaWGgbWaaSbaaSqaamaabmaabaGaey4kaScacaGLOaGaayzkaaaabeaakmaabmaabaGaaC4saiaacYcacaWHRbGaeyOeI0IaaCyCaaGaayjkaiaawMcaaiabg2da9iaaigdacqGHRaWkcaWGUbWaaWbaaSqabeaadaqadaqaaiaaicdaaiaawIcacaGLPaaaaaGcdaqadaqaaiaahUgadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWHXbaacaGLOaGaayzkaaGaey4kaSIaamOBamaaCaaaleqabaWaaeWaaeaacaaIWaaacaGLOaGaayzkaaaaaOWaaeWaaeaacaWHRbWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaaCyCaaGaayjkaiaawMcaaiabg2da9iaaigdacqGHRaWkcaWGUbWaaWbaaSqabeaadaqadaqaaiaaicdaaiaawIcacaGLPaaaaaGcdaqadaqaaiaahUeacaGGVaGaaGOmaiabgUcaRiaahUgacqGHsislcaWHXbaacaGLOaGaayzkaaGaey4kaSIaamOBamaaCaaaleqabaWaaeWaaeaacaaIWaaacaGLOaGaayzkaaaaaOWaaeWaaeaacaWHlbGaai4laiaaikdacqGHsislcaWHRbGaey4kaSIaaCyCaaGaayjkaiaawMcaaaaa@80BF@